

FACULTY OF ENGINEERING AND TECHNOLOGY

COMPUTER SCIENCE DEPARTMENT

COMP233 Discrete Mathematics

CHAPTER 4

Elementary Number Theory and Methods of Proof

Number Theory

- Direct Proof and Counterexamples
- Rational Numbers
- Divisibility
- Division into Cases and the Quotient-Remainder Theorem

Number Theory

- Direct Proof and Counterexamples
- Rational Numbers
- Divisibility
- Division into Cases and the Quotient-Remainder Theorem

- Introduction
- Proving Properties of Divisibility
 - Positive Divisors of Positive Numbers
 - Divisors of 1
 - Transitivity of Divisibility
 - Divisibility by a Prime
- Counterexamples and Divisibility
- The Unique Factorization Theorem

Motivation

When you were first introduced to the concept of division in elementary school, you were probably taught that 12 divided by 3 is 4 because if you separate 12 objects into groups of 3, you get 4 groups with nothing left over.

The notion of divisibility is the central concept of one of the most beautiful subjects in advanced mathematics: number theory, the study of properties of integers.

Introduction

- Proving Properties of Divisibility
 - Positive Divisors of Positive Numbers
 - Divisors of 1
 - Transitivity of Divisibility
 - Divisibility by a Prime
- Counterexamples and Divisibility
- The Unique Factorization Theorem

Definition and Terminology

• If *n* and *d* are integers and $d \neq 0$ then

n is **divisible by** *d* if, and only if, *n* equals *d* times some integer.

- Instead of "*n* is divisible by d," we can say that
 - *n* is a multiple of *d*
 - d is a factor of n
 - d is a divisor of n
 - d divides n.
- The notation d|n is read "d divides n."
- Symbolically, if *n* and *d* are integers and $d \neq 0$:

 $d \mid n \leftrightarrow \exists$ an integer k such that n = dk

Examples

- a. Is 21 divisible by 3? Yes, $21 = 3 \cdot 7$.
- b. Does 5 divide 40? Yes, $40 = 5 \cdot 8$.
- c. Does 7 | 42? Yes, $42 = 7 \cdot 6$.

Examples – cont.

- d. Is 32 a multiple of -16? Yes, 32 = $(-16) \cdot (-2)$.
- e. Is 6 a factor of 54? Yes, 54 = $6 \cdot 9$.
- f. Is 7 a factor of -7? Yes, $-7 = 7 \cdot (-1)$.

Divisors of Zero

- If k is any nonzero integer, does k divide 0?
 - Yes, because $0 = k \cdot 0$.

Divisibility of Algebraic Expressions

a. If a and b are integers, is 3a + 3b divisible by 3?

Yes. By the distributive law of algebra, 3a + 3b = 3(a + b) and a + b is an integer because it is a sum of two integers.

b. If k and m are integers, is 10km divisible by 5?

Yes. By the associative law of algebra, $10km = 5 \cdot (2km)$ and 2km is an integer because it is the product of three integers.

Indivisibility

 $d \mid n \leftrightarrow \exists$ an integer k such that n = dk

Since the negation of an existential statement is universal, it follows that d does not divide n (denoted $d \nmid n$) if, and only if, \forall integers $k, n \neq dk$, or, in other words, the quotient n/d is not an integer.

$$\forall$$
 integers *n* and *d*, $d \nmid n \leftrightarrow \frac{n}{d}$ is not an integer

Example

No,
$$\frac{15}{4} = 3.75$$
, which is not an integer.

Divisibility and Prime Numbers

An alternative way to define a prime number is to say that

An integer n > 1 is prime if, and only if, its only positive integer divisors are 1 and itself.

Introduction

- Proving Properties of Divisibility
 - Positive Divisors of Positive Numbers
 - Divisors of 1
 - Transitivity of Divisibility
 - Divisibility by a Prime
- Counterexamples and Divisibility
- The Unique Factorization Theorem

Positive Divisors of Positive Numbers

For all integers a and b, if a and b are positive and a divides b, then $a \leq b$.

- Suppose a and b are positive integers and a divides b. We must show that $a \leq b$.
- Then there exists an integer k so that b = ak, and k must be positive because both a and b are positive. It follows that

$$1 \leq k$$

because every positive integer is greater than or equal to 1.

Multiplying both sides by *a* gives

$$a \leq ka = b$$

because multiplying both sides of an inequality by a positive number preserves the inequality.

Thus, $a \leq b$, which we needed to show.

- Introduction
- Proving Properties of Divisibility
 - Positive Divisors of Positive Numbers
 - Divisors of 1
 - Transitivity of Divisibility
 - Divisibility by a Prime
- Counterexamples and Divisibility
- The Unique Factorization Theorem

Divisors of 1

The only divisors of 1 are 1 and -1.

- Since $1 \cdot 1 = 1$ and (-1)(-1) = 1, both 1 and -1 are divisors of 1.
- Now suppose *m* is any integer that divides 1. Then there exists an integer *n* such that 1 = mn.
- Either both m and n are positive or both m and n are negative.
- If both m and n are positive, then m is a positive integer divisor of 1. By the theorem we just proved, $m \leq 1$, and, since the only positive integer that is less than or equal to 1 is 1 itself, it follows that m = 1.
- On the other hand, if both m and n are negative, then (-m)(-n) = mn = 1. In this case -m is a positive integer divisor of 1, and so, by the same reasoning, -m = 1 and thus m = -1.
- Therefore, there are only two possibilities: either m = 1 or m = -1. So the only divisors of 1 are 1 and -1.

- Introduction
- Proving Properties of Divisibility
 - Positive Divisors of Positive Numbers
 - Divisors of 1
 - Transitivity of Divisibility
 - Divisibility by a Prime
- Counterexamples and Divisibility
- The Unique Factorization Theorem

Transitivity of Divisibility

Prove that for all integers a, b, and c, if a | b and b | c, then a | c.

- Suppose a, b, and c are particular but arbitrarily chosen integers such that a|b and b|c.
- We need to show that a|c. In other words, we need to show that

 $c = a \cdot (some integer)$

- But since $a \mid b, b = ar$ for some integer r
- And since $b \mid c, c = bs$ for some integer s
- By substitution,

$$c = (ar)s = a(rs)$$

- Let k = rs. Then k is an integer since it is a product of integers, and therefore c = ak where k is an integer.
- Thus, *a* divides *c* by definition of divisibility, and this is what was to be shown.s

- Introduction
- Proving Properties of Divisibility
 - Positive Divisors of Positive Numbers
 - Divisors of 1
 - Transitivity of Divisibility
 - Divisibility by a Prime
- Counterexamples and Divisibility
- The Unique Factorization Theorem

Divisibility by a Prime

Any integer n > 1 is divisible by a prime number.

- Suppose *n* is a particular but arbitrarily chosen integer that is greater than 1.
- We must show that there is a prime number that divides n.
- If *n* is prime, then *n* is divisible by a prime number (namely itself), and we are done.

Any integer n > 1 is divisible by a prime number.

If n is not prime, then,

 $n = r_0 s_0$ where r_0 and s_0 are integers and $1 < r_0 < n$ and $1 < s_0 < n$. It follows by definition of divisibility that $r_0 | n$.

If r_0 is prime, then r_0 is a prime number that divides n, and we are done.

Any integer n > 1 is divisible by a prime number.

• If r_0 is not prime, then

 $r_0 = r_1 s_1$ where r_1 and s_1 are integers and $1 < r_1 < r_0$ and $1 < s_1 < r_0$. It follows by definition of divisibility that $r_1 | r_0$.

- But we already know that $r_0 | n$. Consequently, by transitivity of divisibility, $r_1 | n$.
- If r_1 is prime, then r_1 is a prime number that divides n, and we are done.

Any integer n > 1 is divisible by a prime number.

• If r_1 is not prime, then

 $r_1 = r_2 s_2$ where r_2 and s_2 are integers and $1 < r_2 < r_1$ and $1 < s_2 < r_1$.

It follows by definition of divisibility that $r_2|r_1$.

- But we already know that $r_1 | n$. Consequently, by transitivity of divisibility, $r_2 | n$.
- If r_2 is prime, then r_2 is a prime number that divides n, and we are done.

Any integer n > 1 is divisible by a prime number.

- If r_2 is not prime, then we may repeat the previous process by factoring r_2 as r_3s_3 .
- We may continue in this way, factoring successive factors of n until we find a prime factor. We must succeed in a finite number of steps because each new factor is both less than the previous one (which is less than n) and greater than 1, and there are fewer than n integers strictly between 1 and n.

Any integer n > 1 is divisible by a prime number.

■ Thus, we obtain a sequence

 $r_0, r_1, r_2, \dots, r_k$

• where $k \ge 0, 1 < r_k < rk_{-1} < \cdots < r_2 < r_1 < r_0 < n$, and $r_i | n$ for each

i = 0, 1, 2, ..., k. The condition for termination is that r_k should be prime.

- Hence r_k is a prime number that divides n.
- And this is what we were to show.

- Introduction
- Proving Properties of Divisibility
 - Positive Divisors of Positive Numbers
 - Divisors of 1
 - Transitivity of Divisibility
 - Divisibility by a Prime
- Counterexamples and Divisibility
- The Unique Factorization Theorem

Counterexamples and Divisibility

■ Is the following statement true or false?

For all integers a and b, if a | b and b | a then a = b.

• Counterexample: Let a = 2 and b = -2. Then

a|b since 2|(-2)

and

b|a since (-2)|2,

but $a \neq b$ since $2 \neq -2$. Therefore, the statement is false.

- Introduction
- Proving Properties of Divisibility
 - Positive Divisors of Positive Numbers
 - Divisors of 1
 - Transitivity of Divisibility
 - Divisibility by a Prime
- Counterexamples and Divisibility
- The Unique Factorization Theorem

The Unique Factorization of Integers Theorem

- This theorem is also called the *fundamental theorem of arithmetic*.
- The unique factorization of integers theorem says that any integer greater than 1 either is prime or can be written as a product of prime numbers in a way that is unique except, perhaps, for the order in which the primes are written.

■ For example,

 $72 = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 = 2 \cdot 3 \cdot 3 \cdot 2 \cdot 2 = 3 \cdot 2 \cdot 2 \cdot 3 \cdot 2$

and so forth.

The three 2's and two 3's may be written in any order, but any factorization of 72 as a product of primes must contain exactly three 2's and two 3's.

The Unique Factorization of Integers Theorem

Given any integer n > 1, there exist a positive integer k, distinct prime numbers p_1, p_2, \dots, p_k , and positive integers e_1, e_2, \dots, ek such that

$$n = p_1^{e_1} p_2^{e_2} p_3^{e_3} \dots p_k^{e_k}$$

And any other expression for n as a product of prime numbers is identical to this except, perhaps, for the order in which the factors are written.

Standard Factored Form

■ Given any integer *n* > 1, the **standard factored form** of *n* is an expression of the form

$$n = p_1^{e_1} p_2^{e_2} p_3^{e_3} \dots p_k^{e_k}$$

where k is a positive integer; p_1, p_2, \dots, p_k are prime numbers; e_1, e_2, \dots, e_k are

positive integers; and $p_1 < p_2 < ... < pk$.

Writing Integers in Standard Factored Form

■ Write 3,300 in standard factored form.

First find all the factors of 3,300. Then write them in ascending order:

$$3,300 = 100 \cdot 33$$

= 4 \cdot 25 \cdot 3 \cdot 11
= 2 \cdot 2 \cdot 5 \cdot 5 \cdot 3 \cdot 11
= 2^2 \cdot 3^1 \cdot 5^2 \cdot 11^1

Using Unique Factorization to Solve a Problem

- Suppose *m* is an integer such that $8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot m = 17 \cdot 16 \cdot 15 \cdot 14 \cdot 13 \cdot 12 \cdot 11 \cdot 10$ Does 17 *m*?
- Since 17 is one of the prime factors of the right-hand side of the equation, it is also a prime factor of the left-hand side (by the unique factorization of integers theorem).
- But 17 does not equal any prime factor of 8, 7, 6, 5, 4, 3, or 2 (because it is too large).
- Hence 17 must occur as one of the prime factors of m, and so 17 | m.