

Selection Structures: if and switch Statements

Abdallah Karakra

Computer Science Department

Comp 132

Control Structure

- ☐ Three kinds of control structures
 - Sequence structure
 - Programs executed sequentially by default
 - Statements executed in order
 - Selection structures
 - If
 - if...else
 - switch
 - Repetition structures
 - While
 - do...while
 - for

Control Structure

Before,

let us study: 1. Relational and equality operators

2. Logical Operators

Relational and equality operators

Four different forms:

- 1. Variable relational-operator Variable
- 2. Variable relational-operator Constant
- 3. Variable equality-operator Variable
- 4. Variable equality-operator Constant

Note:

You can use an expression instead of the variable or constant

Relational and equality operators

Operator	Meaning	Type
<	less than	relational
>	greater than	relational
<=	less than or equal to	relational
>=	greater than or equal to relation	
==	equal to equa	
!=	not equal to	equality

Logical Operators

Three types of logical operators:

Operator	Meaning	
&&	and	
	or	
!	not	

Operator Precedence

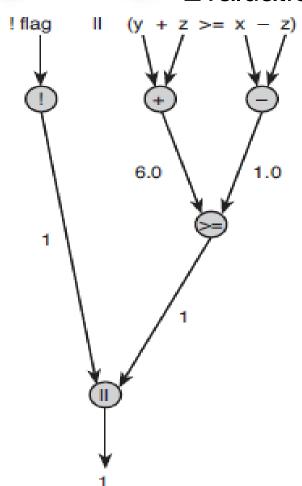
Operator	Precedence
function calls	highest
! + - & (unary operators)	
* / %	
+ -	
< <= >= >	
== !=	
&&	
	↓
=	lowest

Example

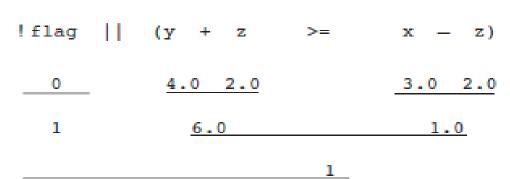
```
double x=3.0, y=4.0, z=2.0; int flag=0;
```

What is the value after applying the following expression:

```
! flag \Rightarrow !0 is 1 (true)


x + y / z <= 3.5 \Rightarrow 5.0 <= 3.5 is 0 (false)

! flag || (y + z >= x - z) \Rightarrow 1 || 1 is 1 (true)


! (flag || (y + z >= x - z)) \Rightarrow ! (0 || 1) is 0 (false)
```

Example

Evaluation for !flag II (y + z >= x - z)

flag	У	Z	x
0	4.0	2.0	3.0

Example: How to convert an English condition into a logical expression

double x = 3.0, y = 4.0, z = 2.0.

English Condition	Logical Expression	Evaluation
x and y are greater than z	x>z && y>z	1 && 1 is 1 (true)
x is equal to 1.0 or 3.0	x==1.0 x==3.0	0 1 is 1 (true)
x is in the range z to y, inclusive	z<=x && x<=y	1 && 1 is 1 (true)
x is outside the range z to y	!(z<=x && x<=y) z>x x>y	!(1 && 1) is 0 (false) 0 0 is 0 (false)

Example: Comparing Characters

Expression	Value
'9' >= '0'	1(true)
'a' < 'e'	1(true)
'B' <= 'A'	0(false)
'Z' == 'z'	0(false)
'a' <= 'A'	system dependent (false for ASCII)
'a' <= ch && ch <= 'z'	1(true) if ch is a lowercase letter

Logical Assignment

Example:

```
#include <stdio.h>
int main()
    int age, senior citizen;
    scanf("%d", &age);
    senior citizen = (age >= 65);
   printf("senior citizen = %d", senior citizen);
    return 0;
```

If Statement

If statement with one alternative

```
if (x!=0)
  product = product * x
```

If statement with two alternatives

```
if (rest_heart_rate >56)
    printf("Your heart is in excellent health!\n");
else
```

printf("Keep up your exercise program!\n");

if Statements with Compound Statements

```
if (condition)
      true task
Else
      false task
```

Examples

 Write a complete c program to find weather a given integer is odd or even.

```
#include <stdio.h>
int main()
    int number;
    printf("Please enter a number");
    scanf("%d", &number);
    if (number2==0)
       printf("Even Integer");
    else
       printf("Odd Integer");
    return 0;
```

Examples

 Write a complete c program to find weather a given integer is divisible by three.

```
#include <stdio.h>
int main()
    int number;
    printf("Please enter a number");
    scanf("%d", &number);
    if (number\$3==0)
       printf("Divisible by three");
    else
       printf("Does not divisible by three");
    return 0;
```

Switch X and Y example

Multiple-Alternative Decisions

Nested if statement

an if statement with another if statement as its true task or its false task

```
if (x > 0)
     num_pos = num_pos + 1;  //Number of positive numbers
else if (x < 0)
     num_neg = num_neg +1;  // Number of negative numbers
else
     num_zero = num_zero +1;  // Number of zeros</pre>
```

Multiple-Alternative Decisions

```
#include <stdio.h>
int main()
    int number:
    printf("Please enter a number");
    scanf("%d", &number);
    if (number>0)
       printf("Positive");
    else if (number<0)</pre>
       printf("Negative");
    else
       printf("Zero");
    return 0;
```

Example (if-else)

```
#include <stdio.h>
int main()
    int x=0;
    if (x==1)
        printf ("hello");
        printf ("welcome");
    else
    printf ("hi");
   return 0;
```

```
#include <stdio.h>
int main()
    int x=0;
    if (x==0)
        printf ("hello");
        printf ("welcome")
    else
    printf ("hi");
    return 0;
```

Example (if, if-else)

```
#include <stdio.h>
int main()
    int x=0;
    if (x==0)
        printf ("hello");
        printf ("welcome");
    else
        printf ("hi");
        printf ("hi3");
    return 0;
```

```
#include <stdio.h>
int main()
{
    int x=5;
    if (x<0)
        printf ("hello");
    printf ("welcome");

    return 0;
}</pre>
```

```
#include <stdio.h>
int main()
{
    int x=5;
    if (x>0)
        printf ("hello");
    printf ("welcome");
}
```

Example

```
#include <stdio.h>
int main()
{
    int x=5;
    if (x=0)
        printf ("hello");
    printf ("welcome");
    return 0;
}
```

```
#include <stdio.h>
int main()
{
    int y=8;
    if (y)
        printf ("hello");
    printf ("welcome");
    return 0;
}
```

```
#include <stdio.h>
int main()
{
    int y=0;
    if (y)
        printf ("hello");
        printf ("welcome");
    return 0;
}
```

```
#include <stdio.h>
int main()
{
    int y=8, x=0;
    if (y || x)
        printf ("hello");
    printf ("welcome");
}
```

Let us review the concepts:

1. If grade has the value of 60, what will the following code display?

```
If (grade >= 60 )
  printf ("Passed");
a. nothing.
b. 60
c. Passed
d. printf("Passed");
```

2. What will be the value of i after the C statements at the right have been executed?

```
a. 5

b. 6

c. 8

d. 10

e. 15

i = 3;

i = 10;

if ((3 * i) < j)

i = i + 2;

i = i + 3;
```

3. What is displayed by the C statements at the right if the value input is 3?

The switch Statement

 The switch statement selection is based on the value of a single variable or of a simple expression.

Expression may be of type int or char, but not of type double or

string.

The multiple selection mechanism in C is the switch statement.

The switch Statement

Before,

let us Recall: 1. Multiple Selection with if

2. Multiple Selection with if-else

Multiple Selection with if

```
if (day == 0)
  printf ("Sunday");
if (day == 1) {
  printf ("Monday");
if (day == 2) {
  printf ("Tuesday");
if (day == 3) {
  printf ("Wednesday");
```

```
if (day == 4) {
  printf ("Thursday");
if (day == 5) {
  printf ("Friday");
if (day == 6) {
  printf ("Saturday");
if ((day < 0) || (day > 6)) {
  printf("Error - invalid day.\n")
```

Multiple Selection with if-else

```
if (day == 0)
   printf ("Sunday") ;
} else if (day == 1 ) {
   printf ("Monday") ;
} else if (day == 2) {
   printf ("Tuesday") ;
} else if (day == 3) {
   printf ("Wednesday");
} else if (day == 4) {
   printf ("Thursday") :
} else if (day == 5) {
   printf ("Friday");
} else if (day = 6) {
   printf ("Saturday");
} else {
   printf ("Error - invalid day.\n");
```

This if-else structure is more efficient than the corresponding if structure. Why?

The **switch** Multiple-Selection Structure

```
switch ( integer expression )
   case constant<sub>1</sub>:
        statement(s)
        break;
   case constant<sub>2</sub>:
         statement(s)
        break;
   default::
        statement(s)
        break;
```


switch Statement Details

- The last statement of each case in the switch should almost always be a break.
- The break causes program control to jump to the closing brace of the switch structure.
- Without the break, the code flows into the next case. This is almost never what you want.
- A switch statement will compile without a default case, but always consider using one.

The **switch** Multiple-Selection Structure

```
switch (day)
{
    case 0: printf ("Sunday\n");
            break;
    case 1: printf ("Monday\n");
            break;
    case 2: printf ("Tuesday\n");
            break;
    case 3: printf ("Wednesday\n");
            break:
    case 4: printf ("Thursday\n");
            break;
    case 5: printf ("Friday\n");
            break;
    case 6: printf ("Saturday\n");
            break;
    default: printf ("Error -- invalid day.\n");
            break;
```

Why Use a switch Statement?

- A nested if-else structure is just as efficient as a switch statement.
- However, a switch statement may be easier to read.
- Also, it is easier to add new cases to a switch statement than to a nested if-else structure.

Common Programming Errors

The following always prints the same thing:

if
$$(x = 10)$$

printf("x is 10\n");

Common Programming Errors

If
$$(x = 10)$$

printf(" x is 10');

" instead of '

If
$$(x = 10)$$

printf(" x is 10")

semicolon

If
$$(x = 10)$$

printf(" x is 10'

printf(" x is 10 ");

Example (Creating Menus)

```
switch(choice)
  case 1: printf( "Do edit\n" );
           break;
  case 2: printf("Do delete\n");
            break;
  case 3: printf("Done\n");
           break;
  default: printf( "Invalid choice!\n" );
           break;
```

Write a C program which takes the 3 sides of a triangle, and print whether the triangle is an equilateral, isosceles or scalene triangle. Your program should include at least one function called triangle_type, this function takes the sides of the triangle and return 1 if the triangle is equilateral, 2 if the triangle is scalene and 3 for isosceles triangle.

NOTE:

Your triangle should be satisfied these conditions side 1 + side 2 > side 3 side 1 + side 3 > side 2 + side 3 > side 2 + side 3 > side 1 + side 3 > side 2 + side 3 > side 1 + side 3 > side 2 + side 3 > side 1 + side 3 > side 1 + side 3 > side 2 + side 3 > side 1 + side 3 > side 3 > side 1 + side 3 > side 3 >

Try these sides:

Write a C program which display color name based on first character of color (small or capital letters).

Note: Your program should work with the following colors: white, red and green

Write a C program which takes a character as input from the user. Check whether the character is an alphabet or not.

```
#include<stdio.h>
int main()
    char ch;
    printf("Enter the character to be checked: ");
    scanf ("%c", &ch);
    //checking if it is a Alphabet
    if( (ch>='A'&&ch<='Z') || (ch>='a'&&ch<='z') )</pre>
        printf("The input character is an alphabet\n");
    else
        printf("The input character is NOT an alphabet\n");
```

What will be printed by this carelessly constructed switch statement if the value of color is 'R'?

```
switch (color) { /* break statements missing */
case 'R':
        printf("red\n");
case 'B':
        printf("blue\n");
case 'Y':
        printf("yellow\n");
}
```

Write a program that takes three numbers as input from the user and finds out whether one of the three numbers is the arithmetic mean of the other two.

For example: Input: 7,15,11

Output: 11 is the mean of 7 and 15

Write a program that takes a positive integer in the range 1 to 365 (which corresponds to the day of the year) as input and outputs the day of the week. Assume that day 1 is Sunday. Make use of the switch statement.

For example: Input: 16

Output: Monday

The marks obtained by a student in 5 different subjects are input through the keyboard

The student gets a division as per the following rules:

Percentage above or equal to 60 - First division

Percentage between 50 and 59 - Second division

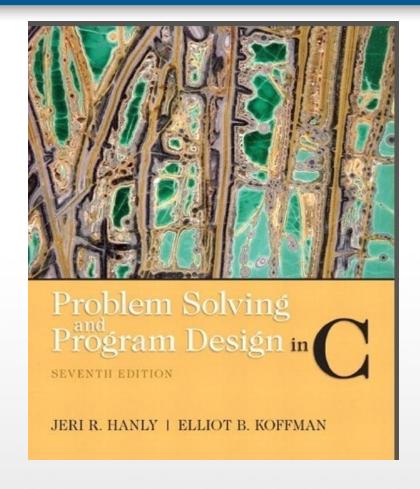
Percentage between 40 and 49 - Third division

Percentage less than 40 - Fail.

Write a program to calculate the division obtained by the student.

Example (output screen)

Enter marks in five subjects 34 26 35 35 70 Third division



Question?

"Success is the sum of small efforts, repeated day in and day out."
Robert Collier

References:

Problem Solving & Program Design in C (main reference)