

FACULTY OF ENGINEERING AND TECHNOLOGY

COMPUTER SCIENCE DEPARTMENT

COMP233 Discrete Mathematics

CHAPTER 5

Sequences And Mathematical Induction

Sequences and Mathematical Induction

- Section 1:
 - Sequences
- Section 2:
 - Mathematical Induction

Sequences and Mathematical Induction

■ Section 1:

- Sequences
- Section 2:
 - Mathematical Induction

Sequences

- Part 1: Motivation sequences in real life
- Part 2: Finding sequences
- Part 3: Summations
- Part 4: Products
- Part 5: Factorials
- Part 6: Properties of Summations, Products, and Factorials
- Part 7: Sequences in Computer Science (i.e. Loops)

Sequences

Part 1: Motivation – sequences in real life

- Part 2: Finding sequences
- Part 3: Summations
- Part 4: Products
- Part 5: Factorials
- Part 6: Properties of Summations, Products, and Factorials
- Part 7: Sequences in Computer Science (i.e. Loops)

Motivation

Mathematics is the science of patterns, and nature exploits just about every pattern that there is.

Symmetry

- Ian Stewart

Motivation

Sequences

■ How many ancestors do you have?

2 parents

4 grandparents

8 great-grandparents

16 great-great-grandparents

...?

2, 4, 8, 16, 32, 64, 128, This is a *sequence*

Sequences

- Part 1: Motivation sequences in real life
- Part 2: Finding sequences
- Part 3: Summations
- Part 4: Products
- Part 5: Factorials
- Part 6: Properties of Summations, Products, and Factorials
- Part 7: Sequences in Computer Science (i.e. Loops)

Sequences – cont.

2, 4, 8, 16, 32, 64, 128,

To express the pattern of the numbers, suppose that each is labeled by an integer giving its position in the row:

Position in the row	1	2	3	4	5	6	7	
Number of ancestors	2	4	8	16	32	64	128	

Sequences – cont.

2, 4, 8, 16, 32, 64, 128,

To express the pattern of the numbers, suppose that each is labeled by an integer giving its position in the row:

Position in the row	1	2	3	4	5	6	7	
Number of ancestors	2	4	8	16	32	64	128	
	21	2 ²	2 ³	24	2 ⁵	2 ⁶	2 ⁷	

So, for a general value of k, A_k will be the number of ancestors you have in the k^{th} generation, which will equal to 2^k .

• A **sequence** is a set of elements written in a row:

■ This is an **infinite sequence**:

 $a_m, am_{+1}, am_{+2}, \dots$

• The rule that shows how the values of a_k depend on k is called the **explicit formula** or **general formula**.

Finding Terms of Sequences Given by Explicit Formulas

Define sequences $a_1, a_2, a_3, ...$ and $b_2, b_3, b_4, ...$ by the following explicit formulas: $a_k = \frac{k}{k+1}$ for all integers $k \ge 1$

$$b_i = \frac{i - 1}{i}$$
 for all integers $i \ge 2$

Computer the first five terms of both sequences.

Finding Terms of Sequences Given by Explicit Formulas

$$a_{1} = \frac{1}{\frac{1+1}{2}} = \frac{1}{\frac{2}{2}}$$

$$a_{2} = \frac{2}{\frac{2+1}{2+1}} = \frac{3}{\frac{3}{3}}$$

$$a_{3} = \frac{3}{\frac{3+1}{3+1}} = \frac{3}{\frac{4}{4}}$$

$$a_{4} = \frac{4}{\frac{4+1}{5}} = \frac{5}{\frac{5}{5+1}} = \frac{5}{6}$$

$$b_{2} = \frac{2-1}{\frac{2}{2}} = \frac{1}{\frac{2}{2}}$$

$$b_{3} = \frac{3-1}{\frac{3}{2}} = \frac{2}{\frac{3}{3}}$$

$$b_{4} = \frac{4-1}{\frac{4}{4}} = \frac{3}{\frac{4}{4}}$$

$$b_{5} = \frac{5-1}{\frac{5-1}{5}} = \frac{4}{\frac{5}{5}}$$

$$b_{6} = \frac{6-1}{6} = \frac{5}{6}$$

Finding Terms of Sequences Given by Explicit Formulas

- The first five terms of both sequences are $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$, $\frac{4}{5}$, and $\frac{5}{6}$.
- It can be shown that all the terms of both sequences are identical.

Infinite Sequences with Finite Number of Values

• Computer the first six terms of the sequence $c_0, c_1, c_2, ...$ defined as follows: $c_j = (-1)^j$ for all integers $j \ge 0$ $c_0 = (-1)^0 = 1$ $c_1 = (-1)^1 = -1$ $c_2 = (-1)^2 = 1$ $c_3 = (-1)^3 = -1$

■ This sequence oscillates endlessly between 1 and −1. It is called an alternating sequence.

 $c_4 = (-1)^4 = 1$

 $c_5 = (-1)^5 = -1$

Finding an Explicit Formula to Fit Given Initial Terms

Find an explicit formula for a sequence that has the following initial terms:

$$1, -\frac{1}{4}, \frac{1}{9}, -\frac{1}{16}, \frac{1}{25}, -\frac{1}{36}, \dots$$

- Denote the general term of the sequences by a_k , and suppose the first term is a_1 .
- Observe the two following patterns:
 - The denominator of each term equals the square of the subscript of that term.

$$a_k = \frac{\pm 1}{k^2}$$

Finding an Explicit Formula to Fit Given Initial Terms

■ Find an explicit formula for a sequence that has the following initial terms:

$$1, -\frac{1}{4}, \frac{1}{9}, -\frac{1}{16}, \frac{1}{25}, -\frac{1}{36}, \dots$$

- Denote the general term of the sequences by a_k , and suppose the first term is a_1 .
- Observe the two following patterns:
 - The denominator of each term equals the square of the subscript of that term.
 - The numerator oscillates back and forth between +1 and -1; it is +1 when k is odd, and -1 when k is even.

$$a_{k} = \frac{(-1)^{k+1}}{k^{2}} \text{ for all integers } k \ge 1$$

$$OR \ a_{k} = \frac{(-1)^{k}}{(k+1)^{2}} \text{ for all integers } k \ge 0$$

Sequences

- Part 1: Motivation sequences in real life
- Part 2: Finding sequences
- Part 3: Summations
- Part 4: Products
- Part 5: Factorials
- Part 6: Properties of Summations, Products, and Factorials
- Part 7: Sequences in Computer Science (i.e. Loops)

Summation Notation

• Let $a_1 = -2$, $a_2 = -1$, $a_3 = 0$, $a_4 = 1$, and $a_5 = 2$.

Compute the following:

1. $\sum_{k=1}^{5} a_k$

• Let
$$a_1 = -2$$
, $a_2 = -1$, $a_3 = 0$, $a_4 = 1$, and $a_5 = 2$.

Compute the following:

1.
$$\sum_{k=1}^{5} a_k = a_1 + a_2 + a_3 + a_4 + a_5$$

• Let
$$a_1 = -2$$
, $a_2 = -1$, $a_3 = 0$, $a_4 = 1$, and $a_5 = 2$.

Compute the following:

1.
$$\sum_{k=1}^{5} a_k = a_1 + a_2 + a_3 + a_4 + a_5 = -2 + -1 + 0 + 1 + 2 = 0$$

• Let
$$a_1 = -2$$
, $a_2 = -1$, $a_3 = 0$, $a_4 = 1$, and $a_5 = 2$.

Compute the following:

- 1. $\sum_{k=1}^{5} a_k = a_1 + a_2 + a_3 + a_4 + a_5 = -2 + -1 + 0 + 1 + 2 = 0$
- $2. \quad \sum_{k=2}^{2} a_k$

• Let
$$a_1 = -2$$
, $a_2 = -1$, $a_3 = 0$, $a_4 = 1$, and $a_5 = 2$.

Compute the following:

- 1. $\sum_{k=1}^{5} a_k = a_1 + a_2 + a_3 + a_4 + a_5 = -2 + -1 + 0 + 1 + 2 = 0$
- 2. $\sum_{k=2}^{2} a_k = a_2$

• Let
$$a_1 = -2$$
, $a_2 = -1$, $a_3 = 0$, $a_4 = 1$, and $a_5 = 2$.

Compute the following:

- 1. $\sum_{k=1}^{5} a_k = a_1 + a_2 + a_3 + a_4 + a_5 = -2 + -1 + 0 + 1 + 2 = 0$
- 2. $\sum_{k=2}^{2} a_k = a_2 = -1$

• Let
$$a_1 = -2$$
, $a_2 = -1$, $a_3 = 0$, $a_4 = 1$, and $a_5 = 2$.

Compute the following:

- 1. $\sum_{k=1}^{5} a_k = a_1 + a_2 + a_3 + a_4 + a_5 = -2 + -1 + 0 + 1 + 2 = 0$
- 2. $\sum_{k=2}^{2} a_k = a_2 = -1$
- *3.* $\sum_{k=1}^{2} a_{2k}$

• Let
$$a_1 = -2$$
, $a_2 = -1$, $a_3 = 0$, $a_4 = 1$, and $a_5 = 2$.
Compute the following:

- 1. $\sum_{k=1}^{5} a_k = a_1 + a_2 + a_3 + a_4 + a_5 = -2 + -1 + 0 + 1 + 2 = 0$
- 2. $\sum_{k=2}^{2} a_k = a_2 = -1$
- 3. $\sum_{k=1}^{2} a_{2k} = a_{2.1} + a_{2.2}$

• Let
$$a_1 = -2$$
, $a_2 = -1$, $a_3 = 0$, $a_4 = 1$, and $a_5 = 2$.
Compute the following:

- 1. $\sum_{k=1}^{5} a_k = a_1 + a_2 + a_3 + a_4 + a_5 = -2 + -1 + 0 + 1 + 2 = 0$
- 2. $\sum_{k=2}^{2} a_k = a_2 = -1$
- 3. $\sum_{k=1}^{2} a_{2k} = a_{2,1} + a_{2,2} = a_2 + a_4$

• Let
$$a_1 = -2$$
, $a_2 = -1$, $a_3 = 0$, $a_4 = 1$, and $a_5 = 2$.
Compute the following:

- 1. $\sum_{k=1}^{5} a_k = a_1 + a_2 + a_3 + a_4 + a_5 = -2 + -1 + 0 + 1 + 2 = 0$
- 2. $\sum_{k=2}^{2} a_k = a_2 = -1$
- 3. $\sum_{k=1}^{2} a_{2k} = a_{2,1} + a_{2,2} = a_2 + a_4 = -1 + 1 = 0$

However, it is more common to have the terms of a summation expressed using an explicit formula. For example:

However, it is more common to have the terms of a summation expressed using an explicit formula. For example:

$$\sum_{k=1}^{5} k^2 =$$
Computing the Summation

However, it is more common to have the terms of a summation expressed using an explicit formula. For example:

$$\sum_{k=1}^{5} k^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55$$

$$\sum_{i=0}^{8} \frac{(-1)^{i}}{i+1} = \frac{(-1)^{0}}{0+1} + \frac{(-1)^{1}}{1+1} + \frac{(-1)^{2}}{2+1} + \frac{(-1)^{3}}{3+1} + \frac{(-1)^{4}}{4+1} + \frac{(-1)^{5}}{5+1} + \frac{(-1)^{6}}{6+1} + \frac{(-1)^{7}}{7+1} + \frac{(-1)^{8}}{8+1} + \frac{(-1)^{8}}{6+1} + \frac{(-1)^{7}}{7+1} + \frac{(-1)^{8}}{8+1} + \frac{(-1)^{8}}{7+1} + \frac{(-1)^{8}}{8+1} +$$

$$\sum_{i=0}^{8} \frac{(-1)^{i}}{i+1} = \frac{(-1)^{0}}{0+1} + \frac{(-1)^{1}}{1+1} + \frac{(-1)^{2}}{2+1} + \frac{(-1)^{3}}{3+1} + \frac{(-1)^{4}}{4+1} + \frac{(-1)^{5}}{5+1} + \frac{(-1)^{6}}{6+1} + \frac{(-1)^{7}}{7+1} + \frac{(-1)^{8}}{8+1} + \frac{(-1)^{8}}{1+1} + \frac{(-1)^{6}}{1+1} + \frac{(-1)^{7}}{1+1} + \frac{(-1)^{8}}{1+1} +$$

$$\sum_{i=0}^{8} \frac{(-1)^{i}}{i+1} = \frac{(-1)^{0}}{0+1} + \frac{(-1)^{1}}{1+1} + \frac{(-1)^{2}}{2+1} + \frac{(-1)^{3}}{3+1} + \frac{(-1)^{4}}{4+1} + \frac{(-1)^{5}}{5+1} + \frac{(-1)^{6}}{6+1} + \frac{(-1)^{7}}{7+1} + \frac{(-1)^{8}}{8+1} + \frac{(-1)^{8}}{1+1} + \frac{(-1)^{1}}{1+1} + \frac{(-1)^{2}}{2+1} + \dots + \frac{(-1)^{n}}{n+1}$$

Write the following summation in expanded form:

$$\begin{split} \sum_{i=0}^{8} \frac{(-1)^{i}}{i+1} &= \frac{(-1)^{0}}{0+1} + \frac{(-1)^{1}}{1+1} + \frac{(-1)^{2}}{2+1} + \frac{(-1)^{3}}{3+1} + \frac{(-1)^{4}}{4+1} + \frac{(-1)^{5}}{5+1} + \frac{(-1)^{6}}{6+1} + \frac{(-1)^{7}}{7+1} + \frac{(-1)^{8}}{8+1} \\ \sum_{i=0}^{n} \frac{(-1)^{i}}{i+1} &= \frac{(-1)^{0}}{0+1} + \frac{(-1)^{1}}{1+1} + \frac{(-1)^{2}}{2+1} + \dots + \frac{(-1)^{n}}{n+1} \\ &= 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{(-1)^{n}}{n+1} \end{split}$$

Express the following using summation notation:

 $\frac{1}{n} + \frac{2}{n+1} + \frac{3}{n+2} + \dots + \frac{n+1}{2n}$

Express the following using summation notation:

1	2	L <u>3</u>	∟ ⊥	<u>n+1</u>
n	n+1	n+2	Γ ··· ٦	2 <i>n</i>

Value of k	term	Simplification of term
0	$\frac{1}{n}$	
1	$\frac{2}{n+1}$	
2	$\frac{3}{n+2}$	
n	$\frac{n+1}{2n}$	

Express the following using summation notation:

1	2	3	∟ ⊥	<u>n+1</u>
n	n+1	n+2	Г	2 <i>n</i>

Value of k	term	Simplification of term
0	$\frac{1}{n}$	
1	$\frac{2}{n+1}$	
2	$\frac{3}{n+2}$	
n	$\frac{n+1}{2n} = \frac{n+1}{n+n}$	

Express the following using summation notation:

1	2	L <u>3</u>	∟ ⊣	<u>n+1</u>
n	n+1	n+2		2 <i>n</i>

Value of k	term	Simplification of term
0	$\frac{1}{n}$	$\frac{0+1}{n+0}$
1	$\frac{2}{n+1}$	
2	$\frac{3}{n+2}$	
n	$\frac{n+1}{2n} = \frac{n+1}{n+n}$	

Express the following using summation notation:

1	2	L <u>3</u> J		<u>n+1</u>
n	<i>n</i> +1	n+2	1	2 <i>n</i>

Value of k	term	Simplification of term
0	$\frac{1}{n}$	$\frac{0+1}{n+0}$
1	$\frac{2}{n+1}$	$\frac{1+1}{n+1}$
2	$\frac{3}{n+2}$	
n	$\frac{n+1}{2n} = \frac{n+1}{n+n}$	

Express the following using summation notation:

1	2	L <u>3</u> J	∟ ⊣	n+1
\overline{n}	$\overline{n+1}$	n+2		2 <i>n</i>

Value of k	term	Simplification of term
0	$\frac{1}{n}$	$\frac{0+1}{n+0}$
1	$\frac{2}{n+1}$	$\frac{1+1}{n+1}$
2	$\frac{3}{n+2}$	$\frac{2+1}{n+2}$
n	$\frac{n+1}{2n} = \frac{n+1}{n+n}$	

Express the following using summation notation:

1	2	3	∟ ⊣	n+1
\overline{n}	n+1	n+2		2 <i>n</i>

Value of k	term	Simplification of term
0	$\frac{1}{n}$	$\frac{0+1}{n+0}$
1	$\frac{2}{n+1}$	$\frac{1+1}{n+1}$
2	$\frac{3}{n+2}$	$\frac{2+1}{n+2}$
n	$\frac{n+1}{2n} = \frac{n+1}{n+n}$	$\frac{n+1}{n+n}$

Express the following using summation notation:

$$\frac{1}{n} + \frac{2}{n+1} + \frac{3}{n+2} + \dots + \frac{n+1}{2n} = \sum_{k=0}^{n} \frac{k+1}{n+k}$$

Value of k	term	Simplification of term
0	$\frac{1}{\pi}$	$\frac{0+1}{2}$
1	n 2	n + 0 1 \pm 1
1	$\frac{2}{n+1}$	$\frac{1+1}{n+1}$
2	$\frac{3}{n+2}$	$\frac{2+1}{n+2}$
	n + 2	n + 2
•••		
n	$\frac{n+1}{2n} = \frac{n+1}{n+n}$	$\frac{n+1}{n+n}$

Final Terms

- When solving problems, it is often useful to rewrite a summation using the recursive form of the definition, either by separating off the final term of a summation or by adding a final term to a summation.
- For example, $\sum_{k=m}^{n} a_k$ can be rewritten as $\sum_{k=m}^{n-1} a_k + a_n$ for all integers n > m

Rewrite the following by separating off the final term:

Rewrite the following by separating off the final term:

$$\sum_{k=1}^{n} \frac{1}{k^2} = \sum_{k=1}^{n-1} \frac{1}{k^2} + \frac{1}{n^2}$$

Rewrite the following by separating off the final term:

$$\sum_{k=1}^{n} \frac{1}{k^2} = \sum_{k=1}^{n-1} \frac{1}{k^2} + \frac{1}{n^2}$$

 $\sum_{k=1}^{n+1} \frac{1}{k^2}$

Rewrite the following by separating off the final term:

$$\sum_{k=1}^{n} \frac{1}{k^2} = \sum_{k=1}^{n-1} \frac{1}{k^2} + \frac{1}{n^2}$$

$$\sum_{k=1}^{n+1} \frac{1}{k^2} = \sum_{k=1}^{n} \frac{1}{k^2} + \frac{1}{(n+1)^2}$$

Adding On a Final Term

• Write the following as a single summation. $\sum_{k=0}^{n-1} 2^k + 2^n$

Adding On a Final Term

• Write the following as a single summation.

$$\sum_{k=0}^{n-1} 2^k + 2^n = \sum_{k=0}^n 2^k$$

Adding On a Final Term

■ Write the following as a single summation.

$$\sum_{k=0}^{n-1} 2^k + 2^n = \sum_{k=0}^n 2^k$$

$$\sum_{k=0}^{n} 2^k + 2^{n+1} = \sum_{k=0}^{n+1} 2^k$$

Telescoping sums are finite sums in which pairs of consecutive terms cancel each other, leaving only the initial and final terms. These sums can be rewritten as a simple expression.

■ If you know that

$$\frac{1}{k} - \frac{1}{k+1} = \frac{1}{k(k+1)}$$

Use this identity to find a simple expression for the following sum:

$$\sum_{k=1}^{n} \frac{1}{k(k+1)}$$

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1}\right)$$

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1}\right)$$
$$= \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right) + \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1}\right)$$
$$= \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right) + \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1}\right)$$
$$= \left(\frac{1}{1} - \frac{1}{2}\right) \div \left(\frac{1}{2} - \frac{1}{3}\right) \div \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right) \div \left(\frac{1}{n} - \frac{1}{n+1}\right)$$
$$= 1 - \frac{1}{n+1}$$

Sequences

- Part 1: Motivation sequences in real life
- Part 2: Finding sequences
- Part 3: Summations
- Part 4: Products
- Part 5: Factorials
- Part 6: Properties of Summations, Products, and Factorials
- Part 7: Sequences in Computer Science (i.e. Loops)

Product Notation

- Computer the following products:
- $1. \quad \prod_{k=1}^{1} \frac{k}{k+1}$

Computer the following products:

 $1. \quad \prod_{k=1}^{1} \frac{k}{k+1} = \frac{1}{1+1}$

• Computer the following products:

1.
$$\prod_{k=1}^{1} \frac{k}{k+1} = \frac{1}{1+1} = \frac{1}{2}$$

- Computer the following products:
- 1. $\prod_{k=1}^{1} \frac{k}{k+1} = \frac{1}{1+1} = \frac{1}{2}$
- 2. $\prod_{k=1}^{5} k$

- Computer the following products:
- $1. \quad \prod_{k=1}^{1} \frac{k}{k+1} = \frac{1}{1+1} = \frac{1}{2}$
- 2. $\prod_{k=1}^{5} k = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5$
Computing the Product

- Computer the following products:
- $1. \quad \prod_{k=1}^{1} \frac{k}{k+1} = \frac{1}{1+1} = \frac{1}{2}$
- 2. $\prod_{k=1}^{5} k = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 = 120$

Sequences

- Part 1: Motivation sequences in real life
- Part 2: Finding sequences
- Part 3: Summations
- Part 4: Products
- Part 5: Factorials
- Part 6: Properties of Summations, Products, and Factorials
- Part 7: Sequences in Computer Science (i.e. Loops)

Factorials

■ For each positive integer *n*, the quantity *n* factorial denoted *n*!, is defined to be the product of all the integers from 1 to *n*:

 $n! = n \cdot n - 1 \cdot \dots \cdot 3 \cdot 2 \cdot 1$

■ Zero factorial, denoted 0!, is defined to be 1:

0! = 1

Note: n! really means: how many distinct ways there are to arrange n things?

The Recursive Definition of Factorials

Factorials can be defined recursively as follows:

Given any nonnegative integer, n,

$$n! = \begin{cases} 1 & \text{if } n = 0\\ n \cdot (n-1)! & \text{if } n \ge 1 \end{cases}$$

The First Ten Factorials

0! = 1 $1! = 1 = 1 \cdot 0! = 1 \cdot 1 = 1$ $2! = 2 \cdot 1 = 2 \cdot 1! = 2 \cdot 1 = 2$ $3! = 3 \cdot 2 \cdot 1 = 3 \cdot 2! = 3 \cdot 2 = 6$ $4! = 4 \cdot 3 \cdot 2 \cdot 1 = 4 \cdot 3! = 4 \cdot 6 = 24$ $5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 5 \cdot 4! = 5 \cdot 24 = 120$ $6! = 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 6 \cdot 5! = 6 \cdot 120 = 720$ $7! = 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 7 \cdot 6! = 7 \cdot 720 = 5,040$ $8! = 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 8 \cdot 7! = 8 \cdot 5,040 = 40,320$ $9! = 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 9 \cdot 8! = 9 \cdot 40,320 = 362,880$

- Simplify the following expressions:
- 1. $\frac{8!}{7!}$

1.
$$\frac{8!}{7!} = \frac{8 \cdot 7!}{7!}$$

Simplify the following expressions:

 $1. \quad \frac{8!}{7!} = \frac{8 \cdot 7!}{7!} = 8$

Simplify the following expressions:

1.
$$\frac{8!}{7!} = \frac{8 \cdot 7!}{7!} = 8$$

2. $\frac{5!}{2! \cdot 3!}$

1.
$$\frac{8!}{7!} = \frac{8 \cdot 7!}{7!} = 8$$

2. $\frac{5!}{2! \cdot 3!} = \frac{5 \cdot 4 \cdot 3!}{2! \cdot 3!}$

1.
$$\frac{8!}{7!} = \frac{8 \cdot 7!}{7!} = 8$$

2. $\frac{5!}{2! \cdot 3!} = \frac{5 \cdot 4 \cdot 3!}{2! \cdot 3!} = \frac{5 \cdot 4}{2 \cdot 1}$

1.
$$\frac{8!}{7!} = \frac{8 \cdot 7!}{7!} = 8$$

2. $\frac{5!}{2! \cdot 3!} = \frac{5 \cdot 4 \cdot 3!}{2! \cdot 3!} = \frac{5 \cdot 4}{2 \cdot 1} = \frac{20}{2} = 10$

Simplify the following expressions: 1. $\frac{8!}{7!} = \frac{8 \cdot 7!}{7!} = 8$ 2. $\frac{5!}{2! \cdot 3!} = \frac{5 \cdot 4 \cdot 3!}{2! \cdot 3!} = \frac{5 \cdot 4}{2 \cdot 1} = \frac{20}{2} = 10$ 3. $\frac{1}{2! \cdot 4!} + \frac{1}{3! \cdot 3!}$

Simplify the following expressions:

1. $\frac{8!}{7!} = \frac{8 \cdot 7!}{7!} = 8$ 2. $\frac{5!}{2! \cdot 3!} = \frac{5 \cdot 4 \cdot 3!}{2! \cdot 3!} = \frac{5 \cdot 4}{2 \cdot 1} = \frac{20}{2} = 10$ 3. $\frac{1}{2! \cdot 4!} + \frac{1}{3! \cdot 3!} = \frac{1}{2! \cdot 4!} \cdot \frac{3}{3} + \frac{1}{3! \cdot 3!} \cdot \frac{4}{4}$

Simplify the following expressions:

$$1. \quad \frac{8!}{7!} = \frac{8 \cdot 7!}{7!} = 8$$

$$2. \quad \frac{5!}{2! \cdot 3!} = \frac{5 \cdot 4 \cdot 3!}{2! \cdot 3!} = \frac{5 \cdot 4}{2 \cdot 1} = \frac{20}{2} = 10$$

$$3. \quad \frac{1}{2! \cdot 4!} + \frac{1}{3! \cdot 3!} = \frac{1}{2! \cdot 4!} \cdot \frac{3}{3} + \frac{1}{3! \cdot 3!} \cdot \frac{4}{4} = \frac{3}{3 \cdot 2! \cdot 4!} + \frac{4}{3! \cdot 4 \cdot 3!} = \frac{3}{3! \cdot 4!} + \frac{4}{3! \cdot 4!}$$

Simplify the following expressions:

1.
$$\frac{8!}{7!} = \frac{8 \cdot 7!}{7!} = 8$$

2. $\frac{5!}{2! \cdot 3!} = \frac{5 \cdot 4 \cdot 3!}{2! \cdot 3!} = \frac{5 \cdot 4}{2 \cdot 1} = \frac{20}{2} = 10$
3. $\frac{1}{2! \cdot 4!} + \frac{1}{3! \cdot 3!} = \frac{1}{2! \cdot 4!} \cdot \frac{3}{3} + \frac{1}{3! \cdot 3!} \cdot \frac{4}{4} = \frac{3}{3 \cdot 2! \cdot 4!} + \frac{4}{3! \cdot 4 \cdot 3!} = \frac{3}{3! \cdot 4!} + \frac{4}{3! \cdot 4!} = \frac{7}{3! \cdot 4!} = \frac{7}{144}$

■ Simplify the following expressions:

1.
$$\frac{8!}{7!} = \frac{8 \cdot 7!}{7!} = 8$$

2. $\frac{5!}{2! \cdot 3!} = \frac{5 \cdot 4 \cdot 3!}{2! \cdot 3!} = \frac{5 \cdot 4}{2 \cdot 1} = \frac{20}{2} = 10$
3. $\frac{1}{2! \cdot 4!} + \frac{1}{3! \cdot 3!} = \frac{1}{2! \cdot 4!} \cdot \frac{3}{3} + \frac{1}{3! \cdot 3!} \cdot \frac{4}{4} = \frac{3}{3 \cdot 2! \cdot 4!} + \frac{4}{3! \cdot 4 \cdot 3!} = \frac{3}{3! \cdot 4!} + \frac{4}{3! \cdot 4!} = \frac{7}{3! \cdot 4!} = \frac{7}{144}$
4. $\frac{(n+1)!}{n!}$

1.
$$\frac{8!}{7!} = \frac{8 \cdot 7!}{7!} = 8$$

2.
$$\frac{5!}{2! \cdot 3!} = \frac{5 \cdot 4 \cdot 3!}{2! \cdot 3!} = \frac{5 \cdot 4}{2 \cdot 1} = \frac{20}{2} = 10$$

3.
$$\frac{1}{2! \cdot 4!} + \frac{1}{3! \cdot 3!} = \frac{1}{2! \cdot 4!} \cdot \frac{3}{3} + \frac{1}{3! \cdot 3!} \cdot \frac{4}{4} = \frac{3}{3 \cdot 2! \cdot 4!} + \frac{4}{3! \cdot 4 \cdot 3!} = \frac{3}{3! \cdot 4!} + \frac{4}{3! \cdot 4!} = \frac{7}{3! \cdot 4!} = \frac{7}{144}$$

4.
$$\frac{(n+1)!}{n!} = \frac{(n+1) \cdot n!}{n!}$$

Simplify the following expressions:

1.
$$\frac{8!}{7!} = \frac{8 \cdot 7!}{7!} = 8$$

2. $\frac{5!}{2! \cdot 3!} = \frac{5 \cdot 4 \cdot 3!}{2! \cdot 3!} = \frac{5 \cdot 4}{2 \cdot 1} = \frac{20}{2} = 10$
3. $\frac{1}{2! \cdot 4!} + \frac{1}{3! \cdot 3!} = \frac{1}{2! \cdot 4!} \cdot \frac{3}{3} + \frac{1}{3! \cdot 3!} \cdot \frac{4}{4} = \frac{3}{3 \cdot 2! \cdot 4!} + \frac{4}{3! \cdot 4 \cdot 3!} = \frac{3}{3! \cdot 4!} + \frac{4}{3! \cdot 4!} = \frac{7}{3! \cdot 4!} = \frac{7}{144}$
4. $\frac{(n+1)!}{n!} = \frac{(n+1) \cdot n!}{n!} = n+1$

Simplify the following expressions:

 $\frac{8!}{7!} = \frac{8 \cdot 7!}{7!} = 8$ $\frac{5!}{2! \cdot 3!} = \frac{5 \cdot 4 \cdot 3!}{2! \cdot 3!} = \frac{5 \cdot 4}{2 \cdot 1} = \frac{20}{2} = 10$ $\frac{1}{2! \cdot 4!} + \frac{1}{3! \cdot 3!} = \frac{1}{2! \cdot 4!} \cdot \frac{3}{3} + \frac{1}{3! \cdot 3!} \cdot \frac{4}{4} = \frac{3}{3 \cdot 2! \cdot 4!} + \frac{4}{3! \cdot 4 \cdot 3!} = \frac{3}{3! \cdot 4!} + \frac{4}{3! \cdot 4!} = \frac{7}{3! \cdot 4!} = \frac{7}{144}$ $\frac{(n+1)!}{n!} = \frac{(n+1) \cdot n!}{n!} = n+1$ $\frac{n!}{(n-3)!}$

Simplify the following expressions:

 $\frac{8!}{7!} = \frac{8 \cdot 7!}{7!} = 8$ $\frac{5!}{2! \cdot 3!} = \frac{5 \cdot 4 \cdot 3!}{2! \cdot 3!} = \frac{5 \cdot 4}{2 \cdot 1} = \frac{20}{2} = 10$ $\frac{1}{2! \cdot 4!} + \frac{1}{3! \cdot 3!} = \frac{1}{2! \cdot 4!} \cdot \frac{3}{3} + \frac{1}{3! \cdot 3!} \cdot \frac{4}{4} = \frac{3}{3 \cdot 2! \cdot 4!} + \frac{4}{3! \cdot 4 \cdot 3!} = \frac{3}{3! \cdot 4!} + \frac{4}{3! \cdot 4!} = \frac{7}{3! \cdot 4!} = \frac{7}{144}$ $\frac{(n+1)!}{n!} = \frac{(n+1) \cdot n!}{n!} = n+1$ $\frac{n!}{(n-3)!} = \frac{n \cdot (n-1) \cdot (n-2) \cdot (n-3)!}{(n-3)!}$

Simplify the following expressions:

 $\frac{8!}{7!} = \frac{8 \cdot 7!}{7!} = 8$ $\frac{5!}{2! \cdot 3!} = \frac{5 \cdot 4 \cdot 3!}{2! \cdot 3!} = \frac{5 \cdot 4}{2 \cdot 1} = \frac{20}{2} = 10$ $\frac{1}{2! \cdot 4!} + \frac{1}{3! \cdot 3!} = \frac{1}{2! \cdot 4!} \cdot \frac{3}{3} + \frac{1}{3! \cdot 3!} \cdot \frac{4}{4} = \frac{3}{3 \cdot 2! \cdot 4!} + \frac{4}{3! \cdot 4 \cdot 3!} = \frac{3}{3! \cdot 4!} + \frac{4}{3! \cdot 4!} = \frac{7}{3! \cdot 4!} = \frac{7}{144}$ $\frac{(n+1)!}{n!} = \frac{(n+1) \cdot n!}{n!} = n+1$ $\frac{n!}{(n-3)!} = \frac{n \cdot (n-1) \cdot (n-2) \cdot (n-3)!}{(n-3)!} = n \cdot (n-1) \cdot (n-2)$

Simplify the following expressions:

 $\frac{8!}{7!} = \frac{8 \cdot 7!}{7!} = 8$ $\frac{5!}{2! \cdot 3!} = \frac{5 \cdot 4 \cdot 3!}{2! \cdot 3!} = \frac{5 \cdot 4}{2 \cdot 1} = \frac{20}{2} = 10$ $\frac{1}{2! \cdot 4!} + \frac{1}{3! \cdot 3!} = \frac{1}{2! \cdot 4!} \cdot \frac{3}{3} + \frac{1}{3! \cdot 3!} \cdot \frac{4}{4} = \frac{3}{3 \cdot 2! \cdot 4!} + \frac{4}{3! \cdot 4 \cdot 3!} = \frac{3}{3! \cdot 4!} + \frac{4}{3! \cdot 4!} = \frac{7}{3! \cdot 4!} = \frac{7}{144}$ $\frac{(n+1)!}{n!} = \frac{(n+1) \cdot n!}{n!} = n+1$ $\frac{n!}{(n-3)!} = \frac{n \cdot (n-1) \cdot (n-2) \cdot (n-3)!}{(n-3)!} = n \cdot (n-1) \cdot (n-2) = n^3 - 3n^2 + 2n$

Sequences

- Part 1: Motivation sequences in real life
- Part 2: Finding sequences
- Part 3: Summations
- Part 4: Products
- Part 5: Factorials
- Part 6: Properties of Summations, Products, and Factorials
- Part 7: Sequences in Computer Science (i.e. Loops)

Properties of Summations and Products

■ If a_m , a_{m+1} , a_{m+2} ,... and b_m , b_{m+1} , b_{m+2} ,... are sequences of real numbers and c is any real number, then the following equations hold for any integer n ≥ m:

1.
$$\sum_{k=m}^{n} a_k + \sum_{k=m}^{n} b_k = \sum_{k=m}^{n} (a_k + b_k)$$

2. $c \cdot \sum_{k=m}^{n} a_k = \sum_{k=m}^{n} c \cdot a_k$ generalized distributive law

3.
$$(\prod_{k=m}^{n} a_k) \cdot (\prod_{k=m}^{n} b_k) = \prod_{k=m}^{n} (a_k \cdot b_k)$$

These properties will be helpful when you program loops

• Let $a_k = k + 1$ and $b_k = k - 1$ for all integers k. Write each of the following expression as a single summation:

 $\sum_{k=m}^{n} a_k + 2 \cdot \sum_{k=m}^{n} b_k$

$$\sum_{k=m}^{n} a_k + 2 \cdot \sum_{k=m}^{n} b_k = \sum_{k=m}^{n} (k+1) + 2 \cdot \sum_{k=m}^{n} (k-1)$$

$$\sum_{k=m}^{n} a_k + 2 \cdot \sum_{k=m}^{n} b_k = \sum_{k=m}^{n} (k+1) + 2 \cdot \sum_{k=m}^{n} (k-1)$$
$$= \sum_{k=m}^{n} (k+1) + \sum_{k=m}^{n} 2 \cdot (k-1)$$

$$\sum_{k=m}^{n} a_k + 2 \cdot \sum_{k=m}^{n} b_k = \sum_{k=m}^{n} (k+1) + 2 \cdot \sum_{k=m}^{n} (k-1)$$
$$= \sum_{k=m}^{n} (k+1) + \sum_{k=m}^{n} 2 \cdot (k-1)$$
$$= \sum_{k=m}^{n} ((k+1) + 2 \cdot (k-1))$$

$$\sum_{k=m}^{n} a_k + 2 \cdot \sum_{k=m}^{n} b_k = \sum_{k=m}^{n} (k+1) + 2 \cdot \sum_{k=m}^{n} (k-1)$$

= $\sum_{k=m}^{n} (k+1) + \sum_{k=m}^{n} 2 \cdot (k-1)$
= $\sum_{k=m}^{n} ((k+1) + 2 \cdot (k-1))$
= $\sum_{k=m}^{n} (3k-1)$

• Let $a_k = k + 1$ and $b_k = k - 1$ for all integers k. Write each of the following expression as a single product:

 $(\prod_{k=m}^{n} a_k) \cdot (\prod_{k=m}^{n} b_k)$

$$(\prod_{k=m}^{n} a_k) \cdot (\prod_{k=m}^{n} b_k) = (\prod_{k=m}^{n} (k+1)) \cdot (\prod_{k=m}^{n} (k-1))$$

$$(\prod_{k=m}^{n} a_k) \cdot (\prod_{k=m}^{n} b_k) = (\prod_{k=m}^{n} (k+1)) \cdot (\prod_{k=m}^{n} (k-1))$$
$$= \prod_{k=m}^{n} (k+1)(k-1)$$

$$(\prod_{k=m}^{n} a_k) \cdot (\prod_{k=m}^{n} b_k) = (\prod_{k=m}^{n} (k+1)) \cdot (\prod_{k=m}^{n} (k-1))$$
$$= \prod_{k=m}^{n} (k+1)(k-1)$$
$$= \prod_{k=m}^{n} (k^2 - 1)$$

Sequences

- Part 1: Motivation sequences in real life
- Part 2: Finding sequences
- Part 3: Summations
- Part 4: Products
- Part 5: Factorials
- Part 6: Properties of Summations, Products, and Factorials
- Part 7: Sequences in Computer Science (i.e. Loops)
Notice the following two summations:

$$\sum_{k=1}^{3} k^{2} = 1^{2} + 2^{2} + 3^{2}$$

and
$$\sum_{i=1}^{3} i^{2} = 1^{2} + 2^{2} + 3^{2}$$

We can conclude that

$$\sum_{k=1}^{3} k^2 = \sum_{i=1}^{3} i^2$$

- → The symbol used to represent the index of a summation can be replaced by any other symbol as long as the replacement is made in each location where the symbol occurs.
- → The index of a summation is called a *dummy variable*. Outside of its local context (both before and after), the symbol may have another meaning entirely.

The appearance of a summation can be altered by more complicated changes of variable as well.

$$\sum_{j=2}^{1} (j-1)^2 = (2-1)^2 + (3-1)^2 + (4-1)^2$$

$$= 1^2 + 2^2 + 3^2$$

$$=\sum_{k=1}^{3}k^{2}$$

Δ

Transform the following summation by making the specified change of variable: $summation: \sum_{k=0}^{6} \frac{1}{k+1}, \qquad change \ of \ vairable: j = k+1$ When k = 0, j = k + 1 = 0 + 1 = 1When k = 6, j = k + 1 = 6 + 1 = 7Since j = k + 1, then k = j - 1Hence, $\frac{1}{k+1} = \frac{1}{(j-1)+1} = \frac{1}{j}$

Transform the following summation by making the specified change of variable: summation: $\sum_{k=0}^{6} \frac{1}{k+1}$, change of vairable: j = k+1

Putting all the previous steps together:

$$\sum_{k=0}^{6} \frac{1}{k+1} = \sum_{j=1}^{7} \frac{1}{j}$$

Transform the following summation by making the specified change of variable: summation: $\sum_{k=1}^{n+1} \frac{k}{n+k}$, change of vairable: j = k - 1

When k = 1, j = k - 1 = 1 - 1 = 0When k = n + 1, j = k - 1 = (n + 1) - 1 = nSince j = k - 1, then k = j + 1Hence, $k \qquad j+1 \qquad j+1$

		-		
$\overline{n+k}$	_	$\overline{n+(j+1)}$	_	$\overline{n+j+1}$

Dima Taji – Birzeit University – COMP233 – Second Semester 2021/2022

Transform the following summation by making the specified change of variable: summation: $\sum_{k=1}^{n+1} \frac{k}{n+k}$, change of vairable: j = k - 1

Putting all the previous steps together:

$$\sum_{k=1}^{n+1} \frac{k}{n+k} = \sum_{j=0}^{n} \frac{j+1}{n+j+1}$$

Dummy Variables in Programming Loops

■ Is there a difference between the output of the following algorithm segments?

for i := 1 to n	for j := 0 to n - 1	for k := 2 to n + 1
print a[i]	print a[j + 1]	print a[k - 1]
next i	next j	next k

■ No. All three algorithm segments produce the same output.

Dummy Variables in Programming Loops

■ Is there a difference between the output of the following algorithm segments?

s := a[1]	s := 0
for k := 2 to n	for k := 1 to n
s := s + a[k]	s := s + a[k]
next k	next k

• No, both algorithm segments produce the value of $\sum_{k=1}^{n} a[k]$.

The difference is the initializing of the sum to equal a[1] in the first segment, and initializing it to equal 0 in the second segment.

Floor and Ceiling

- The floor of a number, n, denoted by [n] is the largest integer variable smaller than n.
- The ceiling of a number, n, denoted by [n] is the smallest integer variable larger than n.

Exercise

• Consider the sequence defined by $a_n = \frac{2n+(-1)^n-1}{4}$ for all integers $n \ge 0$. Find an alternative explicit formula for a_n that uses the floor notation.