
Programming in C

Ch7: Arrays

COMPUTER SCIENCE DEPARTMENT FACULTY OF ENGINEERING AND

TECHNOLOGY
COMPUTER AND PROGRAMMING

Instructor :Murad Njoum

OBJECTIVES

 What is an Array?

 Declaring Arrays

 Visual representation of an Array

 Array Initialization

 Array Subscripts

 Accessing Array elements

 Using array elements as function arguments

 Using arrays as function arguments

 Returning an array result

 Partially filled Arrays

 Searching

 Sorting Introduction to 2-D Arrays

 Declaration of 2-D Arrays

 Accessing 2-D Array elements

 Initialization of 2-D Arrays

 Processing 2-D Arrays

 2-D Arrays as parameters to functions
2

WHAT IS AN ARRAY?

 Scalar data types use a single memory cell to store a
single value.

 For many problems you need to group data items together.

 A program that processes exam scores for a class, for
example, would be easier to write if all the scores were
stored in one area of memory and were able to be
accessed as a group.

 C allows a programmer to group such related data items
together into a single composite data structure.

 We now take a look at one such data structure: the Array.

 An array is a collection of two or more adjacent memory
cells that:

 Store the same type of data values (e.g. int)

 Are referenced by the same name (i.e using one variable)

 These individual cells are called array elements
3

DECLARING ARRAYS

 To declare an array, we must declare its name, type of
data values it will store and the number of cells
associated with it. Example:

double x[8];

 This instructs C to associate eight memory cells with
the name x; these memory cells will be adjacent to each
other in memory.

 You can declare arrays along with regular variables

double cactus[5], needle, pins[7];

 It is a good practice to define the array size as constant:
#define ARRAY_SIZE 12

int myArray[ARRAY_SIZE];
4

DECLARING ARRAYS …

 Each element of the array x may contain a single
value of type double, so a total of eight such
numbers may be stored and referenced using the
array name x.

 The elements are numbered starting with 0
 An array with 8 elements has elements at 0,1,2,3,4,5,6, and 7

 The subscripted variable x[0] (read as x sub zero)
refers to the initial or 0th element of the array x,
x[1] is the next element in the array, and so on.

 The integer enclosed in brackets is the array
subscript or index and its value must be in the
range from zero to one less than the array size.

5

VISUAL REPRESENTATION OF AN ARRAY

342901

342905

342909

342913

342917

342921

342925

342929

?

?

20

?

?

?

?

?

0

1

2

3

4

5

6

7

6

int x[8]; x[2] = 20;

Memory
Addresses

Array
Index/Subscript

Array Element

Note: Index starts with 0, not with 1

ARRAY INITIALIZATION

 When you declare a variable, its value isn’t initialized
unless you specify.

int sum; // Does not initialize sum

int sum = 1; // Initializes sum to 1

 Arrays, like variables, aren’t initialized by default

int X[10]; //creates the array, but doesn’t set any of its values.

 If you have all the values at the point of declaring the
array, you can declare and initialize the array at the
same time, like:

int X[10] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29};

 The array elements are initialized in the order listed
X[0] = 2

X[4] = 11
7

ARRAY INITIALIZATION …

 If there are values in the initialization block, but not

enough to fill the array, all the elements in the array

without values are initialized to 0 in the case of

double or int, and NULL in the case of char.

int scores[20] = {0}; // all 20 elements are initialized to 0

int scores[20] = {1, 2, 3}; // First 3 elements are initialized to 1, 2,
// 3 and the rest are initialized to 0

 If there are values in the initialization block, an explicit

size for the array does not need to be specified. Only an

empty array element is sufficient, C will count the size

of the array for you.

int scores[] = {20, 10, 25, 30, 40}; // size of the array score is
// automatically calculated as 5 8

ARRAY SUBSCRIPTS

 We use subscripts/indices to differentiate between the
individual array elements

 We can use any expression of type int as an array subscript.

 However, to create a valid reference, the value of this
subscript must lie between 0 and one less than the array
size.

 It is essential that we understand the distinction between
an array subscript value and an array element value.

int x[2]; int y = 1; x[y] = 5;

The subscript is y (which is 1 in this case), and the array
element value is 5

 C compiler does not provide any array bound checking. As a
programmer it is your job to make sure that every reference
is valid (i.e. it falls within the boundary of the array).

9

ACCESSING ARRAY ELEMENTS

1. point[1] // the 2nd element of array point is accessed

2. point[9] = 20; // the 10th element of array point is assigned
// the value 20

3. We can use a loop to access all the elements of an
array

Example: Adding the values of all array elements

Two alternative style for loops

for (i = 0; i < ARRAY_SIZE; i++)

sum += a[i];

for (i = 0; i <= ARRAY_SIZE -1; i++)

sum += a[i];

 Note : The array element is a single valued variable of the
corresponding type and can be manipulated as a variable of
that type. 10

EXAMPLE 1
/* Reads five grades and print them */

#include<stdio.h>

#define SIZE 5

int main(void) {

double grades[SIZE] ; // array declaration

int i ;

printf("Enter five grades to store in array : \n");

printf("*********************************\n\n");

for (i = 0; i < SIZE; ++i) // loop to read the five grades into the array

{

printf ("Enter the %d element of array : ", i) ;

scanf ("%lf", &grades[i]) ;

}

printf("\n");

for (i = 0; i < SIZE; ++i) // loop to display five grades stored in the
array

printf ("The %d th element of array is %f\n", i, grades[i]) ;

system("pause");

return 0;

} 11

EXAMPLE 2
/* Reads data into two arrays and subtract their corresponding elements,

storing the result in another array. */

#include<stdio.h>

#define SIZE 5

int main(void) {

int first[SIZE], second[SIZE], diff[SIZE], i;

printf("Enter %d data items for first array : ", SIZE);

for(i=0;i<SIZE; i++) // input first array

scanf("%d", &first[i]);

printf("Enter %d data items for second array : ", SIZE);

for(i=0;i<SIZE; i++) // input second array

scanf("%d", &second[i]);

for(i=0;i<SIZE; i++) // compute the differences

diff[i]= second[i] - first[i];

printf("\n\nOutput of the arrays : \n");

for(i=0;i<SIZE; i++) // output the arrays

printf("%5d %5d %5d\n", first[i], second[i], diff[i]) ;

system("pause");

return 0;

}

12

EXAMPLE 3
/* Computes the mean and standard deviation of an array of data

and displays the difference between each value and the mean. */

#include <stdio.h>

#include <math.h>

#define SIZE 8 /* maximum number of items in list of data */

int main(void) {

double x[SIZE], mean, st_dev, sum, sum_sqr;

int i;

/* Gets the data */

printf("Enter %d numbers separated by blanks\n> ", SIZE);

for (i = 0; i < SIZE; ++i)

scanf("%lf", &x[i]);

/* Computes the sum and the sum of the squares of all data */

sum = 0;

sum_sqr = 0;

for (i = 0; i < SIZE; ++i) {

sum += x[i];

sum_sqr += x[i] * x[i];

}

13

EXAMPLE 3…
/* Computes and prints the mean and standard deviation */

mean = sum / SIZE;

st_dev = sqrt(sum_sqr / SIZE - mean * mean);

printf("The mean is %.2f.\n", mean);

printf("The standard deviation is %.2f.\n", st_dev);

/* Displays the difference between each item and the mean */

printf("\nTable of differences between data values and
mean\n");

printf("Index Item Difference\n");

for (i = 0; i < SIZE; ++i)

printf("%3d%4c%9.2f%5c%9.2f\n", i, ' ', x[i], ' ', x[i] - mean);

system("pause");

return (0);

}

14

USING ARRAY ELEMENTS AS FUNCTION

ARGUMENTS
 From the last example, we note that x[i] is used as actual

arguments to both printf and scanf functions.
for (i = 0; i < SIZE; ++i)

scanf("%lf", &x[i]);

 When i is 3 for example, &x[i] in the above stement passes
the address of the 4th array element , to the scanf function.

printf("%3d%4c%9.2f%5c%9.2f\n", i, ' ', x[i], ' ', x[i] - mean);

 Similarly, when i=3, x[i] in the above statement passes the
value of the 4th element to the printf function.

 Thus, the important point to note is that array elements are
treated as scalar variables and can be used wherever scalar
variables can be used.

 For example, if we have a double array, double a[8]; a[0] = 4.5;

Then we can make a function call: double root = sqrt(a[0]);

 This rule applies to all cases including user defined
functions.

15

EXAMPLE 4
/* Finds the square roots of all elemets in an array */

#include <stdio.h>

#include <math.h>

#define SIZE 8 /* maximum number of items in list of data */

int main(void) {

double x[SIZE], result[SIZE];

int i;

/* Gets the data */

printf("Enter %d numbers separated by blanks\n> ", SIZE);

for (i = 0; i < SIZE; ++i)

scanf("%lf", &x[i]);

/* Computes the square roots */

for (i = 0; i < SIZE; ++i)

result[i] = sqrt(x[i]); /* notice the argument pass to sqrt function */

/* print the result */

printf("\tx\tsqrt(x)\n");

for (i = 0; i < SIZE; ++i)

printf("%9.2f%4c%9.2f%\n", x[i], ' ', result[i]);

system("pause");

return 0;

} 16

EXAMPLE 5
/* uses a function to count even and odd numbers from an integer

array */

#include <stdio.h>

#define SIZE 8 /* maximum number of items in list of data */

int is_even(int n);

int main(void) {

int a[SIZE];

int i, evens = 0, odds = 0;

/* Gets the data */

printf("Enter %d integer numbers separated by blanks\n> ", SIZE);

for (i = 0; i < SIZE; ++i)

scanf("%d", &a[i]) ;

/* counts the even and odd numbers */

for (i = 0; i < SIZE; ++i) {

if (is_even(a[i])) /* notice the argument pass to is_even
function */

evens++;

else

odds++;

}

printf("The number of even elements is: %d\n", evens);

printf("The number of odd elements is: %d\n", odds);

system("pause");

return 0;

}

17

int is_even(int n) {
return n%2 == 0;

}

EXAMPLE 6
/* Doubles each element of an array */

#include <stdio.h>

#define SIZE 8 /* maximum number of items in list of data */

void doubler(double *x);

int main(void) {

double x[SIZE];

int i;

/* Gets the data */

printf("Enter %d integer numbers separated by blanks\n> ", SIZE);

for (i = 0; i < SIZE; ++i)

scanf("%lf", &x[i]);

printf("Before doubling: ");

for (i = 0; i < SIZE; ++i)

printf("%.2f\t", x[i]);

for (i = 0; i < SIZE; ++i) doubler(&x[i]);

printf("\nAfter doubling: ");

for (i = 0; i < SIZE; ++i) printf("%.2f\t", x[i]);

printf("\n");

system("pause");

return 0;

}

void doubler(double *x) {

*x = *x * 2; } 18

USING ARRAYS AS FUNCTION ARGUMENTS

 In addition to passing individual elements of an
array to functions, we can also write functions that
take an entire array as a single argument.

 Such functions can manipulate some or all of the
array elements.

 However, unlike scalar variables where we have
the option of either passing value or reference
(address) of a variables to a function, C allows only
passing by reference for arrays.

 In this section, we learn how to write functions
that take array as argument and how to call such
functions.

19

ARRAY AS FORMAL PARAMETER TO

FUNCTIONS

To specify array as a formal parameter to a
function, we put it as if we are declaring the
array, but without specifying the size.

void print_array (int a[], …);

Not specifying the size will allow the function to
be called with any size of array.

However, the function needs to know the size of
the actual array in order to process it correctly.
The solution is to add an extra parameter
indicating the size or actual number of elements
in the array.

void print_array(double a[], int size)

20

ARRAY AS ACTUAL ARGUMENT IN FUNCTION

CALL

 To pass an array as actual argument to functions, we just give the
array name without the brackets.

print_array (a, …);

 Since functions that take array usually also need to know the size
of the array or at least the number of elements in the array, the
complete call to the print_array function might be:

print_array(a, SIZE);

 Note that passing array as argument to functions is pass by
reference not pass by value. Thus, no copy of the array is made in
the memory area of the function. Instead, the function receives
the address of the array and manipulates it indirectly.

 How does the function receive the address when we did not use &
operator and the function did not declare a pointer variable?

 The truth is, array variables are in fact pointer variables, but
which are declared differently.

21

EXAMPLE 7
/* Doubles each element of an array */

#include <stdio.h>

#define SIZE 8 /* maximum number of items in
list of data */

void doubler(double *x);

void print_array(double a[], int size);

int main(void) {

double x[SIZE];

int i;

/* Gets the data */

printf("Enter %d integer numbers separated by
blanks\n> ", SIZE);

for (i = 0; i < SIZE; ++i)

scanf("%lf", &x[i]);

printf("Before doubling: ");

print_array(x, SIZE);

for (i = 0; i < SIZE; ++i)

doubler(&x[i]);

printf("After doubling: ");

print_array(x, SIZE);

22

system("pause");

return 0;

}

void doubler(double *x) {

*x = *x * 2;

}

void print_array(double a[], int

size) {

int i;

for (i = 0; i < size; ++i)

printf("%.2f\t", a[i]);

printf("\n");

}

EXAMPLE 8
/* Doubles each element of an array */

#include <stdio.h>

#define SIZE 8 /* maximum number of items in
list of data */

void double_array(double a[], int size);

void print_array(double a[], int size);

int main(void) {

double x[SIZE];

int i;

printf("Enter %d integer numbers separated by
blanks\n> ", SIZE);

for (i = 0; i < SIZE; ++i)

scanf("%lf", &x[i]);

printf("Before doubling: ");

print_array(x, SIZE);

double_array(x, SIZE);

printf("After doubling: ");

print_array(x, SIZE);

system("pause");

return 0;

}
23

void double_array(double a[], int
size) {

int i;

for (i = 0; i < size; ++i)

a[i] *= 2;

}

void print_array(double a[], int
size)

{

int i;

for (i = 0; i < size; ++i)

printf("%.2f\t", a[i]);

printf("\n");

}

EXAMPLE 9
/* Finds the average of elements in an array */

#include <stdio.h>

#define SIZE 5 /* maximum number of items
in list of data */

double get_average(double a[], int size);

int main(void) {

double x[SIZE], average;

int i;

printf("Enter %d real numbers separated by
blanks\n> ", SIZE);

for (i = 0; i < SIZE; ++i)

scanf("%lf", &x[i]);

average = get_average(x, SIZE);

printf("The average of the elements in the
array is %.2f\n", average);

system("pause");

return 0;

}

24

double get_average(double a[], int
size) {

int i;

double sum = 0;

for (i = 0; i < size; ++i)

sum += a[i];

return sum/size;

}

EXAMPLE 10
/* Finds the maximum and minimum elements

from an array */

#include <stdio.h>

#define SIZE 8 /* maximum number of items
in list of data */

void get_max_min(double a[], int size, double
*max, double *min);

int main(void) {

double x[SIZE], maximum, minimum;

int i;

printf("Enter %d integer numbers separated
by blanks\n> ", SIZE);

for (i = 0; i < SIZE; ++i)

scanf("%lf", &x[i]);

get_max_min(x, SIZE, &maximum,
&minimum);

printf("The maximum element in the array
is %.2f\n", maximum);

printf("The minimum element in the array
is %.2f\n", minimum);

system("pause");

return 0;

} 25

// uses output parameter to return
max & min

void get_max_min(double a[], int
size, double *max, double *min)

{

int i;

*max = a[0];

*min = a[0];

for (i = 1; i < size; ++i) {

if (a[i] > *max)

*max = a[i];

else if (a[i] < *min)

*min = a[i];

}

}

RETURNING AN ARRAY RESULT

 In C, the return type of a function cannot be an array.

 Thus, to return an array as result from a function,
the only option is to use output parameter.

 We recall that output parameters for a function are
declared as pointer variables.

 However, as mentioned earlier, an array variable is a
pointer variable. Therefore formal parameters of type
array are already output parameters.

 The next set of examples show various functions that
return array as result:
 Function, read_array, reads data from the user into an array

and return it.

 Function, add_arrays, uses two arrays as input, add the
corresponding elements and return the result in another
array.

 Function, reverse_array, uses a single array for both input
and output. It reverses the elements inside the array and
return the reversed array.

26

EXAMPLE 11
/* Finds the maximum and minimum from an

array .

It uses a function that reads and returns an
array */

#include <stdio.h>

#define SIZE 8 /* maximum number of items
in list of data */

void read_array(double a[], int size);

void get_max_min(double a[], int size, double
*max, double *min);

int main(void) {

double x[SIZE], maximum, minimum;

read_array(x, SIZE);

get_max_min(x, SIZE, &maximum,
&minimum);

printf("The maximum element in the array
is %.2f\n", maximum);

printf("The minimum element in the array
is %.2f\n", minimum);

system("pause");

return 0;

}
27

void get_max_min(double a[], int size,
double *max, double *min) {

int i;

*max = a[0];

*min = a[0];

for (i = 1; i < size; ++i) {

if (a[i] > *max)

*max = a[i];

else if (a[i] < *min)

*min = a[i];

}

}

void read_array (double a[], int size) {

int i;

printf("Enter %d real numbers
separated by blanks\n> ", size);

for (i = 0; i < size; ++i)

scanf("%lf", &a[i]);

}

EXAMPLE 12
/* Adds two arrays and return the result in

another array */

#include <stdio.h>

#define SIZE 5

void read_array(double a[], int size);

void print_array(double a[], int size);

void add_arrays(double a[], double b[], double c[],
int size);

int main(void) {

double first[SIZE], second[SIZE], sum[SIZE];

read_array(first, SIZE);

read_array(second, SIZE);

add_arrays(first, second, sum, SIZE);

printf("First Array: ");

print_array(first, SIZE);

printf("Second Array: ");

print_array(second, SIZE);

printf("Sum of Arrays: ");

print_array(sum, SIZE);

system("pause");

return 0;

} 28

void read_array (double a[], int size) {

int i;

printf("Enter %d integer numbers
separated by blanks\n> ", size);

for (i = 0; i < size; ++i)

scanf("%lf", &a[i]);

}

void add_arrays(double a[], double b[],

double c[], int size)

{

int i;

for (i=0; i<size; i++)

c[i] = a[i] + b[i];

}

void print_array(double a[], int size) {

int i;

for (i = 0; i < size; ++i)

printf("%.2f\t", a[i]);

printf("\n");

}

PARTIALLY FILLED ARRAYS

 The format of array declaration requires that we specify a size at
the point of declaration.

 Moreover, once we decide on a size and declare the array, the size
cannot be changed – array is fixed size data structure.

 There are many programming situations where we do not really
know the number of elements before hand.

 For example, suppose we wish to read scores of students from a
data file, store them into an array and then scan through the
array to find the average.

 Obviously, we do not know how many scores are in the file. So
what should be the array size?

 One solution is to declare the array big enough so that it can work
in the worst-case scenario.

 For the scores data file, we can safely assume that no section is
more than 50 students.

 However, in this case, the array will be partially empty and we
cannot use SIZE in processing it. We must keep track of the
actual elements in the array using another variable.

29

EXAMPLE 13
/* Finds the average score by reading scores from

a data file */

#include <stdio.h>

#define SIZE 50

double get_average(double a[], int size);

int main(void) {

double x[SIZE], score, average;

int status, count=0;

FILE *infile;

infile = fopen("scores.txt", "r");

status = fscanf(infile, "%lf", &score);

while (status != EOF) {

x[count] = score;

count++;

status = fscanf(infile, "%lf", &score);

}

fclose(infile);

average = get_average(x, count);

printf("The average of the scores in the file is
%.2f\n", average);

system("pause");

return 0;

} 30

double get_average(double a[], int size) {

int i;

double sum = 0;

for (i = 0; i < size; ++i)

sum += a[i];

return sum/size;

}

SEARCHING

Searching means scanning through a list of

items (in an array) to find if a particular one

exists.

 It usually requires the user to specify the

target item – the item he wishes to locate

 If the target item is found, its location (index)

is returned, otherwise, -1 is returned.

31

LINEAR SEARCH ALGORITHM

 This involves searching through the array sequentially
until the target item is found or the array is exhausted.

 If the target is found, its location is returned, otherwise a
flag such as –1 is returned. Here is the algorithm for
Linear Search

1. Assume that the target has not been found

2. Start with initial array element

3. Repeat while the target is not found and there are more
array elements

4. If the current element matches the target

5. Set a flag to indicate that the target has been found

else

6. Advance to the next array element

7. If the target was found
8. Return the target index as the search result

else

9. Return -1 as the search result

32

LINEAR SEARCH IMPLEMENTATION
#include <stdio.h>
#define SIZE 8

int linear_search(double a[], double target, int
size);

void read_array(double a[], int size);

int main(void) {
double x[SIZE], target;
int index;

read_array(x, SIZE);
printf("Enter Element to search for: ");
scanf("%lf", &target);
index = linear_search(x, target, SIZE);
if (index != -1)

printf("Target was found at index %d\n",
index);
else

printf("Sorry, target item was not found");
system("pause");
return 0;

}
void read_array (double a[], int size) {

int i;
printf("Enter %d integer numbers separated by
blanks\n> ", size);
for (i = 0; i < size; ++i)

scanf("%lf", &a[i]);
}

33

/* Searches for target in an array using Linear
search;

* Returns index of target or -1 if not found */

int linear_search(double a[], double target,

int size)

{

int i, found = 0, where;

i = 0;

while (!found && i < size) {

if (a[i] == target)

found = 1;

else

++i;

}

if (found)

where = i;

else

where = -1;

return where;

}

SORTING

 Sorting is the re-arrangement of a collection of data
according to some key-field.

 It is a common activity in data management. Even
when a list is maintained in a certain order, there is
often a need to re-arrange the list in a different order.

 Because it takes so much processing time, sorting is a
serious topic in computer science, and many different
sorting algorithms have been designed.

 We shall consider one sorting method; Selection sort.

34

SELECTION SORT ALGORITHM

• Selection sort involved scanning through the list to
find (or select) the smallest element and swap it with
the first element.

• The rest of the list is then search for the next
smallest and swap it with the second element.

• This process is repeated until the rest of the list
reduces to one element, by which time the list is
sorted.

• The following traces selection sort.

35

SELECTION SORT IMPLEMENTATION
#include <stdio.h>

#define SIZE 10

void selection_sort(double a[], int size);

void read_array(double a[], int size);

void print_array(double a[], int size);

int find_min(double a[], int start, int size);

void swap(double *a, double *b);

int main(void) {

double x[SIZE];

int i;

read_array(x, SIZE);

printf("Before Sorting: ");

print_array(x, SIZE);

selection_sort(x, SIZE);

printf("After Sorting: ");

print_array(x, SIZE);

system("pause");

return 0;

}

void selection_sort(double a[], int size) {

int i, min_pos;

for (i = 0; i< size-1; i++) {

min_pos = find_min(a, i, size);

swap(&a[i], &a[min_pos]);

}

}
36

int find_min(double a[], int start, int size) {

int i, min_index = start;

for (i=start+1; i<size; i++)

if (a[i] < a[min_index])

min_index = i;

return min_index;

}

void swap(double *a, double *b) {

double temp = *a;

*a = *b;

*b = temp;

}

void read_array (double a[], int size) {

int i;

printf("Enter %d integer numbers separated by blanks\n>
", size);

for (i = 0; i < size; ++i)

scanf("%lf", &a[i]);

}

void print_array(double a[], int size) {

int i;

for (i = 0; i < size; ++i)

printf("%.1f ", a[i]);

printf("\n");

}

INTRODUCTION TO 2-D ARRAYS

 A 2-D array is a contiguous collection of variables of the

same type, that may be viewed as a table consisting of rows

and columns.

 The same reason that necessitated the use of 1-D arrays
can be extended to 2-D and other multi-D Arrays.

 For example, to store the grades of 30 students, in 5 courses
require multiple 1-D arrays.

 A 2-D array allows all these grades to be handled using a
single variable.

 This idea can be easily extended to other higher
dimensions.

 Thus, we shall focus only on 2-D arrays.
37

DECLARATION OF 2-D ARRAYS

 A 2-D array variable is declared by specifying the type of
elements, the name of the variable, followed by the number
of rows and number of columns – each is a separate
bracket:

 The following declares a 2-D array, table, having 3 rows and
4 columns.

int table[3][4];

 Both rows and columns are indexed from zero. So the three
rows have indexes 0, 1 and 2 and four the columns have 0,
1, 2, 3.

 As we saw in 1-D array, it is a good practice to declare the
sizes as constants. So a better declaration for the above is:

#define ROWS 3

#define COLS 4

int table[ROWS][COLS];
38

ACCESSING 2-D ARRAY ELEMENTS

 A particular element of a 2-D array, table, is referenced

by specifying its row and column indexes:

table[RowIndex][ColumnIndex]

 For example, given the declaration:
int table[3][4];

 The following stores 64 in the cell with row index 1,

column index 3.

table[1][3] = 64;

 We use the same format to refer to an element in an

expression:

table[2][3] = table[1][3] + 2;

39

INITIALIZATION OF 2-D ARRAYS

 As with 1-D arrays, if we already have the values to assign
to the array at the point of declaration, then we can declare
and initialize the 2-D array at the same time.

 The format is similar to 1-D array initialization except that
a nested list is used, where each inner list represents a row.

 For example, the following declares and initializes our
table.

int table[3][4] = { {1,2,2,1}, {3,4,4,3}, {5,6,6,5} }

 Like 1-D array, if you provide less values than the declared
size, the remaining cells are set to zero.

 However, unlike 1-D array where you can skip the size,
here you must give at least the number of columns.

int table[][4] = { {1,2,2,1}, {3,4,4,3}, {5,6,6,5} } //OK

int table[][] = { {1,2,2,1}, {3,4,4,3}, {5,6,6,5} } //WRONG!
40

PROCESSING 2-D ARRAYS

 To process 2-D array, we need to extend the loop we normally
use with 1-D array to nested loops. This can be done either
row-wise or column-wise.

 To process the elements row-wise, we use:
for(int rowIndex = 0; rowIndex < ROWS; rowIndex++){

//process row# rowIndex;

}

 But processing a row involves processing each element of that row;
so the complete algorithm is:

for(int rowIndex = 0; rowIndex < ROWS; rowIndex++){

// process row# rowIndex

for(int columnIndex = 0; columnIndex < COLUMNS; columnIndex++)

//process element array[rowIndex][columnIndex]
}

 To process elements of a 2-D array column-wise, we use:
for(int columnIndex = 0; columnIndex < COLUMNS; columnIndex++){

// process column# columnIndex

for(rowIndex = 0; rowIndex < ROWS; rowIndex++)

process element array[rowIndex][columnIndex]

}

41

EXAMPLE 14
/*reads two marices from the user and add them */

#include<stdio.h>

#define ROWS 10

#define COLS 10

int main (void) {

int i, j, a[ROWS][COLS], b[ROWS][COLS], c[ROWS][COLS] = {0}, rows,
cols;

printf("Enter number of rows for Matrix 1: ");

scanf("%d", &rows);

printf("Enter number of columns for Matrix 1: ");

scanf("%d", &cols);

printf("Enter the %d elements of Matrix 1 row-wise: \n", rows * cols);

for(i=0; i<rows; i++) { // reading matrix a

for(j=0; j<cols; j++)

scanf("%d", &a[i][j]);

}

printf("Enter the %d elements of Matrix 2 row wise: \n", rows * cols);

for(i=0; i<rows; i++) { // reading matrix b

for(j=0; j<cols; j++)

scanf("%d", &b[i][j]);

}
42

EXAMPLE 14 …

/* Addition of two matrices */

for(i=0; i<rows; i++) {

for(j=0; j<cols; j++)

c[i][j]=a[i][j] + b[i][j];

}

/*Print sum of two matrices */

printf("The sum of two matrices is: \n");

for(i=0; i<rows; i++) {

for (j=0; j<cols; j++)

printf("%5d ", c[i][j]);

printf("\n");

}

system("pause");

return 0;

}
43

2-D ARRAYS AS PARAMETERS TO FUNCTIONS

 As with 1-D arrays, it is possible to declare functions that

take 2-D array as parameter.

 However, one problem here is that in declaring the prototype

of the function, we must specify at least the number of

columns of the array, thus making the function less flexible.

 One solution to this problem is to use a constant defining the

maximum number of columns and use additional parameter

to receive the actual size of the array:

void print_2d_array(int a[][COLS], int rows, int cols);

 While this solution makes the function a little more flexible,

it is not a perfect solution since the function is not self-

contained – it depends on the pre-processor constant COLS.

 Calling functions that take 2-D array as argument is same as

calling functions that take 1-D array. Just give the name of

the array with no brackets. 44

EXAMPLE 15
#include <stdio.h>

#define ROWS 10

#define COLS 10

void read_2d_array(int [][COLS], int rows, int cols);

void add_2d_arrays(int a[][COLS], int b[][COLS], int c[][COLS], int rows, int cols);

void print_2d_array(int a[][COLS], int rows, int cols);

int main(void) {

int i, j, a[ROWS][COLS], b[ROWS][COLS], c[ROWS][COLS];

int rows, cols;

printf("Enter number of rows for Matrix 1: ");

scanf("%d", &rows);

printf("Enter number of columns for Matrix 1: ");

scanf("%d", &cols);

read_2d_array(a, rows, cols); // reading matrix a

read_2d_array(b, rows, cols); // reading matrix a

add_2d_arrays(a, b, c, rows, cols); /* Addition of two matrices */

printf("The sum of two matrices is: \n");

print_2d_array(c, rows, cols); /*Print sum of two matrices */

system("pause");

return 0;

} 45

EXAMPLE 15 …
void read_2d_array(int a[][COLS], int rows, int cols) {

int i, j;

printf("Enter the %d elements of the 2-D array row-wise: \n", rows * cols);

for(i=0; i<rows; i++) {

for(j=0; j<cols; j++)

scanf("%d", &a[i][j]);

}

}

void add_2d_arrays(int a[][COLS], int b[][COLS], int c[][COLS], int rows, int cols) {

int i, j;

for (i=0; i<rows; i++) {

for (j=0; j<cols; j++)

c[i][j] = a[i][j] + b[i][j];

}

}

void print_2d_array(int a[][COLS], int rows, int cols) {

int i, j;

for(i=0; i<rows; i++) {

for (j=0; j<cols; j++)

printf("%5d ", a[i][j]);

printf("\n");

}

}
46

