

FACULTY OF ENGINEERING AND TECHNOLOGY

COMPUTER SCIENCE DEPARTMENT

COMP233 Discrete Mathematics

CHAPTER 4

Elementary Number Theory and Methods of Proof

Number Theory

- Direct Proof and Counterexamples
- Rational Numbers
- Divisibility
- Division into Cases and the Quotient-Remainder Theorem

Number Theory

- Direct Proof and Counterexamples
- Rational Numbers
- Divisibility
- Division into Cases and the Quotient-Remainder Theorem

Introduction

■ When you divide 11 by 4, you get a quotient of 2 and a remainder of 3.

$$
4\overline{)11}^{\leftarrow \text{quotient}}
$$

$$
\frac{8}{3} \leftarrow \text{remainder}
$$

■ Another way to say this is that 11 equals 2 groups of 4 with 3 left over:

Division into Cases and the Quotient-Remainder Theorem

- The Quotient-Remainder Theorem
- \blacksquare div and mod
- Representation of Integers
- Division into Cases
- Absolute Value and the Triangle Inequality

Division into Cases and the Quotient-Remainder Theorem

■ The Quotient-Remainder Theorem

- \blacksquare div and mod
- Representation of Integers
- Division into Cases
- Absolute Value and the Triangle Inequality

The Quotient-Remainder Theorem

■ Given any integer n and positive integer d , there exist unique integers q and r such that

 $n = dq + r$ and $0 \leq r < d$.

 \blacksquare If *n* is positive, the quotient-remainder theorem can be illustrated on the number line as follows:

$$
\begin{array}{c|cccc}\n\cdot & \cdot & \cdot & 0 & d & 2d & 3d & \cdot & \cdot & \cdot & \cdot & \cdot & qd & n & \cdot & \cdot & \cdot \\
\hline\n\end{array}
$$

Examples

- **■** For each of the following values of n and d , find integers q and r such that $n = dq + r$ and $0 \leq r < d$.
- 1. $n = 54$, $d = 4$ $54 = 4 \cdot 13 + 2$; hence $q = 13$ and $r = 2$. 2. $n = -54$, $d = 4$ $-54 = 4 \cdot (-14) + 2$; hence $q = -14$ and $r = 2$. 3. $n = 54$, $d = 70$ $54 = 70 \cdot 0 + 54$; hence $q = 0$ and $r = 54$.

Division into Cases and the Quotient-Remainder Theorem

- The Quotient-Remainder Theorem
- \blacksquare div and mod
- Representation of Integers
- Division into Cases
- Absolute Value and the Triangle Inequality

div and mod

- \blacksquare Given an integer *n* and a positive integer *d*,
	- *= the integer quotient obtained when is divided by , and*
	- **n mod d** = the nonnegative integer remainder obtained when n is divided by d.
- **Symbolically, if n and d are integers and** $d > 0$ **, then** $n \, div \, d = q$ and $n \, mod \, d = r \leftrightarrow n = dq + r$

where q and r are integers and $0 \le r < d$.

div and mod

■ *n mod d* equals one of the integers from 0 through $d - 1$ (since the remainder of the division of n by d must be one of these integers).

A necessary and sufficient condition for an integer n to be divisible by an integer d is that *n* mod $d = 0$.

Calculating div and mod

 \blacksquare You can also use a calculator to compute values of div and mod :

- To compute $n \ div d$ for a nonnegative integer n and a positive integer d , you just divide n by d and ignore the part of the answer to the right of the decimal point.
- \blacksquare To find $n \mod d$, you can use the fact that

if
$$
n = dq + r
$$
, then $r = n - dq$

Thus

$$
n = d \cdot (n \ div d) + n \ mod d
$$

and so

$$
n \bmod d = n - d \cdot (n \, div \, d)
$$

Computing div and mod

- Compute 32 div 9 and 32 mod 9 by hand.
- Performing the division by hand gives the following results:

$$
9\overline{)32}^{3} \n 27\n 32 uv 9\n 27\n 5 \n 32 mod 9
$$

Computing div and mod – cont.

■ Compute 32 div 9 and 32 mod 9 with a calculator.

- If you use a four-function calculator to divide 32 by 9, you obtain an expression like 3.555555556.
- Discarding the fractional part gives $32 \ div 9 = 3$.
- And so,

$$
32 \mod 9 = 32 - 9 \cdot (32 \dim 9) = 32 - 27 = 5
$$

Computing the Day of the Week

- Suppose today is Tuesday, and neither this year nor next year is a leap year. What day of the week will it be 1 year from today?
- There are 365 days in a year that is not a leap year, and each week has 7 days.
- \blacksquare 365 $div 7 = 52$ and 365 mod $7 = 1$
- Thus 52 weeks, or 364 days, from today will be a Tuesday
- 365 days from today will be 1 day later, namely Wednesday.

Solving a Problem about *mod*

- Suppose m is an integer. If m mod $11 = 6$, what is $4m \mod 11$?
- **Because** $m \mod 11 = 6$, the remainder obtained when m is divided by 11 is 6.
- This means that there is some integer q so that

 $m = 11q + 6$

• Thus $4m = 44q + 24$

 $= 44q + 22 + 2$

 $= 11(4q + 2) + 2$

■ Since $4q + 2$ is an integer (because products and sums of integers are integers) and since $2 < 11$, the remainder obtained when $4m$ is divided by 11 is 2. Therefore,

$$
4m \; mod \; 11 \; = \; 2
$$

Division into Cases and the Quotient-Remainder Theorem

- The Quotient-Remainder Theorem
- \blacksquare div and mod
- Representation of Integers
- Division into Cases
- Absolute Value and the Triangle Inequality

Representations of Integers

Any integer must be either odd or even

■ We have previously stated that this statement is true. However, at the time when we learned how to represent even and odd integers, we did not know enough to prove it.

■ Now we do.

Representations of Integers

- **■** Let *n* be any integer, and consider what happens when *n* is divided by 2.
- **■** By the quotient-remainder theorem (with $d = 2$), there exist unique integers q and r such that

$$
n = 2q + r \text{ and } 0 \le r < 2
$$

- But the only integers that satisfy $0 \le r < 2$ are $r = 0$ and $r = 1$.
- It follows that given any integer n , there exists an integer q with

$$
n=2q+0 \qquad \text{or} \qquad n=2q+1.
$$

- In the case that $n = 2q + 0 = 2q$, n is even. In the case that $n = 2q + 1$, n is odd.
- Hence n is either even or odd, and, because of the uniqueness of q and r , n cannot be both even and odd.

Parity

■ The parity of an integer is its attribute of being even or odd.

- Thus, it can be said that 6 and 14 have the same parity, since both are even.
- And 7 and 15 have the same parity, since both are odd.
- Whereas 7 and 14 have opposite parity, since 7 is odd and 14 is even.
- The parity property is the fact that an integer is either even or odd.

Prove that given any two consecutive integers, one is even, and the other is odd.

- Suppose that two particular but arbitrarily chosen consecutive integers are given; call them m and $m + 1$.
- We must show that one of m and $m + 1$ is even and that the other is odd.
- **■** By the parity property, either m is even, or m is odd. We break the proof into two cases depending on whether m is even or odd.

Prove that given any two consecutive integers, one is even, and the other is odd.

 \blacksquare Case 1: *m* is even:

In this case, $m = 2k$ for some integer k,

and so, $m + 1 = 2k + 1$, which is odd by definition of odd.

Hence in this case, one of m and $m + 1$ is even and the other is odd.

Prove that given any two consecutive integers, one is even, and the other is odd.

Case 2: m is odd:

In this case, $m = 2k + 1$ for some integer k,

and so, $m + 1 = (2k + 1) + 1 = 2k + 2 = 2(k + 1)$.

But $k + 1$ is an integer because it is a sum of two integers.

Therefore, $m + 1$ equals twice some integer, and thus $m + 1$ is even.

Hence in this case also, one of m and $m + 1$ is even and the other is odd.

Prove that given any two consecutive integers, one is even, and the other is odd.

- **■** It follows that regardless of which case actually occurs for the particular m and m $+$ 1 that are chosen, one of m and $m + 1$ is even and the other is odd.
- And this is what was to be shown.

Division into Cases and the Quotient-Remainder Theorem

- The Quotient-Remainder Theorem
- \blacksquare div and mod
- Representation of Integers
- Division into Cases
- Absolute Value and the Triangle Inequality

Proof by Division into Cases

- The division into cases in a proof is like the transfer of control for an if-then-else statement in a computer program.
- If m is even, control transfers to case 1; if not, control transfers to case 2.
- For any given integer, only one of the cases will apply.
- You must consider both cases, however, to obtain a proof that is valid for an arbitrarily given integer whether even or not.
- There are times when division into more than two cases is called for.

Method of Proof by Division into Cases

- Suppose that at some stage of developing a proof, you know that a statement of the form A_1 or A_2 or A_3 or ... or A_n is true, and suppose you want to deduce a conclusion C.
- To prove a statement of the form "If A_1 or A_2 or A_3 or ... or A_n , then C," prove all of the following: If A_1 , then C, If A_2 , then C,
	- If A_n , then C.

…

■ This process shows that C is true regardless of which of A_1, A_2, \ldots, An happens to be the case.

Representations of Integers Modulo 4

■ Show that any integer can be written in one of the four forms

 $n = 4q$ or $n = 4q + 1$ or $n = 4q + 2$ or $n = 4q + 3$

for some integer q .

- **■** Given any integer n, apply the quotient-remainder theorem to n with $d = 4$.
- This implies that there exist an integer quotient q and a remainder r such that

 $n = 4q + r$ and $0 \leq r < 4$.

- But the only nonnegative remainders *r* that are less than 4 are 0, 1, 2, and 3.
- **Hence**

$$
n = 4q
$$
 or $n = 4q + 1$ or $n = 4q + 2$ or $n = 4q + 3$

for some integer q .

The square of any odd integer has the form $8m + 1$ for some integer m.

- Suppose n is a particular but arbitrarily chosen odd integer.
- **By the quotient-remainder theorem,** n can be written in one of the forms

$$
n = 4q
$$
 or $n = 4q + 1$ or $n = 4q + 2$ or $n = 4q + 3$

for some integer q .

■ Since *n* is odd and 4q and 4q + 2 are even, *n* must have one of the forms

$$
4q + 1
$$
 or $4q + 3$

for some integer q .

The square of any odd integer has the form $8m + 1$ for some integer m.

Case 1 ($n = 4q + 1$ for some integer q):

Since $n = 4q + 1$, $n^2 = (4q + 1)2$ by substitution $=(4q + 1)(4q + 1)$ by definition of square $= 16q^2 + 8q + 1$ $= 8(2q^2 + q) + 1$ by the laws of algebra

Let $m = 2q^2 + q$. Then m is an integer since the sums and products of integers are integers. Thus, substituting,

 $n^2 = 8m + 1$ where m is an integer.

The square of any odd integer has the form $8m + 1$ for some integer m.

Case 2 ($n = 4q + 3$ for some integer q):

Since $n = 4q + 3$, $n^2 = (4q + 3)^2$ by substitution $=(4q + 3)(4q + 3)$ by definition of square $= 16q^2 + 24q + 9$ $= 16q^2 + 24q + (8 + 1)$ $= 8(2q² + 3q + 1) + 1$ by the laws of algebra

Let $m = 2q^2 + 3q + 1$. Then m is an integer since the sums and products of integers are integers. Thus, substituting,

 $n^2 = 8m + 1$ where m is an integer.

The square of any odd integer has the form $8m + 1$ for some integer m.

■ Cases 1 and 2 show that given any odd integer, whether of the form

 $4q + 1$ or $4q + 3$,

 $n^2 = 8m + 1$ for some integer m.

■ And this is what we needed to show.

Division into Cases and the Quotient-Remainder Theorem

- The Quotient-Remainder Theorem
- \blacksquare div and mod
- Representation of Integers
- Division into Cases
- Absolute Value and the Triangle Inequality

Absolute Value and the Triangle Inequality

■ For any real number x, the absolute value of x, denoted $|x|$, is defined as follows:

$$
|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}
$$

- The *triangle inequality* says that the absolute value of the sum of two numbers is less than or equal to the sum of their absolute values.
- To prove the triangle inequality, we need to prove two lemmas first.

Lemmas?

■ A lemma is a statement that does not have much intrinsic interest but is helpful in deriving other results.

■ We will prove the following two lemmas:

Lemma 1: For all real numbers $r, -|r| \leq r \leq |r|$

Lemma 2: For all real numbers $r, |-r| = |r|$

Lemma 1: For all real numbers $r, -|r|$ $\leq r \leq |r|$

■ Suppose r is any real number. We divide into cases according to whether $r \geq 0$ or $r < 0$.

■ Case $1 (r \geq 0)$:

In this case, by definition of absolute value, $|r| = r$.

Also, since r is positive and $-|r|$ is negative, $-|r| < r$.

Thus it is true that $-|r| \leq r \leq |r|$.

Lemma 1: For all real numbers r , $-|r| \leq r \leq |r|$

■ Case $2 (r < 0)$:

In this case, by definition of absolute value, $|r| = -r$. Multiplying both sides by -1 gives that $-|r| = r$. Also, since r is negative and |r| is positive, $r < |r|$. Thus it is also true in this case that $-|r| \leq r \leq |r|$.

■ Hence, in either case,

$$
-|r| \le r \le |r|
$$

■ as was to be shown.

Lemma 2: For all real numbers r , $|-r| = |r|$

■ Suppose r is any real number. if $r > 0$, then $-r < 0$, and if $r < 0$, then $-r > 0$.

$$
|-r| = \begin{cases} -r & \text{if } -r > 0\\ 0 & \text{if } r = 0\\ -(-r) & \text{if } -r < 0 \end{cases}
$$

by definition of absolute value

Lemma 2: For all real numbers r , $-r = |r|$

■ Suppose r is any real number. if $r > 0$, then $-r < 0$, and if $r < 0$, then $-r > 0$.

■ Thus,

$$
|-r| = \begin{cases} -r & \text{if } -r > 0 \\ 0 & \text{if } r = 0 \\ r & \text{if } -r < 0 \end{cases}
$$

because $-(-r) = r$

Lemma 2: For all real numbers r , $|-r| = |r|$

■ Suppose r is any real number. if $r > 0$, then $-r < 0$, and if $r < 0$, then $-r > 0$.

■ Thus,

$$
|-r| = \begin{cases} -r & \text{if } r < 0\\ 0 & \text{if } r = 0\\ r & \text{if } -r < 0 \end{cases}
$$

because when $-r > 0, r < 0$

Lemma 2: For all real numbers r , $-r = |r|$

■ Suppose r is any real number. if $r > 0$, then $-r < 0$, and if $r < 0$, then $-r > 0$.

■ Thus,

$$
|-r| = \begin{cases} -r & \text{if } r < 0\\ 0 & \text{if } r = 0\\ r & \text{if } r > 0 \end{cases}
$$

because when $-r < 0, r > 0$

Lemma 2: For all real numbers r , $-r = |r|$

■ Suppose r is any real number. if $r > 0$, then $-r < 0$, and if $r < 0$, then $-r > 0$.

■ Thus,

$$
|-r| = \begin{cases} r & \text{if } r \ge 0\\ -r & \text{if } r < 0 \end{cases}
$$

by reformatting the previous result

 $= |r|$ by definition of absolute value

The Triangle Inequality

■ For all real numbers x and y, $|x + y| \le |x| + |y|$.

■ Suppose x and y , are any real numbers.

■ Case 1 $(x + y \ge 0)$: In this case, $|x + y| = x + y$

By the first lemma, $x \le |x|$ and $y \le |y|$

Hence, $|x + y| = x + y \le |x| + |y|$

The Triangle Inequality

- For all real numbers x and y, $|x + y| \le |x| + |y|$.
- Suppose x and y , are any real numbers.
- Case 2 $(x + y < 0)$: In this case, $|x + y| = -(x + y) = (-x) + (-y)$ By the first and second lemmas, $-x \leq |-x| = |x|$ and $-y \leq |-y| = |y|$ It follows that $|x + y| = (-x) + (-y) \le |x| + |y|$
- Hence in both cases $|x + y| \leq |x| + |y|$, as was to be shown.