

FACULTY OF ENGINEERING AND TECHNOLOGY

COMPUTER SCIENCE DEPARTMENT

COMP233 Discrete Mathematics

CHAPTER 4

Elementary Number Theory and Methods of Proof

Number Theory

- Direct Proof and Counterexamples
- Rational Numbers
- Divisibility
- Division into Cases and the Quotient-Remainder Theorem

Number Theory

- Direct Proof and Counterexamples
- Rational Numbers
- Divisibility
- Division into Cases and the Quotient-Remainder Theorem

- Introduction
- Proving Properties of Divisibility
	- *Positive Divisors of Positive Numbers*
	- *Divisors of 1*
	- *Transitivity of Divisibility*
	- *Divisibility by a Prime*
- Counterexamples and Divisibility
- The Unique Factorization Theorem

Motivation

■ When you were first introduced to the concept of division in elementary school, you were probably taught that 12 divided by 3 is 4 because if you separate 12 objects into groups of 3, you get 4 groups with nothing left over.

■ The notion of divisibility is the central concept of one of the most beautiful subjects in advanced mathematics: number theory, the study of properties of integers.

■ Introduction

- Proving Properties of Divisibility
	- *Positive Divisors of Positive Numbers*
	- *Divisors of 1*
	- *Transitivity of Divisibility*
	- *Divisibility by a Prime*
- Counterexamples and Divisibility
- The Unique Factorization Theorem

Definition and Terminology

■ If *n* and *d* are integers and $d \neq 0$ then

 n is divisible by d if, and only if, n equals d times some integer.

- Instead of "*n* is divisible by d ," we can say that
	- $-$ *n* is a multiple of d
	- $-$ d is a factor of n
	- $-$ d is a divisor of n
	- *divides .*
- The notation $d|n$ is read "d divides n."
- Symbolically, if n and d are integers and $d \neq 0$:

 $d \mid n \leftrightarrow \exists$ an integer k such that $n = dk$

Examples

- a. Is 21 divisible by 3? *Yes,* $21 = 3 \cdot 7$ *.*
- b. Does 5 divide 40? *Yes,* $40 = 5 \cdot 8$.
- c. Does 7 | 42? *Yes,* $42 = 7 \cdot 6$ *.*

Examples – cont.

- d. Is 32 a multiple of -16 ? $Yes, 32 = (-16) \cdot (-2)$.
- e. Is 6 a factor of 54? *Yes,* $54 = 6 \cdot 9$.
- f. Is 7 a factor of -7 ? $Yes, -7 = 7 \cdot (-1)$.

Divisors of Zero

- If k is any nonzero integer, does k divide 0?
	- *Yes, because* $0 = k \cdot 0$.

Divisibility of Algebraic Expressions

a. If a and b are integers, is $3a + 3b$ divisible by 3?

Yes. By the distributive law of algebra, $3a + 3b = 3(a + b)$ and $a + b$ is an *integer because it is a sum of two integers.*

b. If k and m are integers, is $10km$ divisible by 5?

Yes. By the associative law of algebra, $10km = 5 \cdot (2km)$ and $2km$ is an integer *because it is the product of three integers.*

Indivisibility

 $d \mid n \leftrightarrow \exists$ an integer k such that $n = dk$

Since the negation of an existential statement is universal, it follows that d does not divide *n* (denoted $d \nmid n$) if, and only if, \forall integers $k, n \neq dk$, or, in other words, the quotient n/d is not an integer.

$$
\forall \text{ integers } n \text{ and } d, \qquad d \nmid n \leftrightarrow \frac{n}{d} \text{ is not an integer}
$$

Example

■ Does 4 | 15?

No,
$$
\frac{15}{4}
$$
 = 3.75, which is not an integer.

Divisibility and Prime Numbers

■ An alternative way to define a prime number is to say that

An integer $n > 1$ is prime if, and only if, its only positive integer divisors are 1 and itself.

■ Introduction

- Proving Properties of Divisibility
	- *Positive Divisors of Positive Numbers*
	- *Divisors of 1*
	- *Transitivity of Divisibility*
	- *Divisibility by a Prime*
- Counterexamples and Divisibility
- The Unique Factorization Theorem

Positive Divisors of Positive Numbers

For all integers a and b, if a and b are positive and a divides b, then $a \leq b$.

- **■** Suppose a and b are positive integers and a divides b. We must show that $a \leq b$.
- **■** Then there exists an integer k so that $b = ak$, and k must be positive because both a and b are positive. It follows that

$$
1\leq k
$$

because every positive integer is greater than or equal to 1.

Multiplying both sides by α gives

$$
a \leq ka = b
$$

because multiplying both sides of an inequality by a positive number preserves the inequality.

■ Thus, $a \leq b$, which we needed to show.

- Introduction
- Proving Properties of Divisibility
	- *Positive Divisors of Positive Numbers*
	- *Divisors of 1*
	- *Transitivity of Divisibility*
	- *Divisibility by a Prime*
- Counterexamples and Divisibility
- The Unique Factorization Theorem

Divisors of 1

The only divisors of 1 are 1 and -1 .

- Since $1 \cdot 1 = 1$ and $(-1)(-1) = 1$, both 1 and -1 are divisors of 1.
- Now suppose m is any integer that divides 1. Then there exists an integer n such that $1 = mn$.
- **Either both m and n are positive or both m and n are negative.**
- **■** If both m and n are positive, then m is a positive integer divisor of 1. By the theorem we just proved, $m \leq 1$, and, since the only positive integer that is less than or equal to 1 is 1 itself, it follows that $m = 1$.
- On the other hand, if both m and n are negative, then $(-m)(-n) = mn = 1$. In this case $-m$ is a positive integer divisor of 1, and so, by the same reasoning, $-m = 1$ and thus $m = -1$.
- Therefore, there are only two possibilities: either $m = 1$ or $m = -1$. So the only divisors of 1 are 1 and -1 .

- Introduction
- Proving Properties of Divisibility
	- *Positive Divisors of Positive Numbers*
	- *Divisors of 1*
	- *Transitivity of Divisibility*
	- *Divisibility by a Prime*
- Counterexamples and Divisibility
- The Unique Factorization Theorem

Transitivity of Divisibility

Prove that for all integers a, b, and c, if $a|b$ and $b|c$, then $a|c$.

- **■** Suppose a, b , and c are particular but arbitrarily chosen integers such that $a | b$ and $b | c$.
- We need to show that $a | c$. In other words, we need to show that

 $c = a \cdot (some integer)$

- **But since** $a \mid b$ **,** $b = ar$ **for some integer r**
- And since $b \mid c, c = bs$ for some integer s
- By substitution,

$$
c = (ar)s = a(rs)
$$

- **■** Let $k = rs$. Then k is an integer since it is a product of integers, and therefore $c = ak$ where k is an integer.
- Thus, a divides c by definition of divisibility, and this is what was to be shown.s

- Introduction
- Proving Properties of Divisibility
	- *Positive Divisors of Positive Numbers*
	- *Divisors of 1*
	- *Transitivity of Divisibility*
	- *Divisibility by a Prime*
- Counterexamples and Divisibility
- The Unique Factorization Theorem

Divisibility by a Prime

Any integer $n > 1$ is divisible by a prime number.

- **■** Suppose n is a particular but arbitrarily chosen integer that is greater than 1.
- \blacksquare We must show that there is a prime number that divides n .
- **■** If n is prime, then n is divisible by a prime number (namely itself), and we are done.

Any integer $n > 1$ is divisible by a prime number.

 \blacksquare If *n* is not prime, then,

 $n = r_0 s_0$ where r_0 and s_0 are integers and $1 < r_0 < n$ and $1 < s_0 < n$. It follows by definition of divisibility that $r_0|n$.

■ If r_0 is prime, then r_0 is a prime number that divides n, and we are done.

Any integer $n > 1$ is divisible by a prime number.

 \blacksquare If r_0 is not prime, then

 $r_0 = r_1 s_1$ where r_1 and s_1 are integers and $1 < r_1 < r_0$ and $1 < s_1 < r_0$. It follows by definition of divisibility that $r_1|r_0$.

- But we already know that $r_0|n$. Consequently, by transitivity of divisibility, $r_1|n$.
- **If** r_1 is prime, then r_1 is a prime number that divides n, and we are done.

Any integer $n > 1$ is divisible by a prime number.

 \blacksquare If r_1 is not prime, then

 $r_1 = r_2 s_2$ where r_2 and s_2 are integers and $1 < r_2 < r_1$ and $1 < s_2 < r_1$. It follows by definition of divisibility that $r_2|r_1$.

- But we already know that $r_1|n$. Consequently, by transitivity of divisibility, $r_2|n$.
- **■** If r_2 is prime, then r_2 is a prime number that divides n, and we are done.

Any integer $n > 1$ is divisible by a prime number.

- **■** If r_2 is not prime, then we may repeat the previous process by factoring r_2 as r_3s_3 .
- \blacksquare We may continue in this way, factoring successive factors of n until we find a prime factor. We must succeed in a finite number of steps because each new factor is both less than the previous one (which is less than n) and greater than 1, and there are fewer than n integers strictly between 1 and n .

Any integer $n > 1$ is divisible by a prime number.

■ Thus, we obtain a sequence

 $r_0, r_1, r_2, ..., r_k$

■ where $k \geq 0, 1 \leq r_k \leq r k_{-1} \leq \cdots \leq r_2 \leq r_1 \leq r_0 \leq n$, and $r_i | n$ for each

 $i = 0, 1, 2, \ldots, k$. The condition for termination is that r_k should be prime.

- Hence r_k is a prime number that divides n .
- And this is what we were to show.

- Introduction
- Proving Properties of Divisibility
	- *Positive Divisors of Positive Numbers*
	- *Divisors of 1*
	- *Transitivity of Divisibility*
	- *Divisibility by a Prime*
- Counterexamples and Divisibility
- The Unique Factorization Theorem

Counterexamples and Divisibility

■ Is the following statement true or false?

For all integers a and b, if $a | b$ and $b | a$ then $a = b$.

■ Counterexample: Let $a = 2$ and $b = -2$. Then

 $a|b$ since 2| (−2)

and

 $b|a$ since $(-2)|2$,

but $a \neq b$ since $2 \neq -2$. Therefore, the statement is false.

- Introduction
- Proving Properties of Divisibility
	- *Positive Divisors of Positive Numbers*
	- *Divisors of 1*
	- *Transitivity of Divisibility*
	- *Divisibility by a Prime*
- Counterexamples and Divisibility
- The Unique Factorization Theorem

The Unique Factorization of Integers Theorem

- This theorem is also called the *fundamental theorem of arithmetic.*
- \blacksquare The unique factorization of integers theorem says that any integer greater than 1 either is prime or can be written as a product of prime numbers in a way that is unique except, perhaps, for the order in which the primes are written.

■ For example,

 $72 = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 = 2 \cdot 3 \cdot 3 \cdot 2 \cdot 2 = 3 \cdot 2 \cdot 2 \cdot 3 \cdot 2$

and so forth.

■ The three 2's and two 3's may be written in any order, but any factorization of 72 as a product of primes must contain exactly three 2's and two 3's.

The Unique Factorization of Integers Theorem

■ Given any integer $n > 1$, there exist a positive integer k, distinct prime numbers $p_1, p_2, ..., p_k$, and positive integers $e_1, e_2, ..., ek$ such that

$$
n = p_1^{e_1} p_2^{e_2} p_3^{e_3} \dots p_k^{e_k}
$$

And any other expression for n as a product of prime numbers is identical to this except, perhaps, for the order in which the factors are written.

Standard Factored Form

■ Given any integer $n > 1$, the **standard factored form** of *n* is an expression of the form

$$
n = p_1^{e_1} p_2^{e_2} p_3^{e_3} \dots p_k^{e_k}
$$

where k is a positive integer; $p_1, p_2, ..., pk$ are prime numbers; $e_1, e_2, ..., e_k$ are

positive integers; and $p_1 < p_2 < ... < p_k$.

Writing Integers in Standard Factored Form

■ Write 3,300 in standard factored form.

First find all the factors of 3,300. Then write them in ascending order:

$$
3,300 = 100 \cdot 33
$$

= 4 \cdot 25 \cdot 3 \cdot 11
= 2 \cdot 2 \cdot 5 \cdot 5 \cdot 3 \cdot 11
= 2² \cdot 3¹ \cdot 5² \cdot 11¹

Using Unique Factorization to Solve a Problem

■ Suppose m is an integer such that $8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot m = 17 \cdot 16 \cdot 15 \cdot 14 \cdot 13 \cdot 12 \cdot 11 \cdot 10$

Does $17|m?$

- Since 17 is one of the prime factors of the right-hand side of the equation, it is also a prime factor of the left-hand side (by the unique factorization of integers theorem).
- But 17 does not equal any prime factor of 8, 7, 6, 5, 4, 3, or 2 (because it is too large).
- Hence 17 must occur as one of the prime factors of m, and so $17|m$.