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Foreword

Over ten years ago, I read about a software engineering course taught by Bernd Bruegge at
Carnegie-Mellon University. In software engineering courses at many other universities, small
groups of 3 or 4 students were assigned several toy problems during a semester with deadlines of
less than a month. On such small projects, one strong programmer can carry the whole team by
brute force. It isn’t necessary to learn communication skills, use modeling tools, or deal with the
ambiguities of actual problems. Students come away unprepared for the complexities of real-
world development. In Bruegge’s course, the entire class worked on a single, semester-long
project to produce a query-oriented navigation system for the city of Pittsburgh. They had to
build on the interactive mapping system produced by the previous semester’s class. The clients
were managers for the county planning department and port authority. The geographic and bus
schedule data had misspellings, inaccuracies, and incompatible formats. The students produced
an accepted system of over 27,000 lines of code. What a difference from the toy projects taught
at many other places! Students came away from the course with an appreciation of the need for
strategy, organization, and tools to deal with the complexity and messiness of the real world.
They learned software engineering the only way one learns any craft—by practicing it on
realistic cases.

This book is a reflection of that pragmatic philosophy of software development as an
engineering discipline. The authors adopt a point of view—an object-oriented approach using
UML—that makes the many facets of software engineering approachable to students. They
cover both the modeling techniques and the human communications skills needed to achieve
success. They also include several chapters on managing change, a topic that appears in every
real project but which is often neglected in texts. Readers of this book will gain a solid
appreciation of the rich scope and complexity of software engineering.



Vi Foreword

I particularly enjoyed the many illuminating anecdotes selected from a wide range of
fields. These provide lively examples of problems large and small that illustrate the subtleties
and traps that engineers must confront. Any book that makes relevant examples of Polynesian
navigation, the tangled history of the text of Tolkien’s Lord of the Rings, and grandmother’s
recipe for trimming hams is not only useful but also fun to read.

Jim Rumbaugh
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The K2 towers at 8,611 meters in the Karakorum range of the western Himalayas. It is the
second highest peak of the world and is considered the most difficult 8000er to climb. An
expedition to the K2 typically lasts several months in the summer, when the weather is most
favorable. Even in summer, snowstorms are frequent. An expedition requires thousands of
pounds of equipment, including climbing gear, severe weather protection gear, tents, food,
communication equipment, and pay and shoes for hundreds of porters. Planning such an
expedition takes a significant amount of time in the life of a climber and requires dozens of
participants in supporting roles. Once on site, many unexpected events, such as avalanches,
porter strikes, or equipment failures, will force the climbers to adapt, find new solutions, or
retreat. The success rate for expeditions to the K2 is currently less than 40%.

The United States National Airspace System (NAS) monitors and controls air traffic in the
United States. The NAS includes more than 18,300 airports, 21 air route traffic control centers,
and over 460 control towers. These add up to more than 34,000 pieces of equipment, including
radar systems, communication switches, radios, computer systems, and displays. The current
infrastructure is aging rapidly. The computers supporting the 21 air route traffic control centers,
for example, are IBM 3083 mainframes that date back to the early 1980s. In 1996, the United
States government initiated a program to modernize the NAS infrastructure, including
improvements such as satellite navigation, digital controller/pilot communications, and a higher
degree of automation in controlling the air routes, deciding the order in which aircraft land, and
controlling ground traffic as aircraft move from and to the runways. Such a complex
infrastructure, however, can only be modernized incrementally. Consequently, while new
components offering new functionality are introduced, older components still need to be
supported. For example, during the transition period, a controller will have to be able to use both
analog and digital voice channels to communicate with pilots. Finally, the modernization of the

vii
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NAS coincides with a dramatic increase in global air traffic, predicted to double within the next
10-15 years. The previous modernizing effort of the NAS, called the Advanced Automation
System (AAS), was suspended in 1994 because of software-related problems, after missing its
initial deadline by several years and exceeding its budget by several billions of dollars.

Both of the above examples discuss complex systems in which external conditions can
trigger unexpected changes. Complexity puts the problem beyond the control of any single
individual. Change forces participants to move away from well-known solutions and to invent
new ones. In both examples, several participants need to cooperate and develop new techniques
to address these challenges. Failure to do so results in failure to reach the goal.

This book is about conquering complex and changing software systems.

The theme

The application domain (mountain expedition planning, air traffic control, financial
systems, word processing) usually includes many concepts that software developers are not
familiar with. The solution domain (user interface toolkits, wireless communication, middleware,
database management systems, transaction processing systems, wearable computers) is often
immature and provides developers with many competing implementation technologies.
Consequently, the system and the development project are complex, involving many different
components, tools, methods, and people.

As developers learn more about the application domain from their users, they update the
requirements of the system. As developers learn more about emerging technologies or about the
limitations of current technologies, they adapt the system design and implementation. As quality
control finds defects in the system and users request new features, developers modify the system
and its associated work products. The result is continuous change.

Complexity and change represent challenges that make it impossible for any single
person to control the system and its evolution. If controlled improperly, complexity and change
defeat the solution before its release, even if the goal is in sight. Too many mistakes in the
interpretation of the application domain make the solution useless for the users, forcing a
retreat from the route or the market. Immature or incompatible implementation technologies
result in poor reliability and delays. Failure to handle change introduces new defects in the
system and degrades performance beyond usability.

This book reflects more than 10 years of building systems and of teaching software
engineering project courses. We have observed that students are taught programming and
software engineering techniques in isolation, often using small problems as examples. As a
result, they are able to solve well-defined problems efficiently, but are overwhelmed by the
complexity of their first real development experience, when many different techniques and tools
need to be used and different people need to collaborate. Reacting to this state of affairs, the
typical undergraduate curriculum now often includes a software engineering project course,
organized as a single development project.
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The tools: UML, Java, and Design Patterns

We wrote this book with a project course in mind. The book can be used, however, in other
situations as well, such as short and intensive workshops or short-term R&D projects. We use
examples from real systems and examine the interaction among state-of-the art techniques, such
as UML (Unified Modeling Language), Java-based technologies, design patterns, design
rationale, configuration management, and quality control. Moreover, we discuss project
management related issues that are related to these techniques and their impact on complexity
and change.

The principles
We teach software engineering following five principles:

Practical experience. We believe that software engineering education must be linked with
practical experience. Students can understand complexity only by working with a complex
system—that is, a system that no single student can completely understand.

Problem solving. We believe that software engineering education must be based on problem
solving. Consequently, there are no right or wrong solutions, only solutions that are better or
worse relative to stated criteria. Although we survey existing solutions to real problems and
encourage their reuse, we also encourage criticism and the improvement of standard solutions.

Limited resources. If we have sufficient time and resources, we could perhaps build the ideal
system. There are several problems with such a situation. First, it is not realistic. Second, even if
we had sufficient resources, if the original problem rapidly changes during the development, we
would eventually deliver a system solving the wrong problem. As a result, we assume that our
problem-solving process is limited in terms of resources. Moreover, the acute awareness of
scarce resources encourages a component-based approach and reuse of knowledge, design, and
code. In other words, we support an engineering approach to software development.

Interdisciplinarity. Software engineering is an interdisciplinary field. It requires contributions
from areas spanning electrical and computer engineering, computer science, business
administration, graphic design, industrial design, architecture, theater, and writing. Software
engineering is an applied field. When trying to understand and model the application domain,
developers interact regularly with others, including users and clients, some of whom know little
about software development. This requires viewing and approaching the system from multiple
perspectives and terminologies.

Communication. Even if developers built software for developers only, they would still need
to communicate among themselves. As developers, we cannot afford the luxury of being able to
communicate only with our peers. We need to communicate alternatives, articulate solutions,
negotiate trade-offs, and review and criticize others’ work. A large number of failures in
software engineering projects can be traced to the communication of inaccurate information or
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to missing information. We must learn to communicate with all project participants, including,
most importantly, the client and the end users.

These five principles are the basis for this book. They encourage and enable the reader to
address complex and changing problems with practical and state-of-the-art solutions.

The book

This book is based on object-oriented techniques applied to software engineering. It is
neither a general software engineering book that surveys all available methods nor a
programming book about algorithms and data structures. Instead, we focus on a limited set of
techniques and explain their application in a reasonably complex environment, such as a multi-
team development project that includes 20 to 60 participants. Consequently, the book also
reflects our biases, our strengths, and our weaknesses. We hope, nevertheless, that all readers
will find something they can use. The book is structured into 16 chapters organized into three
parts, which can be taught as a semester-long course.

Part I, Getting Started, includes three chapters. In this part, we focus on the basic skills
necessary for a developer to function in a software engineering context.

e In Chapter 1, Introduction to Software Engineering, we describe the difference between
programming and software engineering, the current challenges in our discipline, and
basic definitions of concepts we use throughout the book.

e In Chapter 2, Modeling with UML, we describe the basic elements of a modeling
language, UML, used in object-oriented techniques. We present modeling as a
technique for dealing with complexity. This chapter teaches the reader how to read and
understand UML diagrams. Subsequent chapters teach the reader how to build UML
diagrams to model various aspects of the system. We use UML throughout the book to
model a variety of artifacts, from software systems to processes and work products.

¢ In Chapter 3, Project Organization and Communication, we introduce basic concepts
of project organization and communication. Developers and managers spend more than
half of their time communicating with others, either face-to-face or via E-mail,
groupware, video conference, or written documents. Whereas modeling deals with
complexity, communication deals with change. We describe project organizations and
discuss what constitutes effective communication.

In Part II, Dealing with Complexity, we focus on methods and technologies that enable
developers to specify, design, and implement complex systems.

e In Chapter 4, Requirements Elicitation, and Chapter 5, Analysis, we describe the
definition of the system from the users’ point of view. During requirements elicitation,
developers determine the functionality users need and a usable way of delivering it.
During analysis, developers formalize this knowledge and ensure its completeness and
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consistency. We focus on how UML is used to deal with application domain
complexity.

In Chapter 6, System Design: Decomposing the System, and Chapter 7, System Design:
Addressing Design Goals, we describe the definition of the system from the
developers’ point of view. During this phase, developers define the architecture of the
system in terms of design goals and a subsystem decomposition. They address global
issues, such as the mapping of the system onto hardware, the storage of persistent data,
and global control flow. We focus on how developers can use architectural styles,
components, and UML to deal with solution domain complexity.

In Chapter 9, Object Design: Specifying Interfaces, Chapter 9, Object Design:
Specifying Interfaces, and Chapter 10, Mapping Models to Code, we describe the
detailed modeling and construction activities related to the solution domain. During
this phase, developers identify and adapt design patterns and frameworks to realize
specific subsystems. They refine and specify precisely the interfaces of classes using
constraint languages such as UML’s Object Constraint Language. Finally, they map the
detailed object design model to source code and database schema.

In Chapter 11, Testing, we describe the validation of system behavior against the
system models. Testing detects faults in the system, including those introduced during
changes to the system or its requirements. Testing activities include unit testing,
integration testing, and system testing. We describe several testing techniques, such as
whitebox, blackbox, path testing, state-based testing, and inspections, and discuss their
application to object-oriented systems.

In Part III, Managing Change, we focus on methods and technologies that support the

control, assessment, and implementation of changes throughout the development of a system.

In Chapter 12, Rationale Management, we describe the capture of design decisions and
their justifications. The models developed during requirements elicitation, analysis, and
system design help us deal with complexity by providing different perspectives on what
the system should be doing and how it should do it. To be able to deal with change, we
need also to know why the system is the way it is. Capturing design decisions,
considered alternatives, and their argumentation enables us to access the rationale of
the system.

In Chapter 13, Configuration Management, we describe techniques for modeling the
project history. Configuration management complements rationale in helping us deal
with change. Version management records the evolution of the system. Release
management ensures consistency and quality across the components of a release.
Change management ensures that modifications to the system are consistent with
project goals.

In Chapter 14, Project Management, we describe techniques for initiating a software
development project, tracking its progress, and dealing with risks and unplanned
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events. We focus on organizations, roles, and management activities that allow a large
number of participants to collaborate and deliver a high-quality system within planned
constraints.

* In Chapter 15, Software Life Cycle, we describe software life cycles, such as Boehm’s
Spiral Model and the Unified Software Development Process, that provide an abstract
model of development activities. In this chapter, we also describe the Capability
Maturity Model, which is used for assessing the maturity of organizations.

e In Chapter 16, Methodologies: Putting It All Together, we describe methodologies and
heuristics for applying the material covered in the other chapters to concrete situations.
No matter how thorough the requirements elicitation or detailed the planning, projects
of any realistic size encounter unexpected events and changes. Dealing with uncertainty
makes real projects and systems look very different from projects and systems
examined in textbooks. In this chapter, we describe several different methodologies,
discuss issues that need to be addressed in every project, and present three case studies
of actual projects.

The topics above are strongly interrelated. To emphasize their relationships, we selected
an iterative approach. Each chapter consists of five sections. In the first section, we introduce the
issues relevant to the topic with an illustrative example. In the second section, we describe
briefly the activities of the topic. In the third section, we explain the basic concepts of the topic
with simple examples. In the fourth section, we detail the technical activities with examples
from real systems. Finally, we describe management activities and discuss typical trade-offs. In
Chapters 4-10, we present a running case study of a complex multi-user game management
system called ARENA. By repeating and elaborating on the same concepts in increasingly
complex examples, we hope to provide the reader with an operational knowledge of object-
oriented software engineering.

The courses

Building a large, complex system can be compared with climbing a big mountain. It is
good to have a route description, but the route can never be completely mapped out, as new
crevasses may open anytime. Even though we map out our software engineering knowledge in
this book, changes will occur and methods that we believe in now may be out of date soon.

How can we teach students to cope with such rapidly changing conditions? For us, the
most important thing to pass on to a student is not only knowledge of the map, but also the
ability to negotiate the terrain. Although it is wise to study the description of a route, there is no
substitute for the experience of actually traveling the route.

We wrote this book for a semester-long software engineering project course for senior or
graduate students. We assume that students have experience with a programming language such
as C, C++, C#, or Java. We expect that students have the necessary problem-solving skills to
attack technical problems, but we do not expect that they have been exposed to the complex or
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changing situations typical of system development. This book can also be used for other types of
courses, such as short, intensive professional courses.

Project and senior-level courses. A project course should include all the chapters of the
book, roughly in the order presented. An instructor may consider teaching more advanced
project management concepts from Chapter 14, Project Management, early in the course so that
students become familiar with planning and controlling.

Introductory-level course. An introductory course with homework should focus on the first
three sections of each chapter. The fourth section and the case study can be used as material for
homework and can simulate the building of a minisystem using paper for UML diagrams,
documents, and code.

Short technical course. The book can also be used for a short, intensive course geared
toward professionals. A technical course focusing on UML and object-oriented methods could
use the chapter sequence 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, covering all development phases from
requirements elicitation to testing. An advanced course would also include Chapter 12,
Rationale Management, and Chapter 13, Configuration Management.

Short management course. The book can also be used for a short, intensive course geared
toward managers. A management course focusing on managerial aspects such as
communication, risk management, rationale, maturity models, and UML could use the chapter
sequence 1, 2, 3, 14, 15, 16, 12, 13.

Changes since the second edition

This edition started as an upgrade of our book to UML 2 and to the latest advances in agile
methods. In the process, we also added new material about system design and testing. We thank
Tracy Dunkelberger, our publisher, for her patience. We made the following changes:

o Comprehensive upgrade to the latest UML and OCL standards. We revised most
diagrams in the book to take advantage of the latest advances of UML and OCL. In
particular, we use component diagrams with ball-and-socket notation during system
and object design.

e Expanded material on agile methods. In the second edition, we introduced coverage of
the XP methodology in Chapter 16. In this edition, we extended the material on agile
methods to Scrum and Rugby and consequently adapted the material on testing,
configuration management, and project management in Chapters 11, 13, and 14.

* New material on continuous integration. A practice of agile methods, used in other
contexts as well, is the continuous integration of software changes into main production
trunk. While this practice allows integration problems to be identified, and thus
resolved, much earlier, its realization presents initially many challenges. We present
this new material in Chapter 13, Software Configuration Management.
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* New material on U2TP and automated testing. In our teaching, we found the extensions
of the UML 2 Testing Profile facilitate the discussion of testing concepts, in particular,
the distinction between the testing system and the system under test. This also allowed
us to extend the material on testing to automated testing and automatic test generation.

o Improvements of the case study and examples throughout. Since the last edition, we
received a lot of feedback about the case study and the examples in this book. We are
grateful of this feedback and consequently implemented many suggestions, too
numerous to enumerate here in detail.

Typographical conventions

‘We use the following conventions throughout the book:

* A new term appears in bold when defined the first time.

* Book titles, chapter titles, and emphasized terms appear in italics.

¢ The names of systems and of modeling elements (e.g., class, attribute, operation, state,
variable) appear in monospaced font.

¢ The names of abstract classes appear in italics monospaced font.

* Object names appear underlined in figures.

e URLSs appear in underlined roman.

e Source code appears in monospaced font, with reserved keywords in bold and
comments in jtalics.

Production notes

This book was written and composed using Adobe Framemaker. The final print images
were generated as PDF files using Adobe Acrobat Distiller.

About the authors

Dr. Bernd Bruegge has been studying and teaching Software Engineering at Carnegie
Mellon University for 20 years, where he received his masters and doctorate degrees. He
received his Diplom from the University of Hamburg. He is now a university professor of
Computer Science with a chair for Applied Software Engineering at the Technische Universitéit
Miinchen and an adjunct faculty member of Carnegie Mellon University. He has taught
object-oriented software engineering project courses on the text materials and website described
in this book for 15 years. He won the Herbert A. Simon Excellence in Teaching Award at
Carnegie Mellon University in 1995. Bruegge is also an international consultant and has used
the techniques in this book to design and implement many real systems, including an
engineering feedback system for DaimlerChrysler, an environmental modeling system for the
U.S. Environmental Protection Agency, and an accident management system for a municipal
police department, to name just a few.
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Dr. Allen Dutoit works in the aerospace industry in the area of avionics software
development. He received his M.S. and Ph.D. from Carnegie Mellon University and his Dipléme
d’Ingénieur from the Swiss Federal Institute of Technology in Lausanne. He has taught software
engineering project courses with Professor Bruegge since 1993, both at Carnegie Mellon
University and the Technische Universitit Miinchen, where they used and refined the methods
described in this book. Dutoit’s research covered several areas of software engineering and
object-oriented systems, including requirements engineering, rationale management, distributed
development, and prototype-based systems. He was previously affiliated with the Software
Engineering Institute and the Institute for Complex Engineered Systems at Carnegie Mellon
University.

Opener Pictures

The pictures at the beginning of each chapter are from an Alpine-style ascent of the West
Rib of Denali (6,193 m) made by one of the authors before starting to work on this book. During
this trip, the analogy between software development and mountaineering became more than
obvious. The pictures chronicle the climb, showing our expedition car on the Alaskan Canadian
Highway, a view of Mt. Robson with the Kain Face (Chapter 1), a view of Denali from the plane
(Chapters 2 and 4), the beginning of the West Rib (Chapter 3), a look 1000 meters down from
the top of the West Rib showing our foot tracks on the East Kahiltna Glacier (Chapter 5), Mt.
Foraker from Camp 5 (Chapter 6), a beautiful but difficult edge around 5,000m (Chapter 7), the
Base Camp of the normal route where we reused the remains of an igloo (Chapter 8), the landing
area for Doug Geeting’s plane (Chapter 9), a bivouac place at the top of the West Rib named
“Hotel Crux,” because one cannot dig an area big enough for a tent (Chapter 10), crossing the
Bergschrund (Chapter 11), a fresh avalanche area (Chapter 12), Denali with the Cassin Ridge
(Chapter 13), plans for different routes to the summit (Chapter 14), a “horizontal” sunrise at the
start of the Cassin Ridge (Chapter 15), and the summit of Denali (Chapter 16).

The cover picture shows the summit of K2.
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Introduction to
Software Engineering

The amateur software engineer is always in search of magic,
some sensational method or tool whose application promises to
render software development trivial. It is the mark of the
professional software engineer to know that no such panacea
exists.

—Grady Booch, in Object-Oriented Analysis and Design

The term software engineering was coined in 1968 as a response to the desolate state of the
art of developing quality software on time and within budget. Software developers were not able
to set concrete objectives, predict the resources necessary to attain those objectives, and manage
the customers’ expectations. More often than not, the moon was promised, a lunar rover built,
and a pair of square wheels delivered.

The emphasis in software engineering is on both words, software and engineering. An
engineer is able to build a high-quality product using off-the-shelf components and integrating
them under time and budget constraints. The engineer is often faced with ill-defined problems
and partial solutions, and has to rely on empirical methods to evaluate solutions. Engineers
working in such application domains as passenger aircraft design and bridge construction have
successfully met similar challenges. Software engineers have not been as successful.

The problem of building and delivering complex software systems on time has been
actively investigated and researched. Everything has been blamed, from the customer (“What do
you mean I can’t get the moon for $50?7”) to the “soft” in software (“If I could add that one last
feature ...”) to the youth of this discipline. What is the problem?

Complexity and change

Useful software systems are complex. To remain useful they need to evolve with the end users’
need and the target environment. In this book, we describe object-oriented techniques for
conquering complex and changing software systems. In this chapter, we provide a motivation for
object-oriented techniques and define the basic concepts used throughout this book.
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1.1 Introduction: Software Engineering Failures

Consider the following examples [Neumann, 1995]:

Year 1900 bug

In 1992, Mary from Winona, Minnesota, received an invitation to attend a kindergarten. Mary
was 104 at the time.

Leap-year bug

A supermarket was fined $1000 for having meat around 1 day too long, on February 29, 1988.
The computer program printing the expiration date on the meat labels did not take into account
that 1988 was a leap year.

Interface misuse

On April 10, 1990, in London, an underground train left the station without its driver. The driver
had taped the button that started the train, relying on the system that prevented the train from
moving when doors were open. The train operator had left his train to close a door which was
stuck. When the door was finally shut, the train simply left.

Security

CERT (Computer Emergency Response Team) at the Software Engineering Institute is a
government-funded organization for assisting the community in dealing with security incidents,
vulnerabilities, and security know-how. The number of security incidents reported to CERT from
the United States increased from 252 incidents in 1990 to 21,756 in 2000, and more than 40,000
incidents were reported in 2001.

Late and over budget

In 1995, bugs in the automated luggage system of the new Denver International Airport caused
suitcases to be chewed up. The airport opened 16 months late, $3.2 billion over budget, with a
mostly manual luggage system.

Late and over budget (2)

In 2002, the Swanick Air Traffic Control system covers all the enroute air traffic over England
and Wales. The system was delivered substantially over budget (cost £623 million, originally
planned at £350 million) and 6 years late. Two major upgrades of the system were delivered after
training of the traffic controllers had started.

On-time delivery

After 18 months of development, a $200-million system was delivered to a health insurance
company in Wisconsin in 1984. However, the system did not work correctly: $60 million in
overpayments were issued. The system took 3 years to fix.

Unnecessary complexity

The C-17 cargo plane by McDonnell Douglas ran $500 million over budget because of problems
with its avionics software. The C-17 included 19 onboard computers, 80 microprocessors, and 6
different programming languages.
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Each of the failures described above resulted from a software-related problem. In some cases,
developers did not anticipate seldom-occurring situations (a person living more than 100 years,
leap years impacting expiration dates). In other cases, developers did not anticipate the user
actively misusing the system (taping down a button, exploiting security holes in network
software). In yet other cases, system failures resulted from management failures (late and over-
budget delivery, on-time delivery of an incorrect system, unnecessary complexity).

Software systems are complex creations. They perform many functions; they are built to
achieve many different, and often conflicting, objectives. They comprise many components;
many of their components are custom made and complex themselves. Many participants from
different disciplines take part in the development of these components. The development process
and the software life cycle often spans many years. Finally, complex systems are difficult to
understand completely by any single person. Many systems are so hard to understand, even
during their development phase, that they are never finished: these are called vaporware.

Software development projects are subject to constant change. Because requirements are
complex, they need to be updated when errors are discovered and when the developers have a
better understanding of the application. If the project lasts many years, the staff turn-around is
high, requiring constant training. The time between technological changes is often shorter than
the duration of the project. The widespread assumptions of a software project manager that all
changes have been dealt with and that the requirements can be frozen will lead to the
deployment of an irrelevant system.

In the next section, we present a high-level view of software engineering. We describe
software engineering from the perspective of science, engineering, and knowledge acquisition
and formalization. In Section 1.3, we describe in more detail the main terms and concepts we
use in this book. In Section 1.4, we provide an overview of the development activities of
software engineering. In Section 1.5, we provide an overview of the managerial activities of
software engineering.

1.2 What Is Software Engineering?

Software engineering is a modeling activity. Software engineers deal with complexity through
modeling, by focusing at any one time on only the relevant details and ignoring everything else.
In the course of development, software engineers build many different models of the system and
of the application domain.

Software engineering is a problem-solving activity. Models are used to search for an
acceptable solution. This search is driven by experimentation. Software engineers do not have
infinite resources and are constrained by budget and deadlines. Given the lack of a fundamental
theory, they often have to rely on empirical methods to evaluate the benefits of different
alternatives.

Software engineering is a knowledge acquisition activity. In modeling the application and
solution domain, software engineers collect data, organize it into information, and formalize it
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into knowledge. Knowledge acquisition is not sequential, as a single piece of additional data can
invalidate complete models.

Software engineering is a rationale-driven activity. When acquiring knowledge and
making decisions about the system or its application domain, software engineers also need to
capture the context in which decisions were made and the rationale behind these decisions.
Rationale information, represented as a set of issue models, enables software engineers to
understand the implication of a proposed change when revisiting a decision.

In this section, we describe in more detail software engineering from the perspectives of
modeling, problem solving, knowledge acquisition, and rationale. For each of these activities,
software engineers have to work under people, time, and budget constraints. In addition, we
assume that change can occur at any time.

1.2.1 Modeling

The purpose of science is to describe and understand complex systems, such as a system of
atoms, a society of human beings, or a solar system. Traditionally, a distinction is made between
natural sciences and social sciences to distinguish between two major types of systems. The
purpose of natural sciences is to understand nature and its subsystems. Natural sciences include,
for example, biology, chemistry, physics, and paleontology. The purpose of the social sciences is
to understand human beings. Social sciences include psychology and sociology.

There is another type of system that we call an artificial system. Examples of artificial
systems include the space shuttle, airline reservation systems, and stock trading systems. Herbert
Simon coined the term sciences of the artificial to describe the sciences that deal with artificial
systems [Simon, 1970]. Whereas natural and social sciences have been around for centuries, the
sciences of the artificial are recent. Computer science, for example, the science of understanding
computer systems, is a child of the twentieth century.

Many methods that have been successfully applied in the natural sciences and humanities
can be applied to the sciences of the artificial as well. By looking at the other sciences, we can
learn quite a bit. One of the basic methods of science is modeling. A model is an abstract
representation of a system that enables us to answer questions about the system. Models are
useful when dealing with systems that are too large, too small, too complicated, or too expensive
to experience firsthand. Models also allow us to visualize and understand systems that either no
longer exist or that are only claimed to exist.

Fossil biologists unearth a few bones and teeth preserved from some dinosaur that no one
has ever seen. From the bone fragments, they reconstruct a model of the animal, following rules
of anatomy. The more bones they find, the clearer their idea of how the pieces fit together and
the higher the confidence that their model matches the original dinosaur. If they find a sufficient
number of bones, teeth, and claws, they can almost be sure that their model reflects reality
accurately, and they can guess the missing parts. Legs, for example, usually come in pairs. If the
left leg is found, but the right leg is missing, the fossil biologists have a fairly good idea what the
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missing leg should look like and where it fits in the model. This is an example of a model of a
system that no longer exists.

Today’s high-energy physicists are in a position similar to that of a fossil biologist who has
found most of the bones. Physicists are building a model of matter and energy and how they fit
together at the most basic, subatomic level. Many years of experiments with particle accelerators
have given high-energy physicists enough confidence that their models reflect reality and that
the remaining pieces that are not yet found will fit into the so-called standard model. This is an
example of a model for a system that is claimed to exist.

Both system modelers, fossil biologists and high-energy physicists, deal with two types of
entities: the real-world system, observed in terms of a set of phenomena, and the application
domain model, represented as a set of interdependent concepts. The system in the real world is a
dinosaur or subatomic particles. The application domain model is a description of those aspects
of the real-world system that are relevant to the problem under consideration.

Software engineers face similar challenges as fossil biologists and high-energy physicists.
First, software engineers need to understand the environment in which the system has to operate.
For a train traffic control system, software engineers need to know train signaling procedures.
For a stock trading system, software engineers need to know trading rules. The software
engineer does not need to become a fully certified train dispatcher or a stock broker; they only
need to learn the application domain concepts that are relevant to the system. In other terms,
they need to build a model of the application domain.

Second, software engineers need to understand the systems they could build, to evaluate
different solutions and trade-offs. Most systems are too complex to be understood by any one
person, and most systems are expensive to build. To address these challenges, software
engineers describe important aspects of the alternative systems they investigate. In other terms,
they need to build a model of the solution domain.

Object-oriented methods combine the application domain and solution domain modeling
activities into one. The application domain is first modeled as a set of objects and relationships.
This model is then used by the system to represent the real-world concepts it manipulates. A
train traffic control system includes train objects representing the trains it monitors. A stock
trading system includes transaction objects representing the buying and selling of commodities.
Then, solution domain concepts are also modeled as objects. The set of lines used to depict a
train or a financial transaction are objects that are part of the solution domain. The idea of
object-oriented methods is that the solution domain model is a transformation of the application
domain model. Developing software translates into the activities necessary to identify and
describe a system as a set of models that addresses the end user’s problem. We describe in more
detail modeling and the concepts of objects in Chapter 2, Modeling with UML.
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1.2.2 Problem Solving

Engineering is a problem-solving activity. Engineers search for an appropriate solution, often
by trial and error, evaluating alternatives empirically, with limited resources and incomplete
knowledge. In its simplest form, the engineering method includes five steps:

Formulate the problem.

Analyze the problem.

Search for solutions.

Decide on the appropriate solution.

M

Specify the solution.

Software engineering is an engineering activity. It is not algorithmic. It requires experi-
mentation, the reuse of pattern solutions, and the incremental evolution of the system toward a
solution that is acceptable to the client.

Object-oriented software development typically includes six development activities:
requirements elicitation, analysis, system design, object design, implementation, and testing.
During requirements elicitation and analysis, software engineers formulate the problem with the
client and build the application domain model. Requirements elicitation and analysis correspond
to steps 1 and 2 of the engineering method. During system design, software engineers analyze
the problem, break it down into smaller pieces, and select general strategies for designing the
system. During object design, they select detail solutions for each piece and decide on the most
appropriate solution. System design and object design result in the solution domain model.
System and object design correspond to steps 3 and 4 of the engineering method. During
implementation, software engineers realize the system by translating the solution domain model
into an executable representation. Implementation corresponds to step 5 of the engineering
method. What makes software engineering different from problem solving in other sciences is
that change occurs in the application and the solution domain while the problem is being solved.

Software development also includes activities whose purpose is to evaluate the
appropriateness of the respective models. During the analysis review, the application domain
model is compared with the client’s reality, which in turn might change as a result of modeling.
During the design review, the solution domain model is evaluated against project goals. During
testing, the system is validated against the solution domain model, which might be changed by
the introduction of new technologies. During project management, managers compare their
model of the development process (i.e., the project schedule and budget) against reality (i.e., the
delivered work products and expended resources).

1.2.3 Knowledge Acquisition

A common mistake that software engineers and managers make is to assume that the acquisition
of knowledge needed to develop a system is linear. This mistake is not made by software
managers alone; it can be found in other areas as well. In the 17th century, a book was published
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that offered to teach all the German poems by pouring them into the student’s head in 6 hours
with a funnel.! The idea of using a funnel for learning is based on the widespread assumption
that our mind is a bucket that is initially empty and can be filled in a linear fashion. Material
enters through our senses, accumulates, and is digested. Popper calls this linear acquisition
model for knowledge “the bucket theory of the mind.” Among the many other things that are
wrong with this theory (described in [Popper, 1992]) is the assumption that knowledge is
conceived as consisting of things that can fill a bucket; that is, the fuller the bucket, the more we
know.

Knowledge acquisition is a nonlinear process. The addition of a new piece of information
may invalidate all the knowledge we have acquired for the understanding of a system. Even if
we had already documented this understanding in documents and code (“The system is 90%
coded, we will be done next week’), we must be mentally prepared to start from scratch. This
has important implications on the set of activities and their interactions we define to develop the
software system. The equivalent of the bucket theory of the mind is the sequential waterfall
model for software development, in which all steps of the engineering method are accomplished
sequentially.

There are several software processes that deal with this problem by avoiding the sequential
dependencies inherent in the waterfall model. Risk-based development attempts to anticipate
surprises late in a project by identifying the high-risk components. Issue-based development
attempts to remove the linearity altogether. Any development activity—analysis, system design,
object design, implementation, testing, or delivery—can influence any other activity. In issue-
based development, all these activities are executed in parallel. The difficulty with nonsequential
development models, however, is that they are difficult to manage.

1.2.4 Rationale

When describing the acquisition or evolution of knowledge, we are even less well equipped than
when describing the knowledge of an existing system. How does a mathematician derive a
proof? Mathematical textbooks are full of proofs, but rarely provide hints about the proof
derivation. This is because mathematicians do not think this background is important. Once the
axioms and the rules of deduction have been stated, the proof is timeless.

For software engineers, the situation is different. Assumptions that developers make about
a system change constantly. Even though the application domain models eventually stabilize
once developers acquire an adequate understanding of the problem, the solution domain models
are in constant flux. Design and implementation faults discovered during testing and usability
problems discovered during user evaluation trigger changes to the solution models. Changes can
also be caused by new technology. The availability of a long-life battery and of high-bandwidth
wireless communication, for example, can trigger revisions to the concept of a portable terminal.

1. G. P. Harsdoerfer (1607-1658), “Poetischer Trichter, die teutsche Dicht- und Reimkunst, ohn Behuf der lateinischen
Sprache, in 6 Stunden einzugieBen,” Nuernberg, 1630.
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Change introduced by new technology often allows the formulation of new functional or
nonfunctional requirements. A typical task of software engineers is to change a currently
operational software system to incorporate this new enabling technology. To change the system,
it is not enough to understand its current components and behavior. It is also necessary to
capture and understand the context in which each design decision was made. This additional
knowledge is called the rationale of the system.

Capturing and accessing the rationale of a system is not trivial. First, for every decision
made, several alternatives may have been considered, evaluated, and argued. Consequently,
rationale represents a much larger amount of information than do the solution models. Second,
rationale information is often not explicit. Developers make many decisions based on their
experience and their intuition, without explicitly evaluating different alternatives. When asked to
explain a decision, developers may have to spend a substantial amount of time recovering its
rationale. In order to deal with changing systems, however, software engineers must address the
challenges of capturing and accessing rationale.

1.3 Software Engineering Concepts

So far, we have presented a high-level view of software engineering from the perspectives of
modeling, problem solving, knowledge acquisition, and rationale. In this section, we describe
the main terms and concepts we use throughout the book.” A Project, whose purpose is to
develop a software system, is composed of a number of Activities. Each Activity is in turn
composed of a number of Tasks. A Task consumes Resources and produces a WorkProduct. A
WorkProduct can be either a System, a Model, or a Document. Resources are either
Participants, Time, or Equipment. A graphical representation of these concepts is shown in
Figure 1-1. Each rectangle represents a concept. The lines among the rectangles represent
different relationships between the concepts. For example, the diamond shape indicates
aggregation: a Project includes a number of Activities, which includes a number of Tasks.
The triangle shape indicates a generalization relationship; Participants, Time, and Equipment
are specific kinds of Resources. Figure 1-1 is represented in the Unified Modeling Language
(UML) notation. We use UML throughout the book to represent models of software and other
systems. Intuitively, you should be able to understand this diagram without full knowledge of the
UML semantics. Similarly, you can also use UML diagrams when interacting with a client or a
user, even though they may not have any knowledge of UML. We describe the semantics of
these diagrams in detail in Chapter 2, Modeling with UML.

2. As much as possible, we follow the definitions of the IEEE standards on Software Engineering [IEEE Std. 610.12-
1990].
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Project
Activity
is produced by ?" consumes
WorkProduct - Task - Resources
[ [
System Participant
Model Time
Document Equipment

Figure 1-1 Software engineering concepts depicted as a UML class diagram [OMG, 2009].

1.3.1 Participants and Roles

Developing a software system requires the collaboration of many people with different
backgrounds and interests. The client orders and pays for the system. The developers construct
the system. The project manager plans and budgets the project and coordinates the developers
and the client. The end users are supported by the system. We refer to all the persons involved in
the project as participants. We refer to a set of responsibilities in the project or the system as a
role. A role is associated with a set of tasks and is assigned to a participant. The same
participant can fill multiple roles.

Consider a TicketDistributor system:

TicketDistributor is a machine that distributes tickets for trains. Travelers have the option of
selecting a ticket for a single trip or for multiple trips, or selecting a time card for a day or a week. The
TicketDistributor computes the price of the requested ticket based on the area in which the trip will
take place and whether the traveler is a child or an adult. The TicketDistributor must be able to
handle several exceptions, such as travelers who do not complete the transaction, travelers who attempt
to pay with large bills, and resource outages, such as running out of tickets, change, or power.

Treating the development of this TicketDistributor as a software engineering project,
Table 1-1 provides examples of roles for this example.
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Table 1-1 Examples of roles in software engineering for the TicketDistributor project.
Role Responsibilities Examples
Client The client is responsible for providing the high- Train company that
level requirements on the system and for defining  contracts the
the scope of the project (delivery date, budget, TicketDistributor.
quality criteria).
User The user is responsible for providing domain Travelers
knowledge about current user tasks. Note that the
client and the user are usually filled by different
persons.
Manager A manager is responsible for the work Alice (boss)
organization. This includes hiring staff, assigning
them tasks, monitoring their progress, providing
for their training, and generally managing the
resources provided by the client for a successful
delivery.
Human Factors A human factors specialist is responsible for the Zoe (Human Computer

Specialist

usability of the system.

Interaction specialist)

Developer

A developer is responsible for the construction of
the system, including specification, design,
implementation, and testing. In large projects, the
developer role is further specialized.

John (analyst), Marc
(programmer), & Zoe
(tester)®

Technical Writer

The technical writer is responsible for the
documentation delivered to the client. A technical
writer interviews developers, managers, and users
to understand the system.

John

a. AsTicketDistributor is a small project, Zoe fills both the human factor specialist and the tester roles,

and John fills the analyst and the technical writer roles.

1.3.2 Systems and Models

We use the term system as a collection of interconnected parts. Modeling is a way to deal with
complexity by ignoring irrelevant details. We use the term model to refer to any abstraction of
the system. A TicketDistributor for an underground train is a system. Blueprints for the
TicketDistributor, schematics of its electrical wiring, and object models of its software are
models of the TicketDistributor. Note that a development project is itself a system that can be
modeled. The project schedule, its budget, and its planned deadlines are models of the
development project.
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1.3.3 Work Products

A work product is an artifact that is produced during the development, such as a document or a
piece of software for other developers or for the client. We refer to a work product for the
project’s internal consumption as an internal work product. We refer to a work product that
must be delivered to a client as a deliverable. Deliverables are generally defined prior to the
start of the project and specified by a contract binding the developers with the client. Table 1-2
describes examples of work products for the TicketDistributor example.

13

Table 1-2  Examples of work products for the TicketDistributor project.

Work product Type Description

Specification Deliverable The specification describes the system from the user’s point of
view. It is used as a contractual document between the project
and the client. The TicketDistributor specification
describes in detail how the system should appear to the traveler.

Operation Deliverable The operation manual for the TicketDistributor is used by

manual the staff of the train company responsible for installing and

configuring the TicketDistributor. Such a manual describes,
for example, how to change the price of tickets and the
structure of the network into zones.

Status report

Internal work
product

A status report describes at a given time the tasks that have
been completed and the tasks that are still in progress. The
status report is produced for the manager, Alice, and is usually
not seen by the train company.

Test manual

Internal work
product

The test plans and results are produced by the tester, Zoe. These
documents track the known defects in the prototype
TicketDistributor and their state of repair. These documents
are usually not shared with the client.

1.3.4 Activities, Tasks, and Resources

An activity is a set of tasks that is performed toward a specific purpose. For example,
requirements elicitation is an activity whose purpose is to define with the client what the system
will do. Delivery is an activity whose purpose is to install the system at an operational location.
Management is an activity whose purpose is to monitor and control the project such that it meets
its goals (e.g., deadline, quality, budget). Activities can be composed of other activities. The
delivery activity includes a software installation activity and an operator training activity.
Activities are also sometimes called phases.
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A task represents an atomic unit of work that can be managed: A manager assigns it to a
developer, the developer carries it out, and the manager monitors the progress and completion of
the task. Tasks consume resources, result in work products, and depend on work products
produced by other tasks.

Resources are assets that are used to accomplish work. Resources include time,
equipment, and labor. When planning a project, a manager breaks down the work into tasks and
assigns them to resources.

Table 1-3 describes examples of activities, tasks, and resources in software engineering.

Table 1-3  Examples of activities, tasks, and resources for the TicketDistributor project.

Example Type Description

Requirements elicitation Activity The requirements elicitation activity includes
obtaining and validating requirements and domain
knowledge from the client and the users. The
requirements elicitation activity produces the
specification work product (Table 1-2).

Develop “Out of Change” Task This task, assigned to Zoe (the tester) focuses on
test case for verifying the behavior of the ticket distributor
TicketDistributor when it runs out of money and cannot give the

correct change back to the user. This activity
includes specifying the environment of the test, the
sequence of inputs to be entered, and the expected

outputs.
Review “Access Online Task This task, assigned to John (the human factors
Help” use case for usability specialist) focuses on detecting usability issues in

accessing the online help features of the system.

Tariff Database Resource The tariff database includes an example of tariff
structure with a train network plan. This example
is a resource provided by the client for
requirements and testing.

1.3.5 Functional and Nonfunctional Requirements

Requirements specify a set of features that the system must have. A functional requirement is a
specification of a function that the system must support, whereas a nonfunctional requirement
is a constraint on the operation of the system that is not related directly to a function of the
system.

For example, The user must be able to purchase tickets and The user must be able to
access tariff information are functional requirements. The user must be provided feedback in less
than one second and The colors used in the interface should be consistent with the company
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colors are nonfunctional requirements. Other nonfunctional requirements may include using
specific hardware platform for the system, security requirements, how the system should deal
with failures and faults, and how to provide backward compatibility with an old system that the
client is unwilling to retire.

1.3.6 Notations, Methods, and Methodologies

A notation is a graphical or textual set of rules for representing a model. The Roman alphabet is
a notation for representing words. UML (Unified Modeling Language [OMG, 2009]), the
notation we use throughout this book, is a notation for representing object-oriented models. The
use of notations in software engineering is common and predates object-oriented concepts. Data
flow diagrams [De Marco, 1978] is a notation for representing systems in terms of data sources,
data sinks, and data transformations. Z [Spivey, 1989] is a notation for representing systems
based on set theory.

A method is a repeatable technique that specifies the steps involved in solving a specific
problem. A recipe is a method for cooking a specific dish. A sorting algorithm is a method for
ordering elements of a list. Rationale management is a method for justifying change.
Configuration management is a method for tracking change.

A methodology is a collection of methods for solving a class of problems and specifies
how and when each method should be used. A seafood cookbook with a collection of recipes is
a methodology for preparing seafood if it also contains advice on how ingredients should be
used and what to do if not all ingredients are available. Royce’s methodology [Royce, 1998], the
Object Modeling Technique (OMT [Rumbaugh et al., 1991]), the Booch methodology [Booch,
1994], and Catalysis [D’Souza & Wills, 1999] are object-oriented methodologies for developing
software.

Software development methodologies decompose the process into activities. OMT
provides methods for three activities: Analysis, which focuses on formalizing the system
requirements into an object model, System Design, which focuses on strategic decisions, and
Object Design, which transforms the analysis model into an object model that can be
implemented. The OMT methodology assumes that requirements have already been defined and
does not provide methods for eliciting requirements. The Unified Software Development
Process also includes an Analysis activity and treats System Design and Object Design as a
single activity called Design. The Unified Process, unlike OMT, includes a Requirements
Capture activity for eliciting and modeling requirements. Catalysis, while using the same
notations as the Unified Process, focuses more on reuse of design and code using patterns and
frameworks. All of these methodologies focus on dealing with complex systems.

In this book, we present a methodology for developing complex and changing systems.
During the course of our teaching and research ([Bruegge, 1992], [Bruegge & Coyne, 1993],
[Bruegge & Coyne, 1994], [Coyne et al., 1995]), we have adapted and refined methods from a
variety of sources. For activities modeling the application domain, such as requirements
elicitation and analysis, we describe methods similar to those of OOSE [Jacobson et al., 1992].
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For solution domain modeling activities, such as system design and object design, we describe
object-oriented activities similar to those of OMT. For change-related activities, we focus on
rationale management, which originated from design rationale research [Moran & Carroll,
1996], and configuration management, which originated from the maintenance of large systems
[Babich, 1986].

1.4 Software Engineering Development Activities

In this section, we give an overview of the technical activities associated with object-oriented
software engineering. Development activities deal with the complexity by constructing and
validating models of the application domain or the system. Development activities include

¢ Requirements Elicitation (Section 1.4.1)
¢ Analysis (Section 1.4.2)

¢ System Design (Section 1.4.3)

¢ Object Design (Section 1.4.4)

¢ Implementation (Section 1.4.5)

e Testing (Section 1.4.6).

Figure 1-2 depicts an overview of the relationship among these activities and their
products. In Section 1.5, we give an overview of the managerial activities associated with
software engineering. In Chapter 14, Project Management, and in Chapter 15, Software Life
Cycle, we discuss in more detail the modeling, planning, and software engineering activities.

1.4.1 Requirements Elicitation

During requirements elicitation, the client and developers define the purpose of the system.
The result of this activity is a description of the system in terms of actors and use cases. Actors
represent the external entities that interact with the system. Actors include roles such as end
users, other computers the system needs to deal with (e.g., a central bank computer, a network),
and the environment (e.g., a chemical process). Use cases are general sequences of events that
describe all the possible actions between an actor and the system for a given piece of
functionality. Figure 1-3 depicts a use case for the TicketDistributor example we discussed
previously. We describe requirements elicitation, including use cases and nonfunctional
requirements, in detail in Chapter 4, Requirements Elicitation.

1.4.2 Analysis

During analysis, developers aim to produce a model of the system that is correct, complete,
consistent, and unambiguous. Developers transform the use cases produced during requirements
elicitation into an object model that completely describes the system. During this activity,
developers discover ambiguities and inconsistencies in the use case model that they resolve with
the client. The result of analysis is a system model annotated with attributes, operations, and
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Figure 1-2 An overview of object-oriented software engineering development activities and their
products. This diagram depicts only logical dependencies among work products. Object-oriented software
engineering is iterative; that is, activities can occur in parallel and more than once.
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Use case name

PurchaseOnewWayT1icket

Farticipating actor

Initiated by Traveler

Flow of events

1. The Traveler selects the zone in which the destination station is located.

2. The TicketDistributor displays the price of the ticket.

3. The Traveler inserts an amount of money that is at least as much as the
price of the ticket.

4. The TicketDistributor issues the specified ticket to the Traveler and
returns any change.

Entry condition

The Traveler stands in front of the TicketDistributor, which may be
located at the station of origin or at another station.

Exit condition

The Traveler holds a valid ticket and any excess change.

Quality requirements

If the transaction is not completed after one minute of inactivity, the
TicketDistributor returns all inserted change.

Figure 1-3 An example of use case, PurchaseOneWayTicket.

associations. The system model can be described in terms of its structure and its dynamic
interoperation. Figure 1-4 depicts an example of dynamic model for the TicketDistributor.
Figure 1-5 depicts an example of object model for the TicketDistributor.

:TicketDistributor :Zone :Balance
:Traveler ' ' I
selectZone() _ | getPrice() ‘[5 I
I
<53.@@9QDFDE§ _ I
insertChange() I, updateBaIance()I
amountDue I '[]
insertChange() | I
updateBalance(), o
T
acknowledgement LJ
«create» I

printedTicket

———————————— :Ticket
— I I I
I '

Figure 1-4 A dynamic model for the TicketDistributor (UML sequence diagram). This diagram
depicts the interactions between the actor and the system during the PurchaseOneWayTicket use case and
the objects that participate in the use case.
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Figure 1-5 An object model for the TicketDistributor (UML class diagram). In the
PurchaseOneWayTicket use case, a Traveler initiates a transaction that will result in a Ticket. A Ticket
is valid only for a specified Zone. During the Transaction, the system tracks the Balance due by counting
the Coins and Bi11s inserted.

We describe analysis, including object models, in detail in Chapter 5, Analysis. We
describe in detail the UML notation for representing models in Chapter 2, Modeling with UML.

1.4.3 System Design

During system design, developers define the design goals of the project and decompose the
system into smaller subsystems that can be realized by individual teams. Developers also select
strategies for building the system, such as the hardware/software platform on which the system
will run, the persistent data management strategy, the global control flow, the access control
policy, and the handling of boundary conditions. The result of system design is a clear
description of each of these strategies, a subsystem decomposition, and a deployment diagram
representing the hardware/software mapping of the system. Whereas both analysis and system
design produce models of the system under construction, only analysis deals with entities that
the client can understand. System design deals with a much more refined model that includes
many entities that are beyond the comprehension (and interest) of the client. Figure 1-6 depicts
an example of system decomposition for the TicketDistributor. We describe system design
and its related concepts in detail in Chapter 6, System Design: Decomposing the System, and in
Chapter 7, System Design: Addressing Design Goals.

1.4.4 Object Design

During object design, developers define solution domain objects to bridge the gap between the
analysis model and the hardware/software platform defined during system design. This includes
precisely describing object and subsystem interfaces, selecting off-the-shelf components,
restructuring the object model to attain design goals such as extensibility or understandability,
and optimizing the object model for performance. The result of the object design activity is a
detailed object model annotated with constraints and precise descriptions for each element. We
describe object design and its related concepts in detail in Chapter 8, Object Design: Reusing
Pattern Solutions, and Chapter 9, Object Design: Specifying Interfaces.
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Figure 1-6 A subsystem decomposition for the TicketDistributor (UML class diagram, packages
represent subsystems, dashed lines represent dependencies). The TravelerInterface subsystem is
responsible for collecting input from the Traveler and providing feedback (e.g., display ticket price,
returning change). The LocalTariff subsystem computes the price of different tickets based on a local
database. The CentralTariff subsystem, located on a central computer, maintains a reference copy of the
tariff database. An Updater subsystem is responsible for updating the local databases at each
TicketDistributor through a network when ticket prices change.

1.4.5 Implementation

During implementation, developers translate the solution domain model into source code. This
includes implementing the attributes and methods of each object and integrating all the objects
such that they function as a single system. The implementation activity spans the gap between
the detailed object design model and a complete set of source code files that can be compiled.
We describe the mapping of UML models to code in Chapter 10, Mapping Models to Code. We
assume the reader is already familiar with programming concepts and knows how to program
data structures and algorithms using an object-oriented language such as Java or C++.

1.4.6 Testing

During testing, developers find differences between the system and its models by executing the
system (or parts of it) with sample input data sets. During unit testing, developers compare the
object design model with each object and subsystem. During integration testing, combinations
of subsystems are integrated together and compared with the system design model. During
system testing, typical and exception cases are run through the system and compared with the
requirements model. The goal of testing is to discover as many faults as possible such that they
can be repaired before the delivery of the system. The planning of test phases occurs in parallel
to the other development activities: System tests are planned during requirements elicitation and
analysis, integration tests are planned during system design, and unit tests are planned during
object design. We describe these issues in more detail in Chapter 11, Testing.
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1.5 Managing Software Development

In this section, we briefly describe the activities involved in managing a software engineering
project. Management activities focus on planning the project, monitoring its status, tracking
changes, and coordinating resources such that a high-quality product is delivered on time and
within budget. Management activities not only involve managers, but also most of the other
project participants as well. Management activities include

¢ Communication (Section 1.5.1)

¢ Rationale Management (Section 1.5.2)

* Software Configuration Management (Section 1.5.3)
¢ Project Management (Section 1.5.4)

¢ Software Life Cycle (Section 1.5.5).

Software maintenance, which we do not cover in this book, includes the development
activities that occur after the delivery of the system to the client. Traditionally, software
maintenance has been distinguished from the other development activities as it is highly change
driven and is performed by a different team than the original development team. As modern
software engineering projects become more change driven, the distinction between construction
activities and maintenance activities is blurred. Many of the activities described in this book
can carry on to maintenance, including object design, implementation, testing, rationale
management, and software configuration management.

1.5.1 Communication

Communication is the most critical and time-consuming activity in software engineering.
Misunderstandings and omissions often lead to faults and delays that are expensive to correct
later in the development. Communication includes the exchange of models and documents about
the system and its application domain, reporting the status of work products, providing feedback
on the quality of work products, raising and negotiating issues, and communicating decisions.
Communication is made difficult by the diversity of participants’ backgrounds, by their
geographic distribution, and by the volume, complexity, and evolution of the information
exchanged.

To deal with communication issues, project participants have many tools available. The
most effective one is conventions: When participants agree on notations for representing
information, on tools for manipulating information, and on procedures for raising and resolving
issues, they already have eliminated substantial sources of misunderstanding. Examples of
notations include UML diagrams, templates for writing documents and meeting minutes, and
identification schemes for naming software components. Examples of tools include Computer
Aided Software Engineering (CASE) tools for maintaining models, word processors for
generating documents, and interchange formats for publishing information. Examples of
procedures include meeting procedures for organizing, conducting, and capturing a meeting,
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review procedures for reviewing documents and providing feedback, and inspection procedures
for detecting defects in models or source code. The selected conventions do not need to be the
best available; they only need to be shared and agreed on by everybody. We describe
communication issues in detail in Chapter 3, Project Organization and Communication.

1.5.2 Rationale Management

Rationale is the justification of decisions. Given a decision, its rationale includes the problem
that it addresses, the alternatives that developers considered, the criteria that developers used to
evaluate the alternatives, the debate developers went through to achieve consensus, and the
decision. Rationale is the most important information developers need when changing the
system. If a criterion changes, developers can reevaluate all decisions that depend on this
criterion. If a new alternative becomes available, it can be compared with all the other
alternatives that were already evaluated. If a decision is questioned, they can recover its rationale
to justify it.

Unfortunately, rationale is also the most complex information developers deal with during
development, and thus, the most difficult to update and maintain. To deal with this challenge,
developers capture rationale during meetings and on-line discussions, represent rationale with
issue models, and access rationale during changes. We describe these issues in detail in
Chapter 12, Rationale Management.

1.5.3 Software Configuration Management

Software configuration management is the process that monitors and controls changes in work
products. Change pervades software development. Requirements change as the client requests
new features and as developers improve their understanding of the application domain. The
hardware/software platform on which the system is built changes as new technology becomes
available. The system changes as faults are discovered during testing and are repaired. Software
configuration management used to be in the realm of maintenance, when improvements are
incrementally introduced in the system. In modern development processes, however, changes
occur much earlier than maintenance does. Thus, changes during development can be dealt with
using configuration management at all stages.

Configuration management enables developers to track changes. The system is
represented as a number of configuration items that are independently revised. For each
configuration item, its evolution is tracked as a series of versions. Selecting versions enables
developers to roll back to a well-defined state of the system when a change fails.

Configuration management also enables developers to control change. After a baseline has
been defined, any change needs to be assessed and approved before being implemented. This
enables management to ensure that the system is evolving according to project goals and that the
number of problems introduced into the system is limited. We describe these issues in detail in
Chapter 13, Configuration Management.
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1.5.4 Project Management

Project management does not produce any artifact of its own. Instead, project management
includes the oversight activities that ensure the delivery of a high-quality system on time and
within budget. This includes planning and budgeting the project during negotiations with the
client, hiring developers and organizing them into teams, monitoring the status of the project,
and intervening when deviations occur. Most project management activities are beyond the
scope of this book. We describe, however, the project management activities that are visible to
the developers and techniques that make the development-management communication more
effective. We describe these issues in detail in Chapter 14, Project Management.

1.5.5 Software Life Cycle

In this chapter, we describe software engineering as a modeling activity. Developers build
models of the application and solution domains to deal with their complexity. By ignoring
irrelevant details and focusing only on what is relevant to a specific issue, developers can more
effectively resolve issues and answer questions. The process of developing software can also be
viewed as a complex system with inputs, outputs, activities, and resources. It is not surprising,
then, that the same modeling techniques applied to software artifacts are used for modeling
software processes. A general model of the software development process is called a software
life cycle. We describe software life cycles in Chapter 15, Software Life Cycle.

1.5.6 Putting It All Together

After reading Chapters 1-15 in this book, you will have an overview of the current state-of-the-
art methods in object-oriented software engineering, which you can view as a thick cookbook of
recipes. In practice, however, a cookbook is rarely enough for the novice to cook a complete
meal. Moreover, not all ingredients are always available, and the cook has to improvise to bridge
the gaps.

Chapter 14, Project Management, focuses on planning and controlling projects.
Chapter 15, Software Life Cycle, focuses on modeling, improving, and repeating software life
cycle processes. Both chapters, because they focus on techniques and models, take an optimistic
view of project execution. In Chapter 16, Methodologies: Putting It All Together, we examine
what happens outside of textbook situations. We provide methodologies and heuristics for
adapting the building blocks presented in the other chapter to specific situations. In particular,
we describe several agile and heavier methodologies.

1.6 ARENA Case Study

In each chapter, we introduce concepts and activities using increasingly complex examples,
starting with toy examples from the classroom and moving to actual examples from project
courses or from real systems. Moreover, to put the activities of each chapter in the context of the
overall software engineering project, we also use a single, comprehensive case study throughout
the book, describing the development of a system called ARENA.
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ARENA is a multi-user, Web-based system for organizing and conducting tournaments.
ARENA is game independent in the sense that organizers can adapt a new game to the ARENA game
interface, upload it to the ARENA server, and immediately announce and conduct tournaments
with players and spectators located anywhere on the Internet. Organizers can also define new
tournament styles, describing how players are mapped to a set of matches and how to compute
an overall ranking of players by adding up their victories and losses (hence, figuring out who
won the tournament). To recoup their operational costs, organizers can also invite potential
sponsors to display advertisement banners during games.

In the section entitled “ARENA Case Study” located at the end of each chapter, we discuss
issues, design decisions, and trade-offs specific to the chapter in the context of ARENA. We also
relate these issues to the parts of the case study presented in previous chapters, thereby
emphasizing inter-chapter dependencies. For example:

¢ In Chapter 4, Requirements Elicitation, we describe how developers write an initial set
of use cases based on information provided by a client. We define in more detail how
tournaments should be organized and announced, and how players apply for new
tournaments. In the process, we generate more questions for the client and uncover
ambiguities and missing information about the system.

e In Chapter 5, Analysis, we describe how an object model and a behavior model are
constructed from the use case model. We also examine how the development of these
models leads to more refinements in the use case model and in the discovery of
additional requirements. For example, we define more formally the concept of
exclusive sponsorship, describe the workflow associated with deciding on the
sponsorship of a tournament, and consolidate the object model.

e In Chapter 7, System Design: Addressing Design Goals, we select a client server
architecture and a framework for realizing the system, and address issues such as data
storage and access control. We examine different mechanisms for authenticating users
on the Web, identify the persistent objects we need to store (e.g., game state,
tournament results, player profiles), and decompose ARENA into smaller subsystems that
can be handled by single programmers.

e In Chapter 8, Object Design: Reusing Pattern Solutions, and in Chapter 9, Object
Design: Specifying Interfaces, we identify additional solution domain objects to fill the
gap between the system design and the implementation. We reuse template solutions by
selecting design patterns for addressing specific issues. For example, a strategy pattern
is used to encapsulate different tournament styles.

¢ In Chapter 10, Mapping Models to Code, we translate the UML models we built so far
into Java code, and reexamine the object design as new optimization issues are
discovered. In this chapter, we illustrate the tight iteration between object design and
implementation.
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The work products associated with the ARENA system, along with a demonstration, are available
from http://wwwbruegge.in.tum.de/OOSE/WebHome.

1.7 Further Reading

The fundamental issues associated with software engineering are not new and have been written
about for several decades.

In the Mythical Man Month [Brooks, 1995], first published in 1975, Frederick Brooks
reflects on his experience with developing an operating system for the IBM 360 mainframe, a
multi-million dollar, multi-year project that went over budget and schedule. Since then, different
techniques, tools, and methods have enabled software engineers to tackle more complex and
challenging problems, only to experience failures that are more expensive and more spectacular.
Many basic lessons of this landmark book are still applicable today.

In Computer-Related Risks [Neumann, 1995], Peter Neumann relates a collection of
computer-related failures, examine roots causes and effects of these failures, and discusses what
might be done to avoid them. Computer-Related Risks is a sobering account that should be read
by any software engineer who dreams of building and mastering complex systems.

Objective Knowledge: An Evolutionary Approach [Popper, 1992] is an essay about
knowledge construction. Karl Popper breaks from traditional knowledge theories dating back to
Aristotle and proposes that scientific knowledge, once stated in a human language, becomes a
separate entity that grows through selection. As software engineering is a collaborative
knowledge-gathering and construction activity, Popper’s book can be useful to stimulate critical
thinking and provide a different perspective on the field.

In this book, we focus on object-oriented software engineering and target senior-level
software engineering project courses. Consequently, we leave out several historical and
management topics that are traditionally included in software engineering books, such as
software metrics, cost estimation, and formal methods. An overview of these topics can be found
in more general software engineering textbooks, such as Software Engineering [Sommerville,
2006] and Software Engineering: A Practitioner’s Approach [Pressman, 2009].

1.8 Exercises

1-1 What is the purpose of modeling?

1-2 A programming language is a notation for representing algorithms and data structures.
List two advantages and two disadvantages of using a programming language as the
sole notation throughout the development process.

1-3  Consider a task you are not familiar with, such as designing a zero-emissions car. How
would you attack the problem?

1-4  What is meant by “knowledge acquisition is not sequential”’? Provide a concrete
example of knowledge acquisition that illustrates this.

1-5 Hypothesize a rationale for the following design decisions:
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1-6

1-7

1-8

1-9
1-10
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e “The TicketDistributor will be at most one and a half meters tall.”
e “The TicketDistributor will include two redundant computer systems.”

e “The TicketDistributor interface will consist of a touch screen for displaying
instructions and accessing commands and a single button for aborting transactions.”

Specify which of these statements are functional requirements and which are
nonfunctional requirements:

e “The TicketDistributor must enable a traveler to buy weekly passes.”
e “The TicketDistributor must be written in Java.”

e “The TicketDistributor must be easy to use.”

e “The TicketDistributor must always be available.”

e “The TicketDistributor must provide a phone number to call when it fails.”
Specify which of these decisions were made during requirements or system design:

e “The TicketDistributor is composed of a user interface subsystem, a subsystem
for computing tariff, and a network subsystem for managing communication with
the central computer.”

e “The TicketDistributor hardware uses PowerPC processor chips.”

e “The TicketDistributor provides the traveler with online help.”

In the following description, explain when the term account is used as an application
domain concept and when as a solution domain concept:

“Assume you are developing an online system for managing bank accounts for
mobile customers. A major design issue is how to provide access to the accounts
when the customer cannot establish an online connection. One proposal is that
accounts are made available on the mobile computer, even if the server is not up. In
this case, the accounts show the amounts from the last connected session.”

What is the difference between a task and an activity?

A passenger aircraft is composed of several millions of parts and requires thousands of
persons to assemble. A four-lane highway bridge is another example of complexity.
The first version of Word for Windows, a word processor released by Microsoft in
1989, required 55 person-years, resulted into 249,000 lines of source code, and was
delivered 4 years late. Aircraft and highway bridges are usually delivered on time and
within budget, whereas software is often not. Discuss what are, in your opinion, the
differences between developing an aircraft, a bridge, and a word processor that would
cause this situation.
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2

Modeling with UML

Every mechanic is familiar with the problem of the part you
can’t buy because you can'’t find it because the
manufacturer considers it a part of something else.

—Robert Pirsig, in Zen and the Art of Motorcycle
Maintenance

Notations enable us to articulate complex ideas succinctly and precisely. In projects
involving many participants, often of different technical and cultural backgrounds, accuracy and
clarity are critical as the cost of miscommunication increases rapidly.

For a notation to enable accurate communication, it must come with a well-defined
semantics, it must be well suited for representing a given aspect of a system, and it must be well
understood among project participants. In the latter lies the strength of standards and
conventions: when a notation is used by a large number of participants, there is little room for
misinterpretation and ambiguity. Conversely, when many dialects of a notation exists, or when a
very specialized notation is used, the notation users are prone to misunderstandings as each user
imposes its own interpretation. We selected UML (Unified Modeling Language, [OMG, 2009])
as a primary notation for this book because it provides a spectrum of notations for representing
different aspects of a system and has been accepted as a standard notation in the industry.

In this chapter, we first describe the concepts of modeling in general and object-oriented
modeling in particular. We then describe five fundamental notations of UML that we use
throughout the book: use case diagrams, class diagrams, interaction diagrams, state machine
diagrams, and activity diagrams. For each of these notations, we describe its basic semantics and
provide examples. We revisit these notations in detail in later chapters as we describe the
activities that use them. Specialized notations that we use in only one chapter are introduced
later, such as UML deployment diagrams in Chapter 6, System Design: Decomposing the
System, and PERT charts in Chapter 14, Project Management.

29
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2.1 Introduction

UML is a notation that resulted from the unification of OMT (Object Modeling Technique
[Rumbaugh et al., 1991]), Booch [Booch, 1994], and OOSE (Object-Oriented Software
Engineering [Jacobson et al., 1992]). UML has also been influenced by other object-oriented
notations, such as those introduced by Mellor and Shlaer [Mellor & Shlaer, 1998], Coad and
Yourdon [Coad et al., 1995], Wirfs-Brock [Wirfs-Brock et al., 1990], and Martin and Odell
[Martin & Odell, 1992].

The goal of UML is to provide a standard notation that can be used by all object-oriented
methods and to select and integrate the best elements of precursor notations. For example, UML
includes the use case diagrams introduced by OOSE and uses many features of the OMT class
diagrams. UML also includes new concepts that were not present in other major methods at the
time, such as extension mechanisms and a constraint language. UML has been designed for a
broad range of applications. Hence, it provides constructs for a broad range of systems and
activities (e.g., distributed systems, analysis, system design, deployment). System development
focuses on three different models of the system (see Figure 1-2):

¢ The functional model, represented in UML with use case diagrams, describes the
functionality of the system from the user’s point of view.

* The object model, represented in UML with class diagrams, describes the structure of
the system in terms of objects, attributes, associations, and operations. During
requirements and analysis, the object model starts as the analysis object model and
describes the application concepts relevant to the system. During system design, the
object model is refined into the system design object model and includes descriptions of
the subsystem interfaces. During object design, the object model is refined into the
object design model and includes detailed descriptions of solution objects.

e The dynamic model, represented in UML with interaction diagrams, state machine
diagrams, and activity diagrams, describes the internal behavior of the system.
Interaction diagrams describe behavior as a sequence of messages exchanged among a
set of objects, whereas state machine diagrams describe behavior in terms of states of
an individual object and the possible transitions between states. Activity diagrams
describe behavior in terms control and data flows.

In this chapter, we describe UML diagrams for representing these models. Introducing
these notations represents an interesting challenge: understanding the purpose of a notation
requires some familiarity with the activities that use it. However, it is necessary to understand
the notation before describing the activities. To address this issue, we introduce UML iteratively.
In the next section, we first provide an overview of the five basic notations of UML. In
Section 2.3, we introduce the fundamental ideas of modeling. In Section 2.4, we revisit the five
basic notations of UML in light of modeling concepts. In subsequent chapters, we discuss these
notations in even greater detail when we introduce the activities that use them.
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2.2 An Overview of UML

In this section, we briefly introduce five UML notations:

e Use Case Diagrams (Section 2.2.1)

¢ Class Diagrams (Section 2.2.2)

¢ Interaction Diagrams (Section 2.2.3)

¢ State Machine Diagrams (Section 2.2.4)
e Activity Diagrams (Section 2.2.5).

2.2.1 Use Case Diagrams

Use cases are used during requirements elicitation and analysis to represent the functionality of
the system. Use cases focus on the behavior of the system from an external point of view. A use
case describes a function provided by the system that yields a visible result for an actor. An actor
describes any entity that interacts with the system (e.g., a user, another system, the system’s
physical environment). The identification of actors and use cases results in the definition of the
boundary of the system, that is, in differentiating the tasks accomplished by the system and the
tasks accomplished by its environment. The actors are outside the boundary of the system,
whereas the use cases are inside the boundary of the system.

For example, Figure 2-1 depicts a use case diagram for a simple watch. The WatchUser
actor may either consult the time on their watch (with the ReadTime use case) or set the time
(with the SetTime use case). However, only the WatchRepairPerson actor can change the
battery of the watch (with the ChangeBattery use case).

SimpleWatch
ReadTime
= D
WatchUser SetTime ////////&;;;hRepairPerson
ChangeBattery

Figure 2-1 A UML use case diagram describing the functionality of a simple watch. The WatchUser actor
may either consult the time on her watch (with the ReadTime use case) or set the time (with the SetTime use
case). However, only the WatchRepairPerson actor can change the battery of the watch (with the
ChangeBattery use case). Actors are represented with stick figures, use cases with ovals, and the boundary
of the system with a box enclosing the use cases.
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2.2.2 Class Diagrams

Class diagrams are used to describe the structure of the system. Classes are abstractions that
specify the common structure and behavior of a set of objects. Objects are instances of classes
that are created, modified, and destroyed during the execution of the system. An object has state
that includes the values of its attributes and its links with other objects.

Class diagrams describe the system in terms of objects, classes, attributes, operations, and
their associations. For example, Figure 2-2 is a class diagram describing the elements of all the
watches of the SimpleWatch class. These watch objects all have an association to an object of the
PushButton class, an object of the Display class, an object of the Time class, and an object of
the Battery class. The numbers on the ends of associations denote the number of links each
SimpleWatch object can have with an object of a given class. For example, a SimpleWatch has
exactly two PushButtons, one Display, two Batteries, and one Time. Similarly, all
PushButton, Display, Time, and Battery objects are associated with exactly one SimpleWatch
object.

SimpleWatch
1 1 1 1
2| 1] 12 |1
PushButton Display Battery Time

Figure 2-2 A UML class diagram describing the elements of a simple watch.

At the analysis level, associations represent existence relationships. For example, a
SimpleWatch requires the correct number of PushButtons, Displays, Batteries, and Time. In
this example, the association is symmetrical: PushButton cannot perform its function without a
SimpleWatch. UML also allows for one-directional relationships, which we describe in
Section 2.4.2. At the implementation level, associations are realized as references (i.e., pointers)
to objects.

2.2.3 Interaction Diagrams

Interaction diagrams are used to formalize the dynamic behavior of the system and to visualize
the communication among objects. They are useful for identifying additional objects that
participate in the use cases. We call objects involved in a use case participating objects. An
interaction diagram represents the interactions that take place among these objects. For example,
Figure 2-3 is a special form of interaction diagram, called a sequence diagram, for the SetTime
use case of our simple watch. The left-most column represents the WatchUser actor who initiates
the use case. Labeled arrows represent stimuli that an actor or an object sends to other objects. In
this case, the WatchUser presses button 1 twice and button 2 once to set her watch a minute
ahead. The SetTime use case terminates when the WatchUser presses both buttons
simultaneously.



An Overview of UML 33

:WatchUser ' ' I
[] pressButtonl() | bT1inkHours () | |
pressButtonl() ‘L_I b1inkMinutes() L |
VB > |
pressButton2Q  _ | Lrl'incrementM‘inutesQ I
I_'_I | - refresh()

pressButtons1And2 () | I—l commitNewTime()

stopBlinking() |___| |T|
AL A A

Figure 2-3 A UML sequence diagram for the Watch. The left-most column represents the timeline of the
WatchUser actor who initiates the use case. The other columns represent the timeline of the objects that
participate in this use case. Object names are underlined to denote that they are instances (as opposed to
classes). Labeled arrows are stimuli that an actor or an object sends to other objects.

2.2.4 State Machine Diagrams

State machine diagrams describe the dynamic behavior of an individual object as a number of
states and transitions between these states. A state represents a particular set of values for an
object. Given a state, a transition represents a future state the object can move to and the
conditions associated with the change of state. For example, Figure 2-4 is a state machine
diagram for the Watch. A small black circle initiates that B1inkHours is the initial state. A circle
surrounding a small black circle indicates that StopBlinking is a final state. Note that this
diagram represents different information than the sequence diagram of Figure 2-3. The sequence
diagram focuses on the messages exchanged between objects as a result of external events
created by actors. The state machine diagram focuses on the transitions between states as a result
of external events for an individual object.

2.2.5 Activity Diagrams

An activity diagram describes the behavior of a system in terms of activities. Activities are
modeling elements that represent the execution of a set of operations. The execution of an
activity can be triggered by the completion of other activities, by the availability of objects, or by
external events. Activity diagrams are similar to flowchart diagrams in that they can be used to
represent control flow (i.e., the order in which operations occur) and data flow (i.e., the objects
that are exchanged among operations). For example, Figure 2-5 is an activity diagram
representing activities related to managing an Incident. Rounded rectangles represent
activities; arrows between activities represent control flow; thick bars represent the
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}

buttonl&2Pressed button2Pressed
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B1inkHours | Hours
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button2Pressed
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StopBlinking
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Seconds

Figure 2-4 A UML state machine diagram for SetTime use case of the Watch.

synchronization of the control flow. The activity diagram of Figure 2-5 depicts that the

AllocateResources, CoordinateResources, and DocumentIncident can be initiated only after
the OpenIncident activity has been completed. Similarly, the ArchiveIncident activity can be
initiated only after the completion of AllocateResources, Coordinate-Resources, and
DocumentIncident. These latter three activities, however, can occur concurrently.

This concludes our first walkthrough of the five basic notations of UML. Now, we go into
more detail: In Section 2.3, we introduce basic modeling concepts, including the definition of

Open
Incident

Allocate
Resources

Coordinate
Resources

Document
Incident

Archive
Incident

Figure 2-5 An example of a UML activity diagram. Activity diagrams represent behavior in terms of
activities and their precedence constraints. The completion of an activity triggers an outgoing transition,

which in turn may initiate another activity.



Modeling Concepts 35

systems, models, types, and instances, abstraction, and falsification. In Sections 2.4.1-2.4.5, we
describe in detail use case diagrams, class diagrams, sequence diagrams, state machine
diagrams, and activity diagrams. We illustrate their use with a simple example. Section 2.4.6
describes miscellaneous constructs, such as packages and notes, that are used in all types of
diagrams. We use these five notations throughout the book to describe software systems, work
products, activities, and organizations. By the consistent and systematic use of a small set of
notations, we hope to provide the reader with an operational knowledge of UML.

2.3 Modeling Concepts

In this section, we describe the basic concepts of modeling. We first define the terms system,
model, and view, and discuss the purpose of modeling. We explain their relationship to
programming languages and terms such as data types, classes, instances, and objects. Finally,
we describe how object-oriented modeling focuses on building an abstraction of the system
environment as a basis for the system model.

2.3.1 Systems, Models, and Views

A system is an organized set of communicating parts. We focus here on engineered systems,
which are designed for a specific purpose, as opposed to natural systems, such as a planetary
system, whose ultimate purpose we may not know. A car, composed of four wheels, a chassis, a
body, and an engine, is designed to transport people. A watch, composed of a battery, a circuit,
wheels, and hands, is designed to measure time. A payroll system, composed of a mainframe
computer, printers, disks, software, and the payroll staff, is designed to issue salary checks for
employees of a company. Parts of a system can in turn be considered as simpler systems called
subsystems. The engine of a car, composed of cylinders, pistons, an injection module, and many
other parts, is a subsystem of the car. Similarly, the integrated circuit of a watch and the
mainframe computer of the payroll system are subsystems. This subsystem decomposition can
be recursively applied to subsystems. Objects represent the end of this recursion, when each
piece is simple enough that we can fully comprehend it without further decomposition.

Many systems are made of numerous subsystems interconnected in complicated ways,
often so complex that no single developer can manage its entirety. Modeling is a means for
dealing with this complexity. Complex systems are generally described by more than one model,
each focusing on a different aspect or level of accuracy. Modeling means constructing an
abstraction of a system that focuses on interesting aspects and ignores irrelevant details. What is
interesting or irrelevant varies with the task at hand. For example, assume we want to build an
airplane. Even with the help of field experts, we cannot build an airplane from scratch and hope
that it will function correctly on its maiden flight. Instead, we first build a scale model of the air
frame to test its aerodynamic properties. In this scale model, we only need to represent the
exterior surface of the airplane. We can ignore details such as the instrument panel or the engine.
In order to train pilots for this new airplane, we also build a flight simulator. The flight simulator
needs to accurately represent the layout and behavior of flight instruments. In this case, however,
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details about the exterior of the plane can be ignored. Both the flight simulator and the scale
model are much less complex than the airplane they represent. Modeling allows us to deal with
complexity through a divide-and-conquer approach: For each type of problem we want to solve
(e.g., testing aerodynamic properties, training pilots), we build a model that only focuses on the
issues relevant to the problem. Generally, modeling focuses on building a model that is simple
enough for a person to grasp completely. A rule of thumb is that each entity should contain at
most 7 + 2 parts [Miller, 1956].

Modeling also helps us deal with complexity by enabling us to incrementally refine simple
models into more detailed ones that are closer to reality. In software engineering, as in all
engineering disciplines, the model usually precedes the system. During analysis, we first build a
model of the environment and of the common functionality that the system must provide, at a
level that is understandable by the client. Then we refine this model, adding more details about
the forms that the system should display, the layout of the user interface, and the response of the
system to exceptional cases. The set of all models built during development is called the system
model. If we did not use models, but instead started coding the system right away, we would
have to specify all the details of the user interface before the client could provide us with
feedback. Thus we would lose much time and resources when the client then introduces
changes.

Unfortunately, even a model may become so complex that it is not easily understandable.
We can continue to use the divide-and-conquer method to refine a complex model into simpler
models. A view focuses on a subset of a model to make it understandable (Figure 2-6). For
example, all the blueprints necessary to construct an airplane constitute a model. Excerpts
necessary to explain the functioning of the fuel system constitute the fuel system view. Views
may overlap: a view of the airplane representing the electrical wiring also includes the wiring for
the fuel system.

Scale model

QH blueprints
Airplane
( Flight simulator

Figure 2-6 A model is an abstraction describing a subset of a system. A view depicts selected aspects of
a model. Views and models of a single system may overlap each other.
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Notations are graphical or textual rules for representing views. A UML class diagram is a
graphical view of the object model. In wiring diagrams, each connected line represents a
different wire or bundle of wires. In UML class diagrams, a rectangle with a title represents a
class. A line between two rectangles represents a relationship between the two corresponding
classes. Note that different notations can be used to represent the same view (Figure 2-7).

UML
1 *
Book Chapter
composed-of
Booch
o~ N — N
s \ N N
. Book @ composed—of | Chapter
- _ - _
~N N

Figure 2-7 Example of describing a model with two different notations. The model includes two classes,
Book and Chapter, with the relationship, Book is composed of Chapters. In UML, classes are depicted
by rectangles and aggregation associations by a line terminated with a diamond. In the Booch notation,
classes are depicted by clouds, and aggregation associations are depicted with a line terminated with a solid
circle.

In software engineering, there are many other notations for modeling systems. UML
describes a system in terms of classes, events, states, interactions, and activities. Data flow
diagrams [De Marco, 1978] depict how data is retrieved, processed, and stored. Z Schemes
[Spivey, 1992] represent the system in terms of invariants (conditions that never change) and in
terms of what is true before and after the execution of an operation. Each notation is tailored for
a different problem.

In the next sections, we focus in more detail on the process of modeling.

2.3.2 Data Types, Abstract Data Types, and Instances

A data type is an abstraction in the context of a programming language. A data type has a
unique name that distinguishes it from other data types. It denotes a set of values that are
members of the data type (i.e., the instances of the data type) and defines the structure and the
operations valid in all instances of the data type. Data types are used in typed languages to
ensure that only valid operations are applied to specific instances.

For example, the name int in Java corresponds to all the signed integers between 2% and
232 _ 1. The valid operations on this type are all the integer arithmetic operations (e.g., addition,
subtraction, multiplication, division) and all the functions and methods that have parameters of
type int (e.g., mod). The Java run-time environment throws an exception if a floating point
operation is applied to an instance of the int data type (e.g., trunc or floor).
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An abstract data type is a data type defined by an implementation-independent
specification. Abstract data types enable developers to reason about a set of instances without
looking at a specific implementation of the abstract data type. Examples of abstract data types
are sets and sequences, which can be mathematically defined. A system may provide different
implementations of the set abstract data type, each optimizing different criteria (e.g., memory
consumption, insertion time). However, a developer using a set only needs to understand its
semantics and need not be aware of the internal representation of the set. For example, the
abstract data type Person may define the operations getName 0.,! getSocialSecurityNumber(),
and getAddress(). The fact that the social security number of the person is stored as a number
or as a string is not visible to the rest of the system. Such decisions are called implementation
decisions.

2.3.3 Classes, Abstract Classes, and Objects

A class is an abstraction in object-oriented modeling and in object-oriented programming
languages. Like abstract data types, a class encapsulates both structure and behavior. Unlike
abstract data types, classes can be defined in terms of other classes by using inheritance. Assume
we have a watch that also can function as a calculator. The class CalculatorWatch can then be
seen as a refinement of the class Watch. This type of relationship between a base class and a
refined class is called inheritance. The generalization class (e.g., Watch) is called the
superclass, the specialized class (e.g., CalculatorWatch) is called the subclass. In an
inheritance relationship, the subclass refines the superclass by defining new attributes and
operations. In Figure 2-8, CalculatorWatch defines functionality for performing simple
arithmetic that regular Watches do not have. Superclass and subclass are relative terms. The
same class can be a subclass with respect to one class and a superclass with respect to another
class.

When an inheritance relationship serves only to model shared attributes and operations,
that is, if the generalization is not meant to be instantiated, the resulting class is called an
abstract class. Abstract classes often represent generalized concepts in the application domain,
and their names are italicized. For example, in chemistry, Benzene can be considered a class of
molecules that belongs to the abstract class OrganicCompound (Figure 2-9). OrganicCompound is
a generalization and does not correspond to any one molecule; that is, it does not have any
instances. In Java, Collection is an abstract class providing a generalization for all collection
classes. However, there are no instances of the class Collection. Rather, all collection objects
are instances of one of the subclasses of Collection, such as LinkedList, ArraylList, or
HashMap. Note that not all generalizations are abstract classes. For example, in Figure 2-8 the
Watch class is not an abstract class as it has instances. When modeling software systems,

1. We refer to an operation by its name followed by its arguments in parentheses. If the arguments are not specified, we
suffix the name of the operation by a pair of empty parentheses. We describe operations in detail in the next section.
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Watch
time
date
SetDate(d) CalculatorWatch
calculatorState
EnterCalcMode()
InputNumber(n)

Figure2-8 A UML class diagram depicting two classes, Watch and CalculatorWatch.
CalculatorWatch is arefinement of Watch, providing calculator functionality not found in normal watches.
In a UML class diagram, classes and objects are represented as boxes with three compartments: the first
compartment depicts the name of the class, the second depicts its attributes, the third its operations. The
second and third compartments can be omitted for brevity. An inheritance relationship is displayed by a line
with a triangle. The triangle points to the superclass, and the other end is attached to the subclass.

abstract classes sometimes do not correspond to an existing application domain concept, but
rather are introduced to reduce complexity in the model or to promote reuse.

A class defines the operations that can be applied to its instances. Operations of a
superclass can be inherited and applied to the objects of the subclass as well. For example, in
Figure 2-8, the operation SetDate(d), setting the current date of a Watch, is also applicable to
CalculatorWatches. The operation EnterCalcMode(), however, defined in the
CalculatorWatch class, is not applicable in the Watch class.

A class defines the attributes that apply to all its instances. An attribute is a named slot in
the instance where a value is stored. Attributes have a unique name within the class and the type.
Watches have a time and a date attribute. CalculatorWatches have a calculatorState
attribute.

An object is an instance of a class. An object has an identity and stores attribute values.
Each object belongs to exactly one class. In UML, an instance is depicted by a rectangle with its
name underlined. This convention is used throughout UML to distinguish between instances and

OrganicCompound

Benzene

Figure 2-9 An example of abstract class (UML class diagram). OrganicCompound is never instantiated
and only serves as a generalization class. The names of abstract classes are italicized.



40 Chapter 2 ¢« Modeling with UML

classes.? In Figure 2-10, simpTeWatch1291 is an instance of Watch, and calculatorWatch1515
is an instance of CalculatorWatch. Note that, although the operations of Watch are applicable to
calculatorWatchl515, calculatorWatch1515 is not an instance of the class Watch. The
attributes of an object can be visible to other parts of the system in some programming
languages. For example, Java allows the implementor to specify in great detail which attributes
are visible and which are not.

«instanceOf»

simpleWatchl291:Watch |- _ _ _ _ _ _ = Watch
calculatorWatchl515 «instanceOf»
:CalculatorWatch |- — — — — — — —| C(CalculatorWatch

Figure 2-10 A UML class diagram depicting instances of two classes. simpTeWatch1291 is an instance
of Watch. calculatorWatchl515 is an instance of CalculatorWatch. Although the operations of Watch
are also applicable to calculatorWatch1515, the latter is not an instance of the former.

2.3.4 Event Classes, Events, and Messages

Event classes are abstractions representing a kind of event for which the system has a common
response. An event, an instance of an event class, is a relevant occurrence in the system. For
example, an event can be a stimuli from an actor (e.g., “the WatchUser presses the left button™),
a time-out (e.g., “after 2 minutes”), or the sending of a message between two objects. Sending a
message is the mechanism by which the sending object requests the execution of an operation in
the receiving object. The message is composed of a name and a number of arguments. The
receiving object matches the name of the message to one of its operations and passes the
arguments to the operation. Any results are returned to the sender.

For example, in Figure 2-11, the :Watch object computes the current time by getting the
Greenwich time from the :Time object and the time difference from the :TimeZone object by
sending the getTime() and the getTimeDelta() messages, respectively. Note that :Watch
denotes an undesignated object of class Watch.

Events and messages are instances: they represent concrete occurrences in the system.
Event classes are abstractions describing groups of events for which the system has a common
response. In practice, the term “event” can refer to instances or classes. This ambiguity is
resolved by examining the context in which the term is used.

2. Underlined strings are also used for representing Uniform Resource Locators (URLs). To improve readability, we do
not use an underlined font in the text, but rather, we use the same font to denote instances and classes. In general, this
ambiguity can be resolved by examining the context. In UML diagrams, however, we always use an underlined font
to distinguish instances from classes.
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Figure 2-11 Examples of message sends (UML sequence diagram). The Watch object sends the
getTime() message to a Time object to query the current Greenwich time. It then sends the
getTimeDelta() message to a TimeZone object to query the difference to add to the Greenwich time. The
dashed arrows represent the replies (i.e., message results that are sent back to the sender).

2.3.5 Object-Oriented Modeling

The application domain represents all aspects of the user’s problem. This includes the physical
environment, the users and other people, their work processes, and so on. It is critical for
analysts and developers to understand the application domain for a system to accomplish its
intended task effectively. Note that the application domain changes over time, as work processes
and people change.3

The solution domain is the modeling space of all possible systems. Modeling in the
solution domain represents the system design and object design activities of the development
process. The solution domain model is much richer and more volatile than the application
domain model. This is because the system is usually modeled in much more detail than the
application domain. Emerging technologies (also called technology enablers), deeper
understanding of implementation technology by the developers, and changes in requirements
trigger changes to the solution domain models. Note that the deployment of the system can
change the application domain as users develop new work processes to accommodate the
system.

Object-oriented analysis is concerned with modeling the application domain.
Object-oriented design is concerned with modeling the solution domain. Both modeling
activities use the same representations (i.e., classes and objects). In object-oriented analysis and

3. The application domain is sometimes further divided into a user domain and a client domain. The client domain
includes the issues relevant to the client, such as, operation cost of the system, impact of the system on the rest of the
organization. The user domain includes the issues relevant to the end user, such as, functionality, ease of learning
and of use.
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design, the application domain model is also part of the system model. For example, an air
traffic control system has a TrafficController class to represent individual users, their
preferences, and log information. The system also has an Aircraft class to represent
information associated with the tracked aircraft. TrafficController and Aircraft are
application domain concepts that are encoded into the system (Figure 2-12).

Application Domain Solution Domain
Application Domain Model System Model
TrafficControl \ | SummaryDisplay | MapDisplay
~

. | TrafficController | ™l | FlightPlanDatabase |
.
FlightPlan | TrafficControl |

Figure 2-12 The application domain model represents entities of the environment that are relevant to an
air traffic control system (e.g., aircraft, traffic controllers). The system model represents entities that are part
of the system (e.g., map display, flight plan database). Note that in object-oriented analysis and design, the
application domain model is part of the system model. The system model refines the application domain
model to include solution domain concepts, such as SummaryDisplay, MapDisplay, and FightPlan-
Database. (For more details, see Chapter 5, Analysis.)

Modeling the application domain and the solution domain with a single notation has
advantages and disadvantages. On the one hand, it can be powerful: solution domain classes that
represent application concepts can be traced back to the application domain. Moreover, these
classes can be encapsulated into subsystems independent of other implementation concepts
(e.g., user interface and database technology) and be packaged into a reusable toolkit of domain
classes. On the other hand, using a single notation can introduce confusion because it removes
the distinction between the real world and the model of it. The solution domain is bound to be
simpler and biased toward the solution. To address this issue, we use a single notation and, in
cases of ambiguity, we distinguish between the two domains. In most cases, we are referring to
the model (e.g., “an Aircraft is associated with a F1ightPlan” is a statement about the model).
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2.3.6 Falsification and Prototyping

A model is a simplification of reality in the sense that irrelevant details are ignored. Relevant
details, however, need to be represented. Falsification [Popper, 1992] is the process of
demonstrating that relevant details have been incorrectly represented or not represented at all;
that is, the model does not correspond to the reality it is supposed to represent.

The process of falsification is well known in other sciences: researchers propose different
models of a reality, which are gradually accepted as an increasing amount of data supports the
model, then rejected once a counterexample is found. Near the end of the 18th century, for
example, it was discovered that the orbit of the planet Mercury did not exactly match the orbit
predicted by Newton’s theory of gravity. Later, Einstein’s general theory of relativity predicted a
slightly different orbit that better matched the results. In other words, Newton’s theory was
falsified in favor of Einstein’s. Note, however, that we still use Newton’s theory for practical
applications on Earth, because the differences predicted by both theories are small in these
situations and Newton’s theory is much simpler. In other words, the details ignored by Newton’s
theory are not relevant for the scales we are accustomed to.

We can apply falsification to software system development as well. For example, a
technique for developing a system is prototyping: when designing the user interface, developers
construct a prototype that only simulates the user interface of a system. The prototype is then
presented to potential users for evaluation—that is, falsification—and modified subsequently. In
the first iterations of this process, developers are likely to throw away the initial prototype as a
result of feedback from the users. In other terms, users falsify the initial prototype, a model of
the future system, because it does not accurately represent relevant details.

Note that it is only possible to demonstrate that a model is incorrect. Although in some
cases, it is possible to show mathematically that two models are equivalent, it is not possible to
show that either of them correctly represents reality. For example, formal verification techniques
can enable developers to show that a specific software implementation is consistent with a
formal specification. However, only field testing and extended use can indicate that a system
meets the needs of the client. At any time, system models can be falsified due to changes in the
requirements, in the implementation technology, or in the environment.

2.4 A Deeper View into UML

We now describe in detail the five main UML diagrams we use in this book.

¢ Use case diagrams represent the functionality of the system from a user’s point of
view. They define the boundaries of the system (Section 2.4.1).

¢ Class diagrams represent the static structure of a system in terms of objects, their
attributes, operations, and relationships (Section 2.4.2).

¢ Interaction diagrams represent the system’s behavior in terms of interactions among a
set of objects. They are used to identify objects in the application and implementation
domains (Section 2.4.3).
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* State machine diagrams represent the behavior of nontrivial objects (Section 2.4.4).

¢ Activity diagrams are flow diagrams used to represent the data flow or the control
flow through a system (Section 2.4.5).

241 Use Case Diagrams

Use cases and actors

Actors are external entities that interact with the system. Examples of actors include a
user role (e.g., a system administrator, a bank customer, a bank teller) or another system (e.g., a
central database, a fabrication line). Actors have unique names and descriptions.

Use cases describe the behavior of the system as seen from an actor’s point of view.
Behavior described by use cases is also called external behavior. A use case describes a
function provided by the system as a set of events that yields a visible result for the actors.
Actors initiate a use case to access system functionality. The use case can then initiate other use
cases and gather more information from the actors. When actors and use cases exchange
information, they are said to communicate. We will see later that we represent these exchanges
with communication relationships.

For example, in an accident management system, field officers (such as a police officer or
a fire fighter) have access to a wireless computer that enables them to interact with a dispatcher.
The dispatcher in turn can visualize the current status of all its resources, such as police cars or
trucks, on a computer screen and dispatch a resource by issuing commands from a workstation.
In this example, field officer and dispatcher can be modeled as actors.

Figure 2-13 depicts the actor FieldOfficer who invokes the use case ReportEmergency
to notify the actor Dispatcher of a new emergency. As a response, the Dispatcher invokes the

FRIEND

ReportEmergency

OpenIncident Dispatcher

/

AllocateResources

FieldOfficer

Figure 2-13 An example of a UML use case diagram for First Responder Interactive Emergency
Navigational Database (FRIEND), an accident management system. Associations between actors and use
cases denote information flows. These associations are bidirectional: they can represent the actor initiating
a use case (FieldOfficer initiates ReportEmergency) or a use case providing information to an actor
(ReportEmergency notifies Dispatcher). The box around the use cases represents the system boundary.
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OpenIncident use case to create an incident report and initiate the incident handling. The
Dispatcher enters preliminary information from the FieldOfficer in the incident database
(FRIEND) and orders additional units to the scene with the AlTocateResources use case.

For the textual description of a use case, we use a template composed of six fields (see
Figure 2-14) adapted from [Constantine & Lockwood, 2001]:

¢ The name of the use case is unique across the system so that developers (and project
participants) can unambiguously refer to the use case.

* Participating actors are actors interacting with the use case.

¢ Entry conditions describe the conditions that need to be satisfied before the use case is

initiated.
Use case name ReportEmergency
Participating Initiated by FieldOfficer
actors Communicates with Dispatcher
Flow of events 1. The FieldOfficer activates the “Report Emergency” function of her terminal.

2. FRIEND responds by presenting a form to the FieldOfficer.

3. The FieldOfficer fills out the form by selecting the emergency level, type,
location, and brief description of the situation. The FieldOfficer also
describes possible responses to the emergency situation. Once the form is
completed, the FieldOfficer submits the form.

4. FRIEND receives the form and notifies the Dispatcher.

5. The Dispatcher reviews the submitted information and creates an Incident in
the database by invoking the OpenIncident use case. The Dispatcher selects a
response and acknowledges the report.

6. FRIEND displays the acknowledgment and the selected
response to the FieldOfficer.

Entry condition e The FieldOfficer is logged into FRIEND.

Exit condition e The FieldOfficer has received an acknowledgment and the selected response
from the Dispatcher, OR
¢ The FieldOfficer has received an explanation indicating why the transaction
could not be processed.

Quality ¢ The FieldOfficer’s report is acknowledged within 30 seconds.
requirements ¢ The selected response arrives no later than 30 seconds after it is sent by the
Dispatcher.

Figure 2-14 An example of a use case, ReportEmergency.
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* The flow of events describes the sequence of interactions of the use case, which are to
be numbered for reference. The common case (i.e., cases that are expected by the user)
and the exceptional cases (i.e., cases unexpected by the user, such as errors and unusual
conditions) are described separately in different use cases for clarity. We organize the
steps in the flow of events in two columns, the left column representing steps
accomplished by the actor, the right column representing steps accomplished by the
system. Each pair of actor—system steps represents an interaction.

» Exit conditions describe the conditions satisfied after the completion of the use case.

¢ Quality requirements are requirements that are not related to the functionality of the
system. These include constraints on the performance of the system, its
implementation, the hardware platforms it runs on, and so on. Quality requirements are
described in detail in Chapter 4, Requirements Elicitation.

Use cases are written in natural language. This enables developers to use them for
communicating with the client and the users, who generally do not have an extensive knowledge
of software engineering notations. The use of natural language also enables participants from
other disciplines to understand the requirements of the system. The use of the natural language
allows developers to capture things, in particular special requirements, that cannot easily be
captured in diagrams.

Use case diagrams can include four types of relationships: communication, inclusion,
extension, and inheritance. We describe these relationships in detail next.

Communication relationships

Actors and use cases communicate when information is exchanged between them.
Communication relationships are depicted by a solid line between the actor and use case
symbol. In Figure 2-13, the actors FieldOfficer and Dispatcher communicate with the
ReportEmergency use case. Only the actor Dispatcher communicates with the use cases
OpenIncident and AllocateResources. Communication relationships between actors and use
cases can be used to denote access to functionality. In the case of our example, a FieldOfficer
and a Dispatcher are provided with different interfaces to the system and have access to
different functionality.

Include relationships

When describing a complex system, its use case model can become quite complex and can
contain redundancy. We reduce the complexity of the model by identifying commonalities in
different use cases. For example, assume that the Dispatcher can press at any time a key to
access a street map. This can be modeled by a use case ViewMap that is included by the use cases
OpenIncident and AllocateResources (and any other use cases accessible by the Dispatcher).
The resulting model only describes the ViewMap functionality once, thus reducing complexity of
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the overall use case model. Two use cases are related by an include relationship if one of them
includes the second one in its flow of events. In use case diagrams, include relationships are
depicted by a dashed open arrow originating from the including use case (see Figure 2-15).
Include relationships are labeled with the string «include».

«include»

OpenIncident ™ - ©
—_— - 7

- ViewMap
«include»
AllocateResources

Figure 2-15 An example of an «include» relationship (UML use case diagram).

Use case name AllocateResources

Participating actor Initiated by Dispatcher

Flow of events

Entry condition e The Dispatcher opens an Incident.

Exit condition ¢ Additional Resources are assigned to the Incident.
* Resources receives notice about their new assignment.
* FieldOfficer in charge of the Incident receives notice about the new
Resources.

Quality requirements At any point during the flow of events, this use case can include the ViewMap
use case. The ViewMap use case is initiated when the Dispatcher invokes the
map function. When invoked within this use case, the system scrolls the map
so that location of the current Incident is visible to the Dispatcher.

Figure 2-16 Textual representation of include relationships of Figure 2-15. “Include” in bold for clarity.

We represent include relationships in the textual description of the use case with one of
two ways. If the included use case can be included at any point in the flow of events (e.g., the
ViewMap use case), we indicate the inclusion in the Quality requirements section of the use case
(Figure 2-16). If the included use case is invoked during an event, we indicate the inclusion in
the flow of events.

Extend relationships

Extend relationships are an alternate means for reducing complexity in the use case
model. A use case can extend another use case by adding events. An extend relationship
indicates that an instance of an extended use case may include (under certain conditions) the
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behavior specified by the extending use case. A typical application of extend relationships is the
specification of exceptional behavior. For example (Figure 2-17), assume that the network
connection between the Dispatcher and the FieldOfficer can be interrupted at any time. (e.g.,
if the FieldOfficer enters a tunnel). The use case ConnectionDown describes the set of events
taken by the system and the actors while the connection is lost. ConnectionDown extends the use
cases OpenIncident and AllocateResources. Separating exceptional behavior from common
behavior enables us to write shorter and more focused use cases. In the textual representation of
a use case, we represent extend relationships as entry conditions of the extending use case. For
example, the extend relationships depicted in Figure 2-17 are represented as an entry condition
of the ConnectionDown use case (Figure 2-18).

«extend»

—

OpenIncident ~ -

—

<= ConnectionDown

«extend»
AlTlocateResources

Figure 2-17 An example of an «extend» relationship (UML use case diagram).

Use case name ConnectionDown

Participating actor Communicates with FieldOfficer and Dispatcher.

Flow of events

Entry condition This use case extends the OpenIncident and the Al1ocateResources use
cases. It is initiated by the system whenever the network connection between
the FieldOfficer and Dispatcher is lost.

Exit condition

Figure 2-18 Textual representation of extend relationships of Figure 2-17. “Extends” in bold for clarity.

The difference between the include and extend relationships is the location of the
dependency. Assume that we add several new use cases for the actor Dispatcher, such as
UpdateIncident and ReallocateResources. If we modeled the ConnectionDown use case with
include relationships, the authors of UpdateIncident and ReallocateResources use cases need
to know about and include the ConnectionDown use case. If we used extend relationships
instead, only the ConnectionDown use case needs to be modified to extend the additional use
cases. In general exception cases (such as help, errors, and other unexpected conditions) are
modeled with extend relationships. Use cases that describe behavior commonly shared by a
limited set of use cases are modeled with include relationships.
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Inheritance relationships

An inheritance relationship is a third mechanism for reducing the complexity of a
model. One use case can specialize another more general one by adding more detail. For
example, FieldOfficers are required to authenticate before they can use FRIEND. During early
stages of requirements elicitation, authentication is modeled as a high-level Authenticate use
case. Later, developers describe the Authenticate use case in more detail and allow for several
different hardware platforms. This refinement activity results in two more use cases:
AuthenticateWithPassword which enables FieldOfficers to login without any specific
hardware, and AuthenticateWithCard which enables FieldOfficers to login using a smart
card. The two new use cases are represented as specializations of the Authenticate use case
(Figure 2-19). In the textual representation, specialized use cases inherit the initiating actor and
the entry and exit conditions from the general use case (Figure 2-20).

Authenticate \\\\\\Zil
WithPassword
Authenticate

Authenticate
WithCard

Figure 2-19 An example of an inheritance relationship (UML use case diagram). The Authenticate use
case is a high-level use case describing, in general terms, the process of authentication.
AuthenticateWithPassword and AuthenticateWithCard are two specializations of Authenticate.

Use case name AuthenticateWithCard
Participating actor Inherited from Authenticate use case.
Flow of events 1. The FieldOfficer inserts her card into the field terminal.

2. The field terminal acknowledges the card and prompts
the actor for her personal identification number (PIN).

3. The Fie1dOfficer enters her PIN with the numeric keypad.

4. The field terminal checks the entered PIN against the PIN
stored on the card. If the PINs match, the FieldOfficer
is authenticated. Otherwise, the field terminal rejects the
authentication attempt.

Entry condition Inherited from Authenticate use case.

Exit condition Inherited from Authenticate use case.

Figure 2-20 Textual representation of inheritance relationships of Figure 2-19.
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Note that extend relationships and inheritance relationships are different. In an extend
relationship, each use case describes a different flow of events to accomplish a different task. In
Figure 2-17, the OpenIncident use cases describes the actions that occur when the Dispatcher
creates a new Incident, whereas the ConnectionDown use case describes the actions that occur
during network outages. In Figure 2-19, AuthenticateWithPassword and Authenticate both
describe the same task, each at different abstraction levels.

Scenarios

A use case is an abstraction that describes all possible scenarios involving the described
functionality. A scenario is an instance of a use case describing a concrete set of actions.
Scenarios are used as examples for illustrating common cases; their focus is on
understandability. Use cases are used to describe all possible cases; their focus is on
completeness. We describe a scenario using a template with three fields:

e The name of the scenario enables us to refer to it unambiguously. The name of a
scenario is underlined to indicate that it is an instance.

¢ The participating actor instances field indicates which actor instances are involved in
this scenario. Actor instances also have underlined names.

* The flow of events of a scenario describes the sequence of events step by step.

Note that there is no need for entry or exit conditions in scenarios. Entry and exit
conditions are abstractions that enable developers to describe a range of conditions under which
a use case is invoked. Given that a scenario only describes one specific situation, such conditions
are unnecessary (Figure 2-21).

2.4.2 Class Diagrams

Classes and objects

Class diagrams describe the structure of the system in terms of classes and objects.
Classes are abstractions that specify the attributes and behavior of a set of objects. A class is a
collection of objects that share a set of attributes that distinguish the objects as members of the
collection. Objects are entities that encapsulate state and behavior. Each object has an identity:
it can be referred individually and is distinguishable from other objects.

In UML, classes and objects are depicted by boxes composed of three compartments. The
top compartment displays the name of the class or object. The center compartment displays its
attributes, and the bottom compartment displays its operations. The attribute and operation
compartments can be omitted for clarity. Object names are underlined to indicate that they are
instances. By convention, class names start with an uppercase letter. Objects in object diagrams
may be given names (followed by their class) for ease of reference. In that case, their name starts
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Scenario name warehouseOnFire

Participating actor bob, alice:FieldOfficer

instances john:Dispatcher

Flow of events 1. Bob, driving down main street in his patrol car, notices smoke coming out

of a warehouse. His partner, Alice, activates the “Report Emergency”
function from her FRIEND laptop.

2. Alice enters the address of the building, a brief description of its location
(i.e., northwest corner), and an emergency level. In addition to a fire unit,
she requests several paramedic units on the scene given that area appears
to be relatively busy. She confirms her input and waits for an
acknowledgment.

3. John, the Dispatcher, is alerted to the emergency by a beep of his
workstation. He reviews the information submitted by Alice and
acknowledges the report. He allocates a fire unit and two paramedic units
to the Incident site and sends their estimated arrival time (ETA) to Alice.

4. Alice receives the acknowledgment and the ETA.

Figure 2-21 The warehouseOnF1ire scenario for the ReportEmergency use case.

EmergencyReport 1 = 1 Incident
reportsGenerated | reports 'inc*identsGeneratez
Fieldofficer Dispatcher
name:String 1 name:String 1

badgeNumber:Integer [ thor badgeNumber: Integer | "oy o

Figure 2-22 An example of a UML class diagram: classes that participate in the ReportEmergency use
case. Detailed type information is usually omitted until object design (see Chapter 9, Object Design:
Specifying Interfaces).

with a lowercase letter. In the FRIEND example (Figures 2-22 and 2-23), Bob and Alice are field
officers, represented in the system as FieldOfficer objects called bob:FieldOfficer and
alice:FieldOfficer. FieldOfficer is a class describing all FieldOfficer objects, whereas
Bob and Alice are represented by two individual Fie1dOfficer objects.

In Figure 2-22, the Fie1dOfficer class has two attributes: a name and a badgeNumber. This
indicates that all FieldOfficer objects have these two attributes. In Figure 2-23, the
bob:FieldOfficer and alice:FieldOfficer objects have specific values for these attributes:
“Bob. D.” and “Alice W.”, respectively. In Figure 2-22, the Fie1dOfficer.name attribute is of
type String, which indicates that only instances of String can be assigned to the
FieldOfficer.name attribute. The type of an attribute is used to specify the valid range of
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report_1291 incident_1515
bob: Fieldofficer I:—g =

name = “Bob D.
badgeNumber = 132

john:Dispatcher

alice:FieldOfficer ngSeﬁumggptDiZ

name = “Alice W.”
badgeNumber = 23

Figure 2-23 An example of a UML object diagram: objects that participate in warehouseOnF1ire.

values the attribute can take. Note that when attribute types are not essential to the definition of
the system, attribute type decisions can be delayed until object design. This allows the
developers to concentrate on the functionality of the system and to minimize the number of
trivial changes when the functionality of the system is revised.

Associations and links

A link represents a connection between two objects. Associations are relationships between
classes and represent groups of links. Each FieldOfficer object also has a list of
EmergencyReports that has been written by the FieldOff1icer. In Figure 2-22, the line between the
FieldOfficer class and the EmergencyReport class is an association. In Figure 2-23, the line
between the alice:FieldOfficer object and the report_1291:EmergencyReport object is a link.
This link represents a state that is kept in the system to denote that alice:FieldOfficer generated
report_1291:EmergencyReport.

In UML, associations can be symmetrical (bidirectional) or asymmetrical (unidirectional).
All the associations in Figure 2-22 are symmetrical. Figure 2-24 depicts an example of one-
directional association between Polygon and Point. The navigation arrow at the Point end of
the association indicates that the system only supports navigation from the Polygon to the
Point. In other words, given a specific Polygon, it is possible to query all Points that make up

Polygon Point

Figure 2-24 Example of a one-directional association. Developers usually omit navigation during analysis
and add navigation information during object design, when they make such decisions (see Chapter 8, Object
Design: Reusing Pattern Solutions, and Chapter 9, Object Design: Specifying Interfaces).
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the Polygon. However, the navigation arrow indicates that given a specific Point, it is not
possible to find which Polygons the Point is part of. UML allows navigation arrows to be
displayed on both ends of an association. By convention, however, an association without arrows
indicates that navigation is supported in both directions.

Association class

Associations are similar to classes, in that they can have attributes and operations attached
to them. Such an association is called an association class and is depicted by a class symbol that
contains the attributes and operations and is connected to the association symbol with a dashed
line. For example, in Figure 2-25, the allocation of FieldOfficers to an Incident is modeled as
an association class with attributes role and notificationTime.

Any association class can be transformed into a class and simple associations as shown in
Figure 2-26. Although this representation is similar to Figure 2-25, the association class
representation is clearer in Figure 2-25: an association cannot exist without the classes it links.
Similarly, the Allocation object cannot exist without a FieldOfficer and an Incident.
Although Figure 2-26 carries the same information, this diagram requires careful examination of
the association multiplicity. We examine such modeling trade-offs in Chapter 5, Analysis.

Allocates

role:String
notificationTime:Time

FieldOfficer Incident

name:String : 1
badgeNumber:Integer resources

1..% incident

Figure 2-25 An example of an association class (UML class diagram).

1 Allocation
role:String !
_ i notificationTime:Time
FieldOfficer
incident | 1
name:String
badgeNumber:Integer 7. * resources Incident

Figure 2-26  Alternative model for A11ocation (UML class diagram).



54 Chapter 2 ¢« Modeling with UML

Roles

Each end of an association can be labeled by a role. In Figure 2-22, the roles of the
association between EmergencyReport and FieldOfficer are author and reportsGenerated.
Labeling the end of associations with roles allows us to distinguish among the multiple
associations originating from a class. Moreover, roles clarify the purpose of the association.

Multiplicity

Each end of an association can be labeled by a set of integers indicating the number of
links that can legitimately originate from an instance of the class connected to the association
end. This set of integers is called the multiplicity of the association end. In Figure 2-22, the
association end author has a multiplicity of 1. This means that all EmergencyReports are
written by exactly one FieldOfficer. In other terms, each EmergencyReport object has exactly
one link to an object of class FieldOfficer. The multiplicity of the association end
reportsGenerated role is “many,” shown as a star. The “many”” multiplicity is shorthand for
0..n. This means that any given FieldOfficer may be the author of zero or more
EmergencyReports.

In UML, an association end can have an arbitrary set of integers as a multiplicity. For
example, an association could allow only a prime number of links and thus, would have a
multiplicity 1, 2, 3, 5, 7, 11, 13, and so forth. In practice, however, most of the associations we
encounter belong to one of the following three types (see Figure 2-27):

* A one-to-one association has a multiplicity 1 on each end. A one-to-one association
between two classes (e.g., PoliceOfficer and BadgeNumber) means that exactly one
link exists between instances of each class (e.g., a PoliceOfficer has exactly one
BadgeNumber, and a BadgeNumber denotes exactly one Pol1iceOfficer).

* A one-to-many association has a multiplicity 1 on one end and 0. . n (also represented
by a star) or 1..n on the other. A one-to-many association between two classes (e.g.,
FireUnit and FireTruck) denotes composition (e.g., a FireUnit owns one or more
FireTrucks, a FireTruck is owned exactly by one FireUnit).

* A many-to-many association has a multiplicity 0..n or 1. .n on both ends. A many-
to-many association between two classes (e.g., FieldOfficer and IncidentReport)
denotes that an arbitrary number of links can exist between instances of the two classes
(e.g., a FieldOfficer can write many IncidentReports, an IncidentReport can be
written by many FieldOfficers). This is the most complex type of association.

Adding multiplicity to associations increases the amount of information we capture from
the application or the solution domain. Specifying the multiplicity of an association becomes
critical when we determine which use cases are needed to manipulate the application domain
objects. For example, consider a file system made of Directories and Files. A Directory can
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1 1
PoliceOfficer BadgeNumber
. . 1 * -
FireUnit owner property FireTruck
FieldOfficer author report| IncidentReport

Figure 2-27 Examples of multiplicity (UML class diagram). The association between Po1iceOfficer
and BadgeNumber is one-to-one. The association between FireUnit and FireTruck is one-to-many. The
association between FieldOfficer and IncidentReport is many-to-many.

contain any number of FileSystemElements. A FileSystemElement is a concept that denotes
either a Directory or a File. In case of a strictly hierarchical system, a FileSystemETement is
part of exactly one Directory, which we denote with a one-to-many multiplicity (Figure 2-28).

If, however, a File or a Directory can be simultaneously part of more than one
Directory, we need to represent the aggregation of FileSystemETement into Directories asa
many-to-many association (see Figure 2-29).

FileSystemElement

T

LAV |

Directory File

Figure 2-28 Example of a hierarchical file system. A Directory can contain any number of
FileSystemElements (a FileSystemElement is either a File or a Directory). A given
FileSystemETement, however, is part of exactly one Directory.

FileSystemElement

W ZF |

Directory File

Figure 2-29 Example of a nonhierarchical file system. A Directory can contain any number of
FileSystemElements (a FileSystemElement is either a File or a Directory). A given
FileSystemETement can be part of many Directories.
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This discussion may seem to be considering detailed issues that could be left for later
activities in the development process. The difference between a hierarchical file system and a
nonhierarchical one, however, is also in the functionality it offers. If a system allows a given
File to be part of multiple Directories, we need to define a use case describing how a user
adds an existing File to existing Directories (e.g., the Unix 1ink command or the Macintosh
MakeAlias menu item). Moreover, use cases removing a File from a Directory must specify
whether the File is removed from one Directory only or from all Directories that reference
it. Note that a many-to-many association can result in a substantially more complex system.

Aggregation

Associations are used to represent a wide range of connections among a set of objects. In
practice, a special case of association occurs frequently: aggregation. For example, a State
contains many Counties, which in turn contain many Townships. A PoliceStation is
composed of PoliceOfficers. A Directory contains a number of Files. Such relationships
could be modeled using a one-to-many association. Instead, UML provides the concept of an
aggregation, denoted by a simple line with a diamond at the container end of the association (see
Figures 2-28 and 2-30). One-to-many associations and aggregations, although similar, cannot be
used interchangeably: aggregations denote hierarchical aspects of the relationship and can have
either one-to-many or many-to-many multiplicity, whereas one-to-many associations imply a
peer relationship. For example, in Figure 2-30, the PoliceOfficers are part of the
PoliceStation. In Figure 2-22, a FieldOfficer writes zero or many EmergencyReports.
However, the FieldOfficer is not composed EmergencyReports. Consequently, we use an
association in the latter case and an aggregation in the former case.

1 * 1 *
State K >—— County K o>— Township
1 *
PoTliceStation PoTliceOfficer
l %
Directory File

Figure 2-30 Examples of aggregations (UML class diagram). A State contains many Counties, which
in turn contains many Townships. A PoliceStation has many PoliceOfficers. A file system Directory
contains many Files.

Qualification

Qualification is a technique for reducing multiplicity by using keys. Associations with a
0. .1 or 1 multiplicity are easier to understand than associations with a 0. .n or 1. .n multiplicity.
Often in the case of a one-to-many association, objects on the “many” side can be distinguished
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from one another using a name. For example, in a hierarchical file system, each file belongs to
exactly one directory. Each file is uniquely identified by a name in the context of a directory.
Many files can have the same name in the context of the file system; however, two files cannot
share the same name within the same directory. Without qualification (see top of Figure 2-31),
the association between Directory and File has a one multiplicity on the Directory side and a
zero-to-many multiplicity on the File side. We reduce the multiplicity on the File side by using
the filename attribute as a key, also called a qualifier (see top of Figure 2-31). The relationship
between Directory and File is called a qualified association.

Without qualification
1
Directory
With qualification
. - 1 0..1 )

Figure 2-31 Example of how a qualified association reduces multiplicity (UML class diagram). Adding a
qualifier clarifies the class diagram and increases the conveyed information. In this case, the model
including the qualification denotes that the name of a file is unique within a directory.

Reducing multiplicity is always preferable, as the model becomes clearer and fewer cases
have to be taken into account. Developers should examine each association that has a one-to-
many or many-to-many multiplicity to see if a qualifier can be added. Often, these associations
can be qualified with an attribute of the target class (e.g., filename in Figure 2-31).

Inheritance

Inheritance is the relationship between a general class and one or more specialized
classes. Inheritance enables us to describe all the attributes and operations that are common to a
set of classes. For example, FieldOfficer and Dispatcher both have name and badgeNumber
attributes. However, FieldOfficer has an association with EmergencyReport, whereas
Dispatcher has an association with Incident. The common attributes of FieldOfficer and
Dispatcher can be modeled by introducing a PoliceOfficer class that is specialized by the
FieldOfficer and the Dispatcher classes (see Figure2-32). PoliceOfficer, the
generalization, is called a superclass. FieldOfficer and Dispatcher, the specializations, are
called the subclasses. The subclasses inherit the attributes and operations from their parent
class. Abstract classes (defined in Section 2.3.3) are distinguished from concrete classes by
italicizing the name of abstract classes. In Figure 2-32, PoliceOfficer is an abstract class.
Abstract classes are used in object-oriented modeling to classify related concepts, thus reducing
the overall complexity of the model.
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PoliceOfficer

name:String
badgeNumber:Integer

~

_ . author . | initiator
FieldOfficer Dispatcher 1
1
* reportsGenerated * incidents
EmergencyReport 1 = L Incident

Figure 2-32 An example of an inheritance (UML class diagram). PoliceOfficer is an abstract class
which defines the common attributes and operations of the Fiel1dOfficer and Dispatcher classes.

Object behavior is specified by operations. An object requests the execution of an
operation from another object by sending it a message. The message is matched up with a
method defined by the class to which the receiving object belongs or by any of its superclasses.
The methods of a class in an object-oriented programming language are the implementations of
these operations.

The distinction between operations and methods allows us to distinguish between the
specification of behavior (i.e., an operation) and its implementation (i.e., a set of methods that
are possibly defined in different classes in the inheritance hierarchy). For example, the class
Incident in Figure 2-33 defines an operation, called assignResource(), which, given a
FieldOfficer, creates an association between the receiving Incident and the specified
Resource. The assignResource() operation may also have a side effect such as sending a
notification to the newly assigned Resource. The close() operation of Incident is responsible
for closing the Incident. This includes going over all the resources that have been assigned to
the incident over time and collecting their reports. Although UML distinguishes operations from
methods, in practice, developers usually do not and simply refer to methods.

Incident

assignResource()
close()

Figure 2-33 Examples of operations provided by the Incident class (UML class diagram).
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Applying class diagrams

Class diagrams are used for describing the structure of a system. During analysis, software
engineers build class diagrams to formalize application domain knowledge. Classes represent
participating objects found in use cases and interaction diagrams, and describe their attributes and
operations. The purpose of analysis models is to describe the scope of the system and discover its
boundaries. For example, using the class diagram pictured in Figure 2-22, an analyst could examine
the multiplicity of the association between FieldOfficer and EmergencyReport (i.e., one
FieldOfficer can write zero or more EmergencyReports, but each EmergencyReport is written
by exactly one FieldOfficer) and ask the user whether this is correct. Can there be more than one
author of an EmergencyReport? Can there be anonymous reports? Depending on the answer from
the user, the analyst would then change the model to reflect the application domain. The
development of analysis models is described in Chapter 5, Analysis.

Analysis models do not focus on implementation. Concepts such as interface details,
network communication, and database storage are not represented. Class diagrams are refined
during system design and object design to include classes representing the solution domain. For
example, the developer adds classes representing databases, user interface windows, adapters
around legacy code, optimizations, and so on. The classes are also grouped into subsystems with
well-defined interfaces. The development of design models is described in Chapter 6, System
Design: Decomposing the System, Chapter 8, Object Design: Reusing Pattern Solutions,
Chapter 9, Object Design: Specifying Interfaces, and Chapter 10, Mapping Models to Code.

2.4.3 Interaction Diagrams

Interaction diagrams describe patterns of communication among a set of interacting objects.
An object interacts with another object by sending messages. The reception of a message by an
object triggers the execution of a method, which in turn may send messages to other objects.
Arguments may be passed along with a message and are bound to the parameters of the
executing method in the receiving object. In UML, interaction diagrams can take one of two
forms: sequence diagrams or communication diagrams.

Sequence diagrams represent the objects participating in the interaction horizontally and
time vertically. For example, consider a watch with two buttons (hereafter called 2Bwatch).
Setting the time on 2Bwatch requires the actor 2BWatchOwner to first press both buttons
simultaneously, after which 2Bwatch enters the set time mode. In the set time mode, 2Bwatch
blinks the number being changed (e.g., the hours, minutes, seconds, day, month, or year).
Initially, when the 2BWatchOwner enters the set time mode, the hours blink. If the actor presses
the first button, the next number blinks (e.g, if the hours are blinking and the actor presses the
first button, the hours stop blinking and the minutes start blinking). If the actor presses the
second button, the blinking number is incremented by one unit. If the blinking number reaches
the end of its range, it is reset to the beginning of its range (e.g., assume the minutes are blinking
and its current value is 59, its new value is set to 0 if the actor presses the second button). The
actor exits the set time mode by pressing both buttons simultaneously. Figure 2-34 depicts a



60 Chapter 2 ¢« Modeling with UML

sequence diagram for an actor setting his 2Bwatch one minute ahead. Each column represents an
object that participates in the interaction. Messages are shown by solid arrows. Labels on solid
arrows represent message names and may contain arguments. Activations (i.e., executing
methods) are depicted by vertical rectangles. The actor who initiates the interaction is shown in
the left-most column. The messages coming from the actor represent the interactions described
in the use case diagrams. If other actors communicate with the system during the use case, these
actors are represented on the right-hand side and can receive messages. Although for simplicity,
interactions among objects and actors are uniformly represented as messages, the modeler
should keep in mind that interactions between actors and the system are of a different nature
than interactions among objects.

Sequence diagrams can be used to describe either an abstract sequence (i.e., all possible
interactions) or concrete sequences (i.e., one possible interaction, as in Figure 2-34). When
describing all possible interactions, sequence diagrams provide notations for iterations and
conditionals. An iteration is denoted by a combined fragment labeled with the 1oop operator (see
Figure 2-35). An alternative is denoted by a combined fragment containing a partition for each
alternative. The alternatives are selected by guards on the first message of the partition ([i>0]
and [else] in Figure 2-35). If i is positive, the top alternative of the alt combined fragment is
executed and the op1() message is sent. Otherwise, the bottom alternative is executed and the
op2 () message is sent.

stopBlinkingO |£| L
> |
|

: 2BwatchOwner :2BwatchInput :2BwatchDisplay :2BwatchTime

e T T T

I

| pressButtonslAndZQlli bTinkHours() . |

| pressButtonl) ™ piinkMinutes() JTl |

| [ > !
ol pressButton2() | incrementMinutes() |
E ! ol 1 :
.,':| I—,-' | __refreshQ

| pressButtonslAndZQ | |—| commitNewTime()

| Ll Il |

l \T

Figure 2-34 Example of a sequence diagram: setting the time on 2Bwatch.
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Figure 2-35 Examples of conditions and iterators in sequence diagrams.

Communication diagrams depict the same information as sequence diagrams.
Communication diagrams represent the sequence of messages by numbering the interactions.
On one hand, this removes the need for geometrical constraints on the objects and results in a
more compact diagram. On the other hand, the sequence of messages becomes more difficult to
follow. Figure 2-36 depicts the communication diagram that is equivalent to the sequence
diagram of Figure 2-34.

:2BwatchOwner

1:pressButtonslAnd2()
2:pressButtonl()
3:pressButton2()

4:pressButtons1And2() blinkHours() #

1.1:

2.1:blinkMinutes()
4.2:stopBlinking() # )
:2BwatchInput :2BwatchDisplay

3.1:incrementMinutes()
4.1:commitNewTime()

3.2:refresh() »

:2BwatchTime

Figure 2-36 Example of a communication diagram: setting the time on 2Bwatch. This diagram represents
the same use case as the sequence diagram of Figure 2-34.
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Applying interaction diagrams

Interaction diagrams describe interactions among several objects. One of the main reasons
for constructing an interaction diagram is to uncover the responsibilities of the classes in the
class diagrams and to discover even new classes. In other words, the interaction diagram helps
the developer in deciding which objects require particular operations. Typically, there is an
interaction diagram for every use case with focus on the event flow. The developer identifies the
objects that participate in the use case, and assigns pieces of the use case behavior to the objects
in the form of operations.

The class diagram and the associated interaction diagrams are usually constructed in
tandem after the initial class diagram has been defined. This process often also leads to
refinements in the use case (e.g., correcting ambiguous descriptions, adding missing behavior)
and consequently, the discovery of more objects and more services. We describe in detail the use
of interaction diagrams in Chapter 5, Analysis.

2.4.4 State Machine Diagrams

A UML state machine is a notation for describing the sequence of states an object goes through
in response to external events. UML state machines are extensions of the finite state machine
model. On one hand, state machines provide notation for nesting states and state machines (i.e.,
a state can be described by a state machine). On the other hand, state machines provide notation
for binding transitions with message sends and conditions on objects. UML state machines are
largely based on Harel’s statecharts [Harel, 1987] and have been adapted for use with object
models [Douglass, 1999]. UML state machines can be used to represent any Mealy or Moore
state machine.

A state is a condition satisfied by the attributes of an object. For example, an Incident
object in FRIEND can exist in four states: Active, Inactive, Closed, and Archived (see
Figure 2-37). An active Incident denotes a situation that requires a response (e.g., an ongoing
fire, a traffic accident). An inactive Incident denotes a situation that was handled, but for which
reports are yet to be written (e.g., the fire has been put out, but damage estimates have not yet
been completed). A closed Incident denotes a situation that has been handled and documented.
An archived Incident is a closed Incident whose documentation has been moved to off-site
storage. In this example, we can represent these four states with a single attribute in the
Incident class—a status attribute that can take any of four values: Active, Inactive, Closed,
and Archived. In general, a state can be computed from the values of several attributes.

A transition represents a change of state triggered by events, conditions, or time. For
example, Figure 2-37 depicts three transitions: from the Active state into the Inactive
state, from the Inactive state to the Closed state, and from the Closed state to the Archived
state.

A state is depicted by a rounded rectangle. A transition is depicted by an open arrow
connecting two states. States are labeled with their name. A small solid black circle indicates the
initial state. A circle surrounding a small solid black circle indicates a final state.
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incidentHandled incidentDocumented incidentArchived

Figure 2-37 A UML state machine diagram for the Incident class.

Figure 2-38 displays another example, a state machine for the 2Bwatch (for which we
constructed a sequence diagram in Figure 2-34). At the highest level of abstraction, 2Bwatch has
two states, MeasureTime and SetTime. 2Bwatch changes states when the user presses and
releases both buttons simultaneously. During the transition from the SetTime state to the
MeasureTime state, 2Bwatch beeps. This is indicated by the action /beep on the transition. When
2Bwatch is first powered on, it is in the SetTime state. This is modeled by making SetTime the
initial state. When the battery of the watch runs out, the 2Bwatch is permanently out of order.
This is indicated with a final state. In this example, transitions can be triggered by an event (e.g.,
pressBothButtons) or by the passage of time (e.g., after 2 min.).

pressBothButtons w

MeasureTime SetTime

after 2 min.

batteryEmpty pressBothButtons/beep

batteryEmpty

DeadBattery

Figure 2-38 State machine diagram for 2Bwatch set time function.

Figure 2-39 depicts a refined state machine diagram for the 2Bwatch depicted in
Figure 2-38 using actions to denote the behavior within the states. Actions are fundamental units
of processing that can take a set of inputs, produce a set of outputs, and can change the state of
the system. Actions normally take a short amount of time to execute and are not interruptable.
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For example, an action can be realized by an operation call. Actions can occur in three places in
a state machine:

* when a transition is taken (e.g., beep when the transition between SetTime and
MeasureTime is fired on the pressBothButtons event)

* when a state is entered (e.g., blink hours in the SetTime state in Figure 2-39)

* when a state is exited (e.g., stop blinking in the SetTime state in Figure 2-39).

During a transition, the exit actions of the source state are executed first, then the actions
associated with the transition are executed, then the entry actions of the destination state are
executed. The exit and entry actions are always executed when a state is exited or entered,
respectively. They do not depend on the specific transition that was used to exit or enter the state.

An internal transition is a transition that does not leave the state. Internal transitions are
triggered by events and can have actions associated with them. However, the firing of an internal
transition does not result in the execution of any exit or entry actions. For example, in
Figure 2-39, the SetTime state has two internal transitions, one associated with pressing the left
button and one associated with pressing the right button.

An activity is a coordinated set of actions. A state can be associated an activity that is
executed as long as an object resides in this state. While an action is short and non-interruptable,
an activity can take a substantial amount of time and is interrupted when a transition exiting the

pressBothButtons

/ MeasureTime \ / SetTime

do/count ticks entry/blink hours

pressLeftButton/blink next number
pressRightButton/increment current number
ex1t/stop bTinking

pressBothButtons/beep
batteryEmpty
batteryEmpty

/ DeadBattery \

!

Figure 2-39 Internal transitions associated with the SetTime state (UML state machine diagram).
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state is fired. Activities are associated with state using the do label and are placed inside the state
where they executed. For example, in Figure 2-39, count ticks is an activity associated with
the MeasureTime state

Nested state machines reduce complexity. They can be used instead of internal
transitions. In Figure 2-40, the current number is modeled as a nested state, whereas actions
corresponding to modifying the current number are modeled using internal transitions. Note that
each state could be modeled as a nested state machine. For example, the BlinkHours state
machine would have 24 substates that correspond to the hours in the day; transitions between
these states would correspond to pressing the second button.

SetTime
1B 1B

B1inkHours ﬁinkM‘inth ﬁ'inkSecon(Q
rB/incr hour \rB/incr min./ rB/incr sec.

BTinkDay
rB/incr day
\ 18 1B /

Figure 2-40 Refined state machine associated with the SetTime state (UML state machine diagram). 1B
and rB correspond to pressing the left and right button, respectively.

1B 1B

[ BlinkYear \ [/ BlinkMonth \

rB/incr year rB/incr mo.

Applying state machine diagrams

State machine diagrams are used to represent nontrivial behavior of a subsystem or an
object. Unlike interaction diagrams that focus on the events impacting the behavior of a set of
objects, state machine diagrams make explicit which attribute or set of attributes have an impact
on the behavior of a single object. State machines are used to identify object attributes and to
refine the behavior description of an object, and interaction diagrams are used to identify
participating objects and the services they provide. State machine diagrams can also be used
during system and object design to describe solution domain objects with interesting behavior.
We describe the use of state machine diagrams in detail in Chapter 5, Analysis, and Chapter 6,
System Design: Decomposing the System.

2.4.5 Activity Diagrams

UML activity diagrams represent the sequencing and coordination of lower level behaviors. An
activity diagram denotes how a behavior is realized in terms of one or several sequences of
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activities and the object flows needed for coordinating the activities. Activity diagrams are
hierarchical: an activity is made out of either an action or a graph of subactivities and their
associated object flow. Figure 2-41 is an activity diagram corresponding to the state diagram in
Figure 2-37. Rounded rectangles represent actions and activities. Edges between activities
represent control flow. An activity can be executed only after all predecessor activities
completed.

Handle Document Archive

Incident Incident Incident

Figure 2-41 A UML activity diagram for Incident. During the action Hand1eIncident, the Dispatcher
receives reports and allocates resources. Once the Incident is closed, the Incident moves to the
DocumentIncident activity during which all participating Fie1d0fficers and Dispatchers document the
Incident. Finally, the ArchiveIncident activity represents the archival of the Incident related
information onto slow access medium.

Control nodes coordinate control flows in an activity diagram, providing mechanisms for
representing decisions, concurrency, and synchronization. The main control nodes we use are
decisions, fork nodes, and join nodes.

Decisions are branches in the control flow. They denote alternatives based on a condition
of the state of an object or a set of objects. Decisions are depicted by a diamond with one or
more incoming open arrows and two or more outgoing arrows. The outgoing edges are labeled
with the conditions that select a branch in the control flow. The set of all outgoing edges from a
decision represents the set of all possible outcomes. In Figure 2-42, a decision after the
OpenIncident action selects between three branches: If the incident is of high priority and if it is
a fire, the FireChief is notified. If the incident is of high priority and is not a fire, the
PoliceChief is notified. Finally, if neither condition is satisfied, that is, if the Incident is of low
priority, no superior is notified and the resource allocation proceeds.

Fork nodes and join nodes represent concurrency. Fork nodes denote the splitting of the
flow of control into multiple threads, while join nodes denotes the synchronization of multiple
threads and their merging of the flow of control into a single thread. For example, in
Figure 2-43, the actions AllocateResources, Coordinate-Resources, and DocumentIncident
may all occur in parallel. However, they can only be initiated after the OpenIncident action, and
the ArchiveIncident action may only be initiated after all other activities have been completed.

Activities may be grouped into swimlanes (also called activity partitions) to denote the
object or subsystem that implements the actions. Swimlanes are represented as rectangles
enclosing a group of actions. Transitions may cross swimlanes. In Figure 2-44, the Dispatcher
swimlane groups all the actions that are performed by the Dispatcher object. The
FieldOfficer swimlane denotes that the FieldOfficer object is responsible for the
DocumentIncident action.



A Deeper View into UML 67

[TowPriority] Allocate

\\\Resources
[fire & highPriority]

Notify
Fire Chief

Open
Incident

[not fire & highPriority]

Notify
Police Chief

Figure 2-42 Example of decision in the OpenIncident process. If the Incident is a fire and is of high
priority, the Dispatcher notifies the FireChief. If it is a high-priority Incident that is not a fire, the
PoliceChief is notified. In all cases, the Dispatcher allocates resources to deal with the Incident.

AlTlocate
Resources

Coordinate Archive

Resources

Open
Incident

Incident

Document

Incident

Figure 2-43 An example of fork and join nodes in a UML activity diagram.

Dispatcher

Allocate
Resources

Coordinate Archive

Resources

Open
Incident

Incident

FieldOfficer
Document

Incident

Figure 2-44 An example of swimlanes in a UML activity diagram.
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Applying activity diagrams

Activity diagrams provide a task-centric view of the behavior of a set of objects. They can
be used: for example, to describe sequencing constraints among use cases, sequential activities
among a group of objects, or the tasks of a project. In this book, we use activity diagrams to
describe the activities of software development in Chapter 14, Project Management, and
Chapter 15, Software Life Cycle.

2.4.6 Diagram Organization

Models of complex systems quickly become complex as developers refine them. The complexity
of models can be dealt with by grouping related elements into packages. A package is a
grouping of model elements, such as use cases or classes, defining scopes of understanding.

For example, Figure 2-45 depicts use cases of the FRIEND system, grouped by actors.
Packages are displayed as rectangles with a tab attached to their upper-left corner. Use cases
dealing with incident management (e.g., creating, resource allocation, documentation) are grouped
in the IncidentManagement package. Use cases dealing with incident archive (e.g., archiving an
incident, generating reports from archived incidents) are grouped in the IncidentArchive
package. Use cases dealing with system administration (e.g., adding users, registering end stations)
are grouped in the SysAdministration package. This enables the client and the developers to
organize use cases into related groups and to focus on only a limited set of use cases at a time.

InC'identManagement\

Report Emer‘gency\\

OpenIncident /Dispatcher

FieldOfficer
AllocateResources
IncidentArchive \ SysAdm'in'istr‘at'ion\
ArchiveIncident ManageUsers \>
T C O
Librarian g - SysAdmin
SearchArchive ManageTerminals

Figure 2-45 Example of packages: use cases of FRIEND organized by actors (UML use case diagram).
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- %
IncidentManagement |
FieldOfficer Dispatcher

A\ A\

IncidentArchive SysAdministration ———

Librarian SysAdmin

Figure 2-46 Example of packages. This figure displays the same packages as Figure 2-45 except that the
details of each packages are suppressed (UML use case diagram).

FieldStation \ DispatcherStation \

FieldOfficer |7 Dispatcher |7

| EmergencyReport I I Incident |

Figure 2-47 Example of packages. The Fie1dOfficer and EmergencyReport classes are located in the
FieldStation package, and the Dispatcher and Incident classes are located on the DispatcherStation
package.

Figures 2-46 and 2-47 are examples of class diagrams using packages. Classes from the
ReportEmergency use case are organized according to the site where objects are created.
FieldOfficer and EmergencyReport are part of the FieldStation package, and Dispatcher
and Incident are part of the DispatcherStation. Figure 2-47 displays the packages with the
model elements they contain, and Figure 2-46 displays the same information without the
contents of each package. Figure 2-46 is a higher-level picture of the system and can be used for
discussing system-level issues, whereas Figure 2-47 is a more detailed view that can be used to
discuss the content of specific packages.

Packages are used to deal with complexity in the same way a user organizes files and
subdirectories into directories. However, packages are not necessarily hierarchical: the same
class may appear in more than one package. To reduce inconsistencies, classes (more generally
model elements) are owned by exactly one package, whereas the other packages are said to refer
to the modeling element. Note that packages are organizing constructs, not objects. They have
no associated behavior and cannot send and receive messages.

A note is a comment attached to a diagram. Notes are used by developers for attaching
information to models and model elements. This is an ideal mechanism for recording
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outstanding issues relevant to a model, clarifying a complex point, or recording to-dos or
reminders. Although notes have no semantics per se, they are sometimes used to express
constraints that cannot otherwise be expressed in UML. Figure 2-48 is an example of a note.

FieldStation \ DispatcherStation \
FieldOfficer Dispatcher
The EmergencyReport
class is defined in FieldStation .
EmergencyReport package and used in both stations. Incident

Figure 2-48 An example of a note. Notes can be attached to a specific element in a diagram.

2.4.7 Diagram Extensions

The goal of the UML designers was to provide a set of notations to model a broad class of
software systems. They also recognized that a fixed set of notations could not achieve this goal,
because it is impossible to anticipate the needs encountered in all application and solution
domains. For this reason, UML provides a number of extension mechanisms enabling the
modeler to extend the language. In this section, we describe two such mechanisms, stereotypes
and constraints.

A stereotype is an extension mechanism that allows developers to classify model
elements in UML. A stereotype is represented by string enclosed by guillemets (e.g.,
«boundary») and attached to the model element to which it applies, such as a class or an
association. Formally, attaching a stereotype to a model element is semantically equivalent to
creating a new class in the UML meta-model (i.e., the model that represents the constructs of
UML). This enables modelers to create new kinds of building blocks that are needed in their
domain. For example, during analysis, we classify objects into three types: entity, boundary, and
control. Entity, boundary, and control objects have the same structure (i.e., they have attributes,
operations, and associations), but serve different purposes. The base UML language only
includes one type of object. To represent these three types, we use the stereotypes «entity»,
«boundary», and «control» (Figure 2-49). The «entity», «boundary», and «control»
stereotypes are described in Chapter 5, Analysis. Another example is the relationships among
use cases. As we saw in Section 2.4.1, include relationships in use case diagrams are denoted
with a dashed open arrow and the «include» stereotype.

A constraint is a rule that is attached to a UML model element restricting its semantics.
This allows us to represent phenomena that cannot otherwise be expressed with UML. For
example, in Figure 2-50, an Incident may be associated with one or more EmergencyReports
from the field. However, it is important that the Dispatchers are able to view the reports
chronologically. We represent the chronological ordering of EmergencyReport to Incident with
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«entity» «control» «boundary»
Year ChangeDateControl Button
«entity» «entity» «boundary»

Month Day LCDDisplay

Figure 2-49 Examples of stereotypes (UML class diagram).

reports 1
l..s': '

Incident

EmergencyReport

{ordered by time of receipt}

Figure 2-50 An example of constraint (UML class diagram).

the constraint {ordered by time of receipt}. Constraints can be expressed as an informal
string or by using a formal language such as OCL (Object Constraint Language, [OMG, 2009]).
We describe OCL and the use of constraints in Chapter 9, Object Design: Specifying Interfaces.

2.5 Further Readings

The historic roots of modeling notations can be traced back to structured analysis [De Marco,
1978] and structured design [Yourdon & Constantine, 1975], which is based on functional
decomposition. These methods were based data flow diagrams [De Marco, 1978]. Data flow
diagrams are quite important for software engineers who need to maintain legacy systems
designed with structured analysis techniques.

UML came out of the teachings and efforts of many researchers and practitioners, some of
whom we cited earlier in this chapter. The efforts of Booch, Jacobson, and Rumbaugh enabled a
broadly accepted unified notation. Their earlier works [Booch, 1994], [Jacobson et al., 1992],
[Rumbaugh et al., 1991] give much insight into the roots of object-oriented analysis and design
and still provide valuable knowledge about object-oriented modeling.

Because it was designed to address a broad range of systems and concern, UML is a
complex standard. In this chapter, we focused on the basic elements of UML that you need to
understand before proceeding with the next chapters. For further information on UML, refer to
the following books:

UML Distilled [Fowler, 2003] is a brief introduction to UML and illustrated with many
examples. For readers without any knowledge of UML, this book is a useful overview to get into
the notation quickly.

The Unified Modeling Language User Guide [Booch et al., 2005] is a comprehensive
presentation of UML by its principal designers. It covers much more material than UML
Distilled and is more appropriate for the advanced modeler. As the UML User Guide has fewer
examples, UML Distilled is more appropriate for novices.
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The OMG Unified Modeling Language Superstructure [OMG, 2009] is the official
specification of UML. It is continuously maintained by a revision task force that is responsible
for clarifying ambiguities, correcting errors, and resolving inconsistencies found by the UML
community.

2.6 Exercises

2-1

2-2
2-3

2-4

2-5

2-6

2-7
2-8

29

2-10

Consider an ATM system. Identify at least three different actors that interact with this
system.

Can the system under consideration be represented as an actor? Justify your answer.

What is the difference between a scenario and a use case? When do you use each
construct?

Draw a use case diagram for a ticket distributor for a train system. The system includes
two actors: a traveler who purchases different types of tickets, and a central computer
system that maintains a reference database for the tariff. Use cases should include
BuyOneWayTicket, BuyWeeklyCard, BuyMonthlyCard, and UpdateTariff. Also include
the following exceptional cases: TimeOut (i.e., traveler took too long to insert the right
amount), TransactionAborted (i.e., traveler selected the cancel button without
completing the transaction), DistributorOutOfChange, and DistributorOutOfPaper.

Write the flow of events and specify all fields for the use case UpdateTariff that you
drew in Exercise 2-4. Do not forget to specify any relationships.

Draw a class diagram representing a book defined by the following statement: “A book
is composed of a number of parts, which in turn are composed of a number of chapters.
Chapters are composed of sections.” Focus only on classes and relationships.

Add multiplicity to the class diagram you produced in Exercise 2-6.

Draw an object diagram representing the first part of this book (i.e., Part I, Getting
Started). Make sure that the object diagram you draw is consistent with the class
diagram of Exercise 2-6.

Extend the class diagram of Exercise 2-6 to include the following attributes:

* abook includes a publisher, publication date, and an ISBN
e apart includes a title and a number

* achapter includes a title, a number, and an abstract

¢ asection includes a title and a number.

Consider the class diagram of Exercise 2-9. Note that the Part, Chapter, and Section
classes all include title and number attributes. Add an abstract class and an inheritance
relationship to factor out these two attributes into the abstract class.

Draw a class diagram representing the relationship between parents and children. Take
into account that a person can have both a parent and a child. Annotate associations
with roles and multiplicities.
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2-12

2-13

2-14

2-15

2-16

2-17
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Draw a class diagram for bibliographic references. Use the references in Appendix C,
Bibliography, to test your class diagram. Your class diagram should be as detailed as
possible.

Draw a sequence diagram for the warehouseOnFire scenario of Figure 2-21. Include
the objects bob, alice, john, FRIEND, and instances of other classes you may need.
Draw only the first five message sends.

Draw a sequence diagram for the ReportIncident use case of Figure 2-14. Draw only
the first five message sends. Make sure it is consistent with the sequence diagram of
Exercise 2-13.

Consider the process of ordering a pizza over the phone. Draw an activity diagram
representing each step of the process, from the moment you pick up the phone to the
point where you start eating the pizza. Do not represent any exceptions. Include
activities that others need to perform.

Add exception handling to the activity diagram you developed in Exercise 2-15.
Consider at least three exceptions (e.g., delivery person wrote down wrong address,
delivery person brings wrong pizza, store out of anchovies).

Consider the software development activities which we described in Section 1.4 in
Chapter 1, Introduction to Software Engineering. Draw an activity diagram depicting
these activities, assuming they are executed strictly sequentially. Draw a second activity
diagram depicting the same activities occurring incrementally (i.e., one part of the
system is analyzed, designed, implemented, and tested completely before the next part
of the system is developed). Draw a third activity diagram depicting the same activities
occurring concurrently.
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3

Project Organization
and Communication

Two electrical boxes for a rocket, manufactured by different
contractors, were connected by a pair of wires. Thanks to a
thorough preflight check, it was discovered that the wires had
been reversed. After the rocket crashed, the inquiry board
revealed that the contractors had indeed corrected the reversed
wires as instructed.

In fact, both of them had.

Software engineering is a collaborative activity. The development of software brings together
participants from different backgrounds, such as domain experts, analysts, designers,
programmers, managers, technical writers, graphic designers, and users. No single participant
can understand or control all aspects of the system under development, and thus, all participants
depend on others to accomplish their work. Moreover, any change in the system or the
application domain requires participants to update their understanding of the system. These
dependencies make it critical to share information in an accurate and timely manner.

Communication can take many forms depending on the type of activity it is supporting.
Participants communicate their status during regular meetings and record it into meeting
minutes. Participants communicate project status to the client during client reviews. The
communication of requirements and design alternatives is supported by models and their
corresponding documents. Crises and misunderstandings are handled through spontaneous
information exchanges such as telephone calls, messages, hallway conversations, and ad hoc
meetings. As software engineering projects become large, the time each participant must spend
in communication increases, thus decreasing the time spent on technical activities. To address
these issues, the organization of projects into teams and the sharing of information through
formal and informal channels is essential.

We first describe the basic concepts associated with project organization, such as task,
work product, and deliverable. We then describe the communication mechanisms available to
participants. Finally, we describe the activities associated with project organization and
communication. This chapter is written from the perspective of a project participant (e.g., a
developer) who needs to understand the project organization and communication infrastructure.
The creation of the project organization and communication infrastructure is the task of the
project manager and is the topic of Chapter 14, Project Management.

77
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3.1 Introduction: A Rocket Example

When realizing a system, developers focus on constructing a system that behaves according to
specifications. When interacting with other project participants, developers focus on
communicating information accurately and efficiently. Even if communication may not appear
to be a creative or challenging activity, it contributes as much to the success of the project as a
good design or efficient implementation, as illustrated by the following example [Lions, 1996].

Ariane 501

June 4, 1996, 30 seconds into lift-off, Ariane 501, the first prototype of the Ariane 5 series, exploded.
The main navigational computer experienced an arithmetic overflow, shut down, and handed control
over to its twin backup, as it was designed to do. The backup computer, having experienced the same
exception a few hundredths of a second earlier, had already shut down. The rocket, without a navigation
system, took a fatal sharp turn to correct a deviation that had not occurred.

An independent board of inquiry took less than 2 months to document how a software error resulted in
the massive failure. The navigational system of the Ariane 5 design was one of the few components of
Ariane 4 that was reused. It had been flight tested and had not failed for Ariane 4.

The navigation system is responsible for calculating course corrections from a specified trajectory based
on input from the inertial reference system. An inertial reference system allows a moving vehicle (e.g.,
a rocket) to compute its position solely based on sensor data from accelerometers and gyroscopes, that
is, without reference to the outside world. The inertial system must first be initialized with the starting
coordinates and align its axis with the initial orientation of the rocket. The alignment calculations are
done by the navigation system before launch and need to be continuously updated to take into account
the rotation of the Earth. Alignment calculations are complex and take approximately 45 minutes to
complete. Once the rocket is launched, the alignment data are transferred to the flight navigational
system. By design, the alignment calculations continue for another 50 seconds after the transfer of data
to the navigation system. The decision enables the countdown to be stopped after the transfer of
alignment data takes place but before the engines are ignited without having to restart the alignment
calculations (that is, without having to restart a 45-minute calculation cycle). In the event the launch
succeeds, the alignment module just generates unused data for another 40 seconds after lift-off.

The computer system of Ariane 5 differed from Ariane 4. The electronics were doubled: two inertial
reference systems to compute the position of the rocket, two computers to compare the planned
trajectory with the actual trajectory, and two sets of control electronics to steer the rocket. If any
component would fail, the backup system would take over.

The alignment system, designed for onground calculations only, used 16-bit words to store horizontal
velocity (more than enough for displacements due to the wind and to the rotation of the earth). Thirty
seconds into flight, the horizontal velocity of Ariane 5 caused an overflow, raised an exception that was
handled by shutting down the onboard computer and handing control to the backup system.

Discussion. The alignment software had not been adequately tested. Although it had been subjected to
thousands of tests, none included an actual trajectory. The navigation system was tested individually.
Tests were specified by the system team and executed by the builders of the navigation system. The
system team did not realize that the alignment module could cause the main processor to shut down,
especially not in flight. The component team and the system team had failed to communicate.
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In this chapter, we discuss organizational and communication issues within a software
project. This topic is not specific to software engineering. Communication is, however,
pervasive throughout a software development project. Communication failure is costly and can
have a high, and sometimes fatal, impact on the project and the quality of the delivered system.

3.2 An Overview of Projects

The techniques and notations we presented in Chapter 2, Modeling with UML, enable project
participants to build models of the system and communicate about them. However, system
models are not the only information needed when communicating in a project. For example,
developers need to know

e Who is responsible for which part of the system?

¢  Which part of the system is due by when?

¢ Who should be contacted when a problem with a specific version of a component is
discovered?

¢ How should a problem be documented?

e What are the quality criteria for evaluating the system?

¢ In which form should new requirements be communicated to developers?

¢ Who should be informed of new requirements?

e Who is responsible for talking to the client?

Although these questions can be relatively easy answered when all participants share a
coffee break in the afternoon, the development of large software systems usually does not
succeed with such an ad hoc approach. From a developer’s perspective, a project consists of four
components (Figure 3-1):

* Work product. This is any item produced by the project, such as a piece of code, a
model, or a document. Work products produced for the client are called deliverables.

* Schedule. This specifies when work on the project should be accomplished.

e Participant. This is any person participating in a project. Sometimes we also call the
participant project member.

Project

I Q? ?Q |

Work Product Schedule Task Participant

Figure 3-1 Model of a project (UML class diagram).
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e Task. This is the work to be performed by a project participant to create a work
product.

Projects can be defined formally or informally. A signed contract between you and a client
requiring the delivery of a software system in three months for one million dollars defines a
project; an informal promise you make to your friend to install a new software release on her
computer by next week defines a project as well.

Projects come in different types and sizes. Sometimes the characterization of the project
type is by the nature of the deliverable. If the outcome is a software system, the project is usually
called a software project; building a space shuttle system is called a system project. Projects also
come in quite different sizes. Installing a new a space shuttle system, with costs of more than
$10 billion and a duration of 10 to 15 years, is a large project, where as changing the furniture of
your room is a small project.

From a dynamic point of view, a project can be in any of several phases shown in
Figure 3-2. During the project definition phase, the project manager, a possible client, and a
key project member, the software architect, are involved. The two areas of focus during this
phase are an initial understanding of the software architecture, in particular the subsystem
decomposition, and the project, in particular the schedule, the work to be performed, and the
resources required to do it. This is documented in three documents: the problem statement, the
initial software architecture document, and the initial software project management plan. During
the project start phase, the project manager sets up the project infrastructure, hires participants,
organizes them in teams, defines major milestones, and kicks off the project.

During the project definition and project start phases, most decisions are made by the
project manager. During the project steady state phase, the participants develop the system.
They report to their team leader, who is responsible for tracking the status of the developers and
identifying problems. The team leaders report the status of their team to the project manager,
who then evaluates the status of the complete project. Team leaders respond to deviations from

w Scope Defined
N

/ Definition \f Start \

Qo/Def'i ne Scopy Qo/Assign Tasks

Tasks
Assigned

/" Termination \

do/Deliver System

Steady State
do/Develop System

System Done

Figure 3-2 States in a software project (UML state machine diagram).
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the plan by reallocating tasks to developers or obtaining additional resources from the project
manager. The project manager is responsible for the interaction with the client, obtaining formal
agreement and renegotiating resources and deadlines.

During the project termination phase, the project outcome is delivered to the client and
the project history is collected. Most of the developers’ involvement with the project ends before
this phase. A handful of key developers, the technical writers, and the team leaders are involved
with wrapping up the system for installation and acceptance and collecting the project history
for future use.

Communication within a project occurs through planned and unplanned events. Planned
communication includes:

¢ problem inspection, during which developers gather information from the problem
statement, the client, and the user about their needs and the application domain

¢ status meetings, during which teams review their progress

e peer reviews, during which team members identify defects and find solutions in
preliminary work products

¢ client and project reviews, during which the client or project members review the
quality of a work product, in particular deliverables

¢ releases, during which project participants make available to the client and end users
versions of the system and its documentation.

Unplanned communication includes:

* requests for clarification, during which participants request specific information from
others about the system, the application domain, or the project

* requests for change, during which participants describe problems encountered in the
system or new features that the system should support

* issue resolution, during which a conflict between different stakeholders is identified,
solutions explored and negotiated, and a resolution agreed upon.

Planned communication helps disseminate information that targeted participants are
expected to use. Unplanned communication helps deal with crises and with unexpected
information needs. All three communication needs must be addressed for project participants to
communicate accurately and efficiently.

When a developer joins a project during the start phase, a problem statement already
exists; project management has already written an initial plan to attack the problem, set up a
project organization, defined planned communication events, and provided an infrastructure for
planned and unplanned communication. Most of the developer’s effort when joining a project is
to understand these documents and join the existing organizational and communication
structures. This is addressed by the following activities:
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Attend the kick-off meeting. During this activity, the project participants hear from the
client about the problem to be solved and the scope of the system to be developed. This
helps them to get a high-level understanding of the problem, which serves as a basis for
all other activities.

Join a team. The project manager has decomposed the project into work for individual
teams. Participants are assigned to a team based on their skills and interests.

Attend training sessions. Participants who do not have skills for required tasks receive
additional training.

Join communication infrastructure. Participants join the project communication
infrastructure that supports both planned and unplanned communication events. The
infrastructure includes a collection of mechanisms such as groupware, address books,
phone books, E-mail services, and video conferencing equipment.

Extend communication infrastructure. Additional bulletin boards and team portals are
established specifically for the project.

Attend first team status meeting. During this activity, project participants are taught to
conduct status meetings, record status information, and disseminate it to other members
of the project.

Understand the review schedule. The review schedule contains a set of high-level
milestones to communicate project results in the form of reviews to the project manager
and to the client. The objective of project reviews is to inform the project participants of
the other teams’ status and to identify open issues. The objective of client reviews is to
inform the client about the status of the project and to obtain feedback.

In the following sections, we examine these concepts and activities in detail. In

Section 3.3, we describe a team-based project organization. In Section 3.4, we discuss the
concepts related to project communication. In Section 3.5, we detail the project start activities of
a typical team member. In Section 3.6, we provide references to further reading on this topic.

In this chapter, we focus on the perspective of a developer joining a software project, so

we do not describe the activities needed to create and manage a project organization and
communication infrastructure. We cover these topics in later chapters. Chapter 12, Rationale

Management, discusses topics related to identifying, negotiating, resolving, and recording

issues. Chapter 13, Configuration Management, discusses topics related to managing versions,

configurations, and releases of documents and system components. In Chapter 14, Project

Management, we revisit project organization and communication issues from the perspective of

the project manager.
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3.3 Project Organization Concepts

In this section, we define the following concepts:

* Project Organizations (Section

* Roles (Section 3.3.2)

33.1)

¢ Tasks and Work Products (Section 3.3.3)

¢ Schedule (Section 3.3.4).

3.3.1 Project Organizations
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An important part of any project organization is to define the relationships among participants
and between them and tasks, schedule, and work products. In a team-based organization
(Figure 3-3), the participants are grouped into teams, where a team is a small set of participants
working on the same activity or task. We distinguish teams from other sets of people, in
particular groups and committees. A group, for example, is a set of people who are assigned a
common task, but they work individually without any need for communication to accomplish
their part of the task. A committee is comprised of people who come together to review and

critique issues and propose actions.

Figure 3-4 shows an instance diagram of an organization for a simple software project
consisting of a management team and three developer teams.

Organization Ko———

Team <>—

Participant

Figure 3-3 A team-based organization consists of organizational units called teams, which consist of
participants or other teams (UML class diagram).

Simple Project
:0rganization

Management UserInter
:Team :Team

face Database

:Team

Control
:Team

Figure 3-4 Example of a simple project organization (UML instance diagram). Reporting, deciding, and

communicating are all made via the aggregation association of the organization.
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Project participants interact with each other. The three major types of interaction in a
project are:

¢ Reporting. This type of interaction is used for reporting status information. For
example, a developer reports to another developer that an API (Application
Programmer Interface) is ready, or a team leader reports to a project manager that an
assigned task has not yet been completed.

¢ Decision. This type of interaction is used for propagating decisions. For example, a
team leader decides that a developer has to publish an API, a project manager decides
that a planned delivery must be moved up in time. Another type of decision is the
resolution of an issue.

¢ Communication. This type of interaction is used for exchanging all the other types of
information needed for decision or status. Communication can take many flavors.
Examples are the exchange of requirements or design models or the creation of an
argument to support a proposal. An invitation to eat lunch is also a communication.

We call the organization hierarchical if both status and decision information are
unidirectional; that is, decisions are always made at the root of the organization and passed via
the interaction association to the leaves of the organization. Status in hierarchical organizations
is generated at the leaves of the organization and reported to the root via the interaction
association. The structure of the status and decision information flow is often called the
reporting structure of the organization. Figure 3-5 illustrates the reporting structure in a
hierarchical team-based organization.

In hierarchical organizations, such as a military, the reporting structure also accomplishes
the exchange of communication needs. In complex software projects, however, using the
existing reporting structure for communication causes many problems. For example, many
technical decisions need to be made locally by the developers, but depend on information from
developers in other teams. If this information is exchanged via the established reporting

Management

. . :Team . .
communicateDecision() communicateDecision()
- —
communicateStatus() communicateStatus()
— -
UserInterface Control
:Team Database :Team
:Team

Figure 3-5 Example of reporting structure in a hierarchical organization (UML communication diagram).
Status information is reported to the project manager, and corrective decisions are communicated back to
the teams by the team leaders. The team leaders and the project manager are called the management team.
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structure, the decision-making process can be slowed significantly. Even worse, it often leads to
garbling of the information, given its complexity and volume.

The solution to this problem is to exchange information via an additional communication
structure that allows participants to communicate directly with each other and in ways different
from the reporting structure. Often the communication is delegated to a developer, called a
liaison, who is responsible for shuttling information back and forth.

Figure 3-6 depicts an example of an organization with liaisons and additional
communication lines that deviate from the reporting structure. The documentation team, for
example, has a liaison to the user interface team to facilitate information about recent changes
made to the appearance of the system. Teams that do not work directly on a subsystem, but
rather work on a task that crosses the subsystem team organization, are called cross-functional
teams. Examples of cross-functional teams include the documentation team, the architecture
team, and the testing team.

We call this communication structure, and often also the organization itself, liaison based.
Liaisons use non-hierarchical communication lines to talk with the liaisons in cross-functional
teams. In liaison-based communication structures, the responsibility of team leaders is extended
by a new task: not only do they have to make sure that the project manager is aware of the status
of the team, but also that team members have all the information they need from other teams.
This requires the selection of effective communicators as liaisons to ensure that necessary

UserInterface
:Team
Alice communicates Management
team leader :Developer :Team
John communicates Architecture
API engineer :Developer :Team
Mary communicates Documentation
documentation liaison :Developer :Team
Chris communicates Testing
implementor :Developer :Team
Sam
implementor :Developer

Figure 3-6 Examples of a liaison-based communication structure (UML object diagram). The team is
composed of five developers. Alice is the team leader, also called the liaison to the management team. John
is the API engineer, also called the liaison to the architecture team. Mary is the liaison to the documentation
team. Chris and Sam are implementors and interact with other teams only informally.
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communication paths exist. If we allow developers to communicate directly with each other as
well, we call the communication structure (and the organization) peer based.

3.3.2 Roles

A role defines the set of technical and managerial tasks that are expected from a participant or
team. In a team-based organization, we assign tasks to a person or a team via a role. For
example, the role of tester of a subsystem team consists of the tasks to define the test suites for
the subsystem under development, for executing these tests, and for reporting discovered defects
back to the developers.

In a software project we distinguish between the following four types of roles:
management roles, development roles, cross-functional roles, and consultant roles (Figure 3-7).

Management roles (e.g., project manager, team leader) are concerned with the
organization and execution of the project within constraints. We describe this type of role in
more detail in Chapter 14, Project Management.

Development roles are concerned with specifying, designing, and constructing
subsystems. These roles include the analyst, the system architect, the object designer, the
implementor, and the tester. Table 3-1 describes examples of development roles in a subsystem
team. We describe development roles in more detail in Chapters 5-11.

—| Developer

API Engineer

Document Editor

—| Liaison

Manager

Configuration |

Tester

Role |<]—

Project Manager |

Team Leader |

Application
Domain Specialist

Domain Specialist

|<]_
—| Manager |<]—
|<‘_

—| Consultant

Client

End User

NN NN

Solution |

Figure 3-7 Types of roles found in a software engineering project (UML class diagram).
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Table 3-1 Examples of roles.

Role

Responsibilities

System architect

The system architect ensures consistency in design decisions and interface
styles. The system architect ensures the consistency of the design in the
configuration management and testing teams, in particular in the formulation
of the configuration management policy as well as the system integration
strategy. This is mainly an integration role consuming information from each
subsystem team.

Object designer

The object designer is responsible for the interface definition of the assigned
subsystem. The interface has to reflect the functionality already assigned to
the subsystem and to accommodate the needs of the dependent subsystems.
When functionality is traded off with other subsystems, resulting in
subsystem changes, the object designer is responsible for propagating
changes back to the subsystem team.

Implementor

The implementor is responsible for the coding of a class or a number of
classes associated with the subsystem.

Tester

A tester is responsible for evaluating that each subsystem works as specified
by the object designer. Often, development projects have a separate team
responsible only for testing. Separating the roles of implementor and tester
leads to more effective testing.

Cross-functional roles are concerned with coordination among teams. Developers filling
these roles are responsible for exchanging information relevant to other teams and negotiating

interface details. The cro

ss-functional role is also called liaison. The liaison is responsible for

disseminating information along the communication structure from one team to another. In some

cases (such as the API engineer), a liaison functions as a representative of a subsystem team and
may be called to resolve inter-team issues. There are four types of liaisons:

e The API engine

er is responsible for the interface definition of the assigned subsystem.

The interface has to reflect the functionality already assigned to the subsystem and to

accommodate th

e needs of the dependent subsystems. When functionality is traded off

with other subsystems, resulting in subsystem changes, the API engineer is responsible
for propagating changes back to the subsystem team.

¢ The document editor is responsible for integrating documents produced by a team. A

document editor
subsystem team.

can be seen as a service provider to other teams that depend on a given
A document editor also manages information released internally to the

team, such as the meeting agendas and minutes.

e The configuration manager is responsible for managing different versions of

documents, mo

dels, and code produced by a team. For simple configuration
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management policies (e.g., single hardware platform, single branch), this role may be
assumed by the team leader.

e A tester is responsible for ensuring that each subsystem works as specified by the
designer. Often, development projects have a separate team responsible only for testing.
Separating the roles of designer, implementor, and tester leads to more effective testing.

Consultant roles are concerned with providing temporary support in areas where the
project participants lack expertise. The users and the client act in most projects as consultants on
the application domain. Technical consultants may bring expertise on new technologies or
methods. Non-technical consultants can help to address legal and marketing issues. We
distinguish the following types of consultant roles.

¢ The client, also called customer, is responsible for the formulation of scenarios and the
requirements. This includes functional and nonfunctional requirements, as well as
constraints. The client is expected to be able to interact with the other developers.

¢ The end user is the person who will be using the delivered system. Sometimes the
project does not have access to an end user, or the end user is still unknown. In this
case, the end user is represented by the client or even developer of the system.

¢ The application domain specialist is responsible for providing domain knowledge
about a specific functional area of the system. Whereas the client has a global view of
the required functionality, the application domain specialist has detailed knowledge of
a specific problem area.

¢ The solution domain specialist is responsible for providing knowledge about solutions
to implement the system. This can include the development method, the process,
implementation technology, or the development environment.

3.3.3 Tasks and Work Products

A task is a well-defined work assignment for a role. Groups of related tasks are called activities.
The project manager or team leader assigns a task to a role. The participant who is assigned the
role carries out the task, and the manager monitors its progress and completion. A work
product is a tangible item that results from a task. Examples of work products include an object
model, a class diagram, a piece of source code, a document, or parts of documents. Work
products result from tasks, are subject to deadlines, and feed into other tasks. For example, the
test planning activity for the database subsystem results in a work product including a number of
test suites and their expected results. The test suite is then fed to the testing activity of the given
subsystem (Figure 3-8 and Table 3-2).



Project Organization Concepts

89

Database Subsystem
Work Products

persistent objects:Class Model

\

design objects:Class Model

/ source:Source Code

inspection defects:Document

test plan:Document

testing defects:Document

Figure 3-8 Work products for the database subsystem team (UML object diagram). Associations
represent dependencies among work products.

Table 3-2  Description of the internal work products depicted in Figure 3-8.

Work product Type Description

Persistent Class model This class model describes completely the objects that are

Objects stored by the storage subsystem. For each class, this includes
all the attributes, associations, roles, and multiplicities.

Design objects Class model This class model describes all the objects needed by the storage
subsystem that are not described in the persistent object class
model.

Subsystem Source code This is the source code delivered to the testing team.

Test plan Document This document outlines the test strategy, test criteria, and test
cases that are used to find defects in the storage subsystem.

Testing defects Document This document lists all the defects that have already been found
in the storage subsystem through testing.

Inspection Document This document lists all the defects that have already been found

defects in the storage subsystem through peer review, as well as their

planned repairs.
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Any work product to be delivered to the client is called a deliverable. The software
system and the accompanying documentation usually constitute a set of deliverables. Work
products that are not visible to the client are called internal work products.

The specification of work to be accomplished in completing a task or activity is described
in a work package. A work package includes the task name, the task description, resources
needed to perform the task, dependencies on inputs (work products produced by other tasks) and
outputs (work products produced by the task in question), as well as dependencies on other
tasks. Figure 3-9 depicts the relationships among work packages, activities, tasks, roles, and
work products. Table 3-3 provides examples of work packages.

describes i
Work Package results in Work Product

Unit Of Work

1V | |
Activity Task

* .
\— Role

assigned to

Figure 3-9 Associations among tasks, activities, roles, work products, and work packages (UML class
diagram).

Work products are important management artifacts, because we can assess their delivery and
the start of the tasks depending on other work products. The late delivery of a testing suite for a
subsystem, for example, delays the start of its testing. Note, however, that focusing only on timely
delivery is not sufficient: rushing the delivery of test suites meets the project schedule, but can also
mean that critical faults are not discovered in time.

3.3.4 Schedule

A schedule is the mapping of tasks onto time: each task is assigned start and end times. This
allows us to plan the deadlines for individual deliverables. The two most often used
diagrammatic notations for schedules are PERT and Gantt charts [Gantt, 1910]. A Gantt chart
is a compact way to present the schedule of a software project along the time axis. A Gantt chart
is a bar graph on which the horizontal axis represents time and the vertical axis lists the different
tasks to be done. Tasks are represented as bars whose length corresponds to the planned duration
of the task. A schedule for the database subsystem example is represented as a Gantt chart in
Figure 3-10.
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Table 3-3  Examples of tasks for the realization of the database subsystem.
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Assign I

Task name roslzlg ed Task description Input Output
Database System Elicits requirements from Team Database
subsystem architect subsystem teams about liaisons subsystem API,
requirements their storage needs, persistent object
elicitation . . . .
— including persistent analysis model

objects, their attributes, (UML class

and relationships diagram)
Database Object Designs the database Subsystem Database
M designer subsystem, including the API subsystem
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Figure 3-10 An example of schedule for the database subsystem (Gantt chart).
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A PERT chart represents a schedule as an acyclic graph of tasks. Figure 3-11 is a PERT
chart for the database subsystem schedule. The planned start and duration of the tasks are used
to compute the critical path, which represents the shortest possible path through the graph. The
length of the critical path corresponds to the shortest possible schedule, assuming sufficient
resources to accomplish, in parallel, tasks that are independent. Moreover, tasks on the critical
path are the most important, as a delay in any of these tasks will result in a delay in the overall
project. The tasks and bars represented in thicker lines belong to the critical path.

Storage subsystem

test plan

5 10d
Storage subsystem Storage subsystem Nov 27 Dec 10
system analysis ,= object design
1 5d 2 5d
Nov 13 Nov 19 Nov 20 Nov 26 Storage subsystem

implementation
3 15d
Nov 27 Dec 17

Figure 3-11 Schedule for the database subsystem (PERT chart). Thick lines denote the critical path.

3.4 Project Communication Concepts

So far we have talked about the organization of a project. We now turn to communication in a
project. We cover two types of communication that typically occur: planned communication
(Section 3.4.1) and unplanned communication (Section 3.4.2). We then survey tools to support
project communication (Section 3.4.3). Figure 3-12 shows the interplay between project
organization and communication.

3.4.1 Planned Communication

Planned communication events are scheduled points in time during which participants
exchange information on a specific topic or review a work product. Such events are formalized
and structured to maximize the amount of information communicated and to minimize the time
participants spend on communication. Typical planned communication events include

* Problem presentation
¢ C(Client reviews

* Project reviews

¢ Peer reviews

e Status reviews

* Brainstorming

¢ Releases

¢ Postmortem reviews.
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Figure 3-12 Relationships among organizational and communication concepts (UML class diagram).

We describe these communication events in more detail next.

Problem presentation

The focus of problem presentation is the presentation of the Problem Statement that
describes the problem, the application domain, and the desired functionality of the system. It
also contains nonfunctional requirements such as platform specification or speed constraints.
Figure 3-13 depicts excerpts from an actual problem statement.

The problem statement does not include a complete specification of the system. It is
merely a preliminary requirements activity that establishes common ground between the client
and the project team. We discuss requirements activities in Chapter 4, Requirements Elicitation,

and Chapter 5, Analysis.
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OWL PROBLEM STATEMENT

1. Problem domain

A current trend in the building industry is to provide distributed services and control for the individual
occupant as a strategy to correct the overreliance on large centralized systems that characterize office
buildings built in the last 30 years. At the Intelligent Workplace, workers will have more control over
their environmental conditions—adjusting light level and temperature of their workspace, reducing glare,
controlling speed and direction of air flow delivered to workspace. (You can do that in your car—why not
in your office?) An energy-efficient facade will allow fresh air ventilation from operable windows and
incorporate movable shading devices that adjust to minimize glare and maximize natural lighting of the
workspace.

It is desirable to adopt three forms of control in the Intelligent Workplace: responsive, scheduled, and
user driven. Responsive control is when the system reacts to a change in sensor reading by actuating
some components. Scheduled control can be adopted in the presence of predictable data that allows the
components to be directly controlled by a carefully designed schedule. For example, because the position
of the sun is predictable, a schedule for the interior shades of the Intelligent Workplace can be adopted.
Control system should be flexible enough to respond to the needs of the occupants. If they would like to
change the temperature of their local environment, they should be given that opportunity.

In this project, you are asked to build a system called OWL (Object-Oriented Workplace Laboratory) that
attempts to improve the way we deal with buildings.

[...]
2. Scenarios
2.1 Building control

The building occupant uses a Web browser to access his Personal Environment Module (PEM). He
adjusts the temperature and airspeed to cool his workspace. The control information is sent to the PEM
equipment. The control actions are logged in the database and the equipment adjusts the heater and the
ventilation of the workspace. The system checks neighboring PEMs to check if cooling this particular
workspace requires other workspaces heating to be increased.

[...]
2.5 Building maintenance

The system monitors the behavior of the controlled devices to detect faults in the system. Faulty light
bulbs and unusual parameter readings are reported to the facilities manager, who then plans inspections
and repairs. The occurrences of device faults are logged and analyzed for trends, enabling the facilities
manager to anticipate faults in the future.

[..]

Figure 3-13 Excerpts from the problem statement of OWL [OWL, 1996].
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Client review

The goal of client reviews is for the client to assess the progress of the development and
for the developers to confirm or change the requirements of the system. The client review is used
to manage expectations on both sides and to increase the shared understanding among
participants. The focus of the review is on what the system does and what constraints are
relevant to the client (e.g., performance, platform). In most cases, the review should not focus on
the design or implementation of the system unless they affect the client or the user. Exceptions
include contracts that impose constraints on the development process, such as those related to
safety or regulatory requirements.

A client review is conducted as a formal presentation during which the developers focus
on specific functionality with the client. The review is preceded by the release of a work product,
such as a specification document, an interface mock-up, or an evaluation prototype. At the
outcome of the review, the client provides feedback to the developers. This feedback may consist
of a general approval or a request for detailed changes in functionality or schedule. Figure 3-14
depicts an example of an agenda for a client review.

Project review

The goals of a project review are for the project manager to assess status and for teams to
review subsystem interfaces. Project reviews can also encourage the exchange of operational
knowledge across teams, such as common problems encountered with tools or the system. The
focus of the review depends on the deliverable under review. For system design, the
decomposition and high-level subsystem interfaces are reviewed. For object design, the object
interfaces are reviewed. For integration and testing, the tests and their results are reviewed.

A project review is typically conducted as a formal presentation during which each team
presents its subsystem to the management or to teams that depend on the subsystem. The review

OWL Client acceptance test agenda

Date: 12/5

Time: 3—4:30 P.M.

Location: Forest Hall

Goal: review of the system by the client and identification of open issues
Overview

¢ Problem statement

e Design goals

e System architecture

¢ Demo 1: Remote user interface and control

e Demo 2: Site editor

e Demo 3: 3D Visualization and speech user interface
¢ Questions and answers

e Review wrap up

Figure 3-14 An example of an agenda for a client review.
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is usually preceded by the release of a document (e.g., system design document) describing the
aspects of the system under review (e.g., the subsystems interfaces). At the close of the review,
the developers may negotiate changes in the interfaces and changes in schedule.

Peer review

The objective of code inspections and walkthroughs is to increase the quality of a
subsystem through peer review (as opposed to management or client review). During walkthrough,
a developer presents to the other members of her team line-by-line the code she has written. The
other team members challenge any suspicious code and attempt to discover as many errors as
possible. The role of the developer is to facilitate the presentation and answer the team’s questions.
During inspections, the members of the team focus on the compliance of the code with a
predefined list of criteria. (For example, does the code implement the specified algorithm? Does
the code correctly use dependent subsystem interfaces?) During inspections, the team leads the
discussion, and the developer answers questions. The focus of the inspection or walkthrough is on
the code, not on the programmer or the design.

Communication among participants is code based. The actual code is used as a common
frame of reference. Inspections are similar to project reviews in their objective to increase
quality and disseminate operational information. They differ from reviews in their formality,
their limited audience, and their extended duration. Inspections and walkthroughs are widely
used and have been effective at detecting defects early [Fagan, 1976]. We describe walkthroughs
more fully in Chapter 11, Testing.

Status review

Unlike client and project reviews that focus on the system, status reviews focus on tasks.
Status reviews are primarily conducted in a team (e.g., weekly) and occasionally conducted in a
project (e.g., monthly). The objective of status reviews is to detect deviations from the task plan
and to correct them. Status reviews also encourage developers to complete pending tasks. The
review of task status encourages the discussion of open issues and unanticipated problems, and,
thus, encourages informal communication among team members. Often, solutions to common
issues can be shared and operational knowledge disseminated more effectively when discussed
within the scope of a team (as opposed to within the scope of the project).

Status reviews represent an investment in person power. Increasing the effectiveness of
reviews has a global impact on the team performance. Status meetings should have an agenda,
available prior to the meeting, that describes the tasks and issues to be reviewed. This enables
meeting participants to prepare for the meeting and redirect the agenda if an urgent issue arises.
Minutes for each meeting should be taken by a designated participant in order to capture as
much information (mainly status and decisions) as possible. Minutes are made available to the
participants for review as early as possible after the meeting. This encourages the minute taker to
complete the minutes and for team members who missed the meeting to catch up with team
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status. Meeting minutes are subsequently referenced when related tasks are discussed or when
clarification is needed. Moreover, meeting minutes represent a portion of the project history that
can be analyzed after the project is completed.

Brainstorming

The goal of the brainstorming process is to generate a large number of solutions to a
problem, regardless of their merit, then evaluate them. Brainstorming is usually done in face-to-
face meetings, but can also be done via E-mail or groupware. The fundamental idea behind
brainstorming is that ideas, however invalid, proposed by any participant can trigger other ideas
and proposals from other participants. In particularly difficult problems, the solution often
comes from an idea that initially sounded very wrong. Brainstorming encourages thinking
“outside the box.” When many ideas have been generated, begin evaluating them. Brainstorming
also has two beneficial side effects: evaluating proposals within the group will lead to more
explicit evaluation criteria, and the brainstorming process itself has the effect of building
consensus for the chosen solution.

Release

The goal of a release is to make a work product available to other project participants,
often replacing an older version of the artifact. A release can be as simple as a two-line
electronic message (see Figure 3-15), or it can consist of several pieces of information: the new
version of the artifact, a list of changes made since the last release of the artifact, a list of
problems or issues yet to be addressed, and an author.

Releases are used to make a large amount of information available in a controlled manner
by batching, documenting, and reviewing many changes together. Project and client reviews are
typically preceded by a release of one or more deliverables.

From: Al

Newsgroups: cs413.f96.architecture.discuss
Subject: SDD

Date: Thu, 25 Nov 03:39:12 -0500

Lines: 6

Message-ID: <3299B30.3507@andrew.cmu.edu>
MimeVersion: 1.0

Content-Type: text/plain; charset=us-ascii
Content-Transfer-Encoding: 7bit

An updated version of the API document for the Notification Subsystem can be found
here: http: //decaf/~al/FRIEND/notifapi.html

--A1
Notification Group Leader

Figure 3-15 An example of a release announcement.
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We describe the management of versions of documents, models, and subsystems in
Chapter 13, Configuration Management.

Postmortem review

Postmortem reviews focus on extracting lessons from the development team once the
software is delivered. Postmortem reviews need to be conducted shortly after the end of the
project so that minimal information is lost or distorted by subsequent experience. The end of the
project is usually a good point in time to assess which techniques, methods, and tools have
worked and have been critical to the success (or failure) of the system.

A postmortem can be conducted as a brainstorming session, a structured question