

FACULTY OF ENGINEERING AND TECHNOLOGY

COMPUTER SCIENCE DEPARTMENT

COMP233 Discrete Mathematics

CHAPTER 5

Sequences And Mathematical Induction

Sequences and Mathematical Induction

■ Section 1:

- *Sequences*
- Section 2:
	- *Mathematical Induction*

Mathematical Induction

■ Part 1: Introduction

- Part 2: Induction is a Method of Proof
- Part 3: Proving Sum of Integers
- Part 4: Proving Geometric Sequences
- Part 5: Proving a Divisibility Property
- Part 6: Proving Inequality
- Part 7: Proving a Property of a Sequence
- Part 8: Deduction vs Induction vs Abduction

What is Mathematical Induction for all integers *n* ≥ *a, P(n)*

■ "Mathematical induction is the standard proof technique in computer science." ϵ is ϵ francesco in the seventeenth century both Pierre de θ and Blaise Pascal use Pascal used the technique in computer science.

In 1883 Augustus De Morgan (best known for De Morgan (best known for De Morgan (best known for De Morgan (best

- It is one of the more recently developed techniques of proof in the history of mathematics. carefully and gave it the name *mathematical induction*. ϵ umiques of proof in the mstory of mathematics.
- The basis of this principle is to generalize specific cases, through observing patterns, to produce a general rule. backward, it makes the one behind it fall backward also. (See Figure 5.2.3) Then imagine
	- *E.g. if I know that if the first domino falls, then the the second domino will fall, and if I can prove that if the kth domino falls, then the (k+1)st domino falls, then I can induce that if the first domino falls, then all the dominos in the train of dominos will fall too.*

Dima Taji – Birzeit University – COMP233 – First Semester 2021/2022 **Figure 5.2.3 If the** *k***th domino falls backward, it pushes the** *(k* + **1***)***st domino backward also.**

Principle of Mathematical Induction

■ Let $P(n)$ be a property that is defined for integers n , and let a be a fixed integer. Suppose the following two statements are true:

- 1. $P(a)$ is true.
- 2. For all integers $k \ge a$, if $P(k)$ is true then $P(k + 1)$ is true.

Then the statement

for all integers $n \ge a, P(n)$

is true.

It's called a principle because it uses conjuncture to generate a rule instead of laws.

Mathematical Induction

- Part 1: Introduction
- Part 2: Induction is a Method of Proof
- Part 3: Proving Sum of Integers
- Part 4: Proving Geometric Sequences
- Part 5: Proving a Divisibility Property
- Part 6: Proving Inequality
- Part 7: Proving a Property of a Sequence
- Part 8: Deduction vs Induction vs Abduction

Method of Proof by Mathematical Induction

■ Consider a statement of the form, "For all integers $n \ge a$, a property $P(n)$ is true." To prove such a statement, perform the following two steps:

Step 1 (basis step): Show that $P(a)$ is true.

Step 2 (inductive step): Show that for all integers $k \ge a$, if $P(k)$ is true then $P(k + 1)$ is true. To perform this step:

1. suppose that $P(k)$ is true, where k is any particular but arbitrarily chosen integer with k $> a$.

Then

2. show that $P(k + 1)$ is true.

We call this the inductive hypothesis

Example – cont.

- Show that for all integers $n \geq 8$, $n\mathfrak{e}$ can be obtained using any combination of 3 \mathfrak{e} and 5¢ coins only.
- Let $P(n)$ be the sentence: $n \notin \mathcal{C}$ *an be obtained using* 3¢ *and* 5¢ *coins.*
- Step 1 (basis step): Show $P(8)$ is true.
	- 8¢ *can be obtained using* 3¢ *and* 5¢ *coins.*

Example – cont.

- Step 2 (inductive step): Show for all $k \geq 8$, if $P(k)$ is true then $P(k + 1)$ is true.
	- *Inductive hypothesis: Suppose* $P(k)$ *is true:*

Case 1: P(k) contains a 5¢ coin: replace the 5¢ coin with two 3¢ coins, and you have $P(k + 1)$ *.*

Case 2: P(k) doesn't contain a 5¢ coin: since $k \geq 8$ *, it must contain at least three* 3¢ *coins, which can be replaced by two* 5¢ *coins, and you have* $P(k + 1)$ *.*

■ In either case, $P(k + 1)$ can be obtained using 3¢ and 5¢ coins.

Mathematical Induction

- Part 1: Introduction
- Part 2: Induction is a Method of Proof
- Part 3: Proving Sum of Integers
- Part 4: Proving Geometric Sequences
- Part 5: Proving a Divisibility Property
- Part 6: Proving Inequality
- Part 7: Proving a Property of a Sequence
- Part 8: Deduction vs Induction vs Abduction

Sum of the First n Integers

■ What is result of the following summation: 100

 κ

Sum of the First n Integers

■ What is result of the following summation: 100

$$
1 + 2 + 3 + \dots + 50 + 51 + \dots + 98 + 99 + 100
$$

= 101 + 101 + \dots + 101 (50 times)
= 5050

$$
= \frac{100 \times 101}{2} = \frac{n(n + 1)}{2}
$$

 κ

Terminology

- A closed form: is an expression that can be computed by applying a fixed number of \blacksquare familiar operations to the arguments.
- This means that we don't have to iterate (loop) over an unknown number of \blacksquare calculations.
- $\frac{n(n+1)}{2}$ is the closed form of the summation $\sum_{i=0}^{n} n$.

Sum of the First *n* Integers Theorem

For all integers
$$
n \ge 1
$$
, $1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}$

Show that P(1) is true:
$$
P(1) = \frac{1 \times (1+1)}{2} = \frac{2}{2} = 1
$$

■ Show for all integers $k \geq 1$, if P(k) is true then P(k+1) is also true.

Suppose P(k) is true: 1 + 2 + 3 + ... + k =
$$
\frac{k(k+1)}{2}
$$
, and show that $P(k+1) = \frac{(k+1)(k+2)}{2}$
\n
$$
P(k+1) = P(k) + (k+1) = \frac{k(k+1)}{2} + (k+1)
$$
\n
$$
= \frac{\bar{\kappa}(k+1)}{2} + \frac{2(k+1)}{2} = \frac{k^2 + k}{2} + \frac{2k + 2}{2} = \frac{k^2 + 3k + 2}{2} = \frac{(k+1)(k+2)}{2}
$$

Separating off the last term

Sum of the First *n* Integers in Programming

Prove that the following code segments produce the same result for value of $n \geq 1$:

```
int s = 0;
for (int i = 0; i <= n; i++) {
         s = s + i:
}
                                                        int s = (n * (n + 1)) / 2;
```
The proof of this question is the same as the proof of the statement:

For all integers $n \geq 1, 1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}$)

- Evaluate the following expressions:
- 1. $2+4+6+\cdots+500$

- Evaluate the following expressions:
- 1. $2+4+6+\cdots+500 = 2(1+2+3+\ldots+250)$

- Evaluate the following expressions: \blacksquare
- 1. 2 + 4 + 6 + … + 500 = 2 (1 + 2 + 3 + … + 250) = $2 \times \frac{250 \times 251}{2}$

- Evaluate the following expressions: \blacksquare
- 1. 2 + 4 + 6 + … + 500 = 2 (1 + 2 + 3 + … + 250) = $2 \times \frac{250 \times 251}{2}$ = 62,750

- Evaluate the following expressions: \blacksquare
- 1. 2 + 4 + 6 + … + 500 = 2 (1 + 2 + 3 + … + 250) = $2 \times \frac{250 \times 251}{2}$ = 62,750
- 2. $5+6+7+ ...+50$

- Evaluate the following expressions: \blacksquare
- 1. 2 + 4 + 6 + … + 500 = 2 (1 + 2 + 3 + … + 250) = $2 \times \frac{250 \times 251}{2}$ = 62,750
- 2. $5+6+7+ ...+50 = 1+2+3+4+5+6+7+...+50-(1+2+3+4)$

- Evaluate the following expressions: \blacksquare
- 1. 2 + 4 + 6 + … + 500 = 2 (1 + 2 + 3 + … + 250) = $2 \times \frac{250 \times 251}{2}$ = 62,750
- 2. $5+6+7+ ...+50 = 1+2+3+4+5+6+7+...+50-(1+2+3+4)$

■ Evaluate the following expressions:

1. $2+4+6+\cdots+500 = 2(1+2+3+\dots+250) = 2 \times \frac{250 \times 251}{2}$) $= 62,750$

2. $5 + 6 + 7 + ... + 50 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + ... + 50 - (1 + 2 + 3 + 4)$ $=\frac{50\times51}{2}-10$

■ Evaluate the following expressions:

1. $2+4+6+\cdots+500 = 2(1+2+3+\dots+250) = 2 \times \frac{250 \times 251}{2}$) $= 62,750$ 2. $5 + 6 + 7 + ... + 50 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + ... + 50 - (1 + 2 + 3 + 4)$

$$
=\frac{50\times51}{2}-10=1,265
$$

■ Evaluate the following expressions:

1. $2+4+6+\cdots+500 = 2(1+2+3+\dots+250) = 2 \times \frac{250 \times 251}{2}$) $= 62,750$ 2. $5 + 6 + 7 + ... + 50 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + ... + 50 - (1 + 2 + 3 + 4)$ $=\frac{50\times51}{2}-10=1,265$

3. For an integer $h \geq 2$, write $1 + 2 + 3 + \cdots + (h - 1)$ in closed form

Evaluate the following expressions: \blacksquare

1. $2 + 4 + 6 + \dots + 500 = 2(1 + 2 + 3 + \dots + 250) = 2 \times \frac{250 \times 251}{2} = 62,750$ 2. $5+6+7+ ...+50 = 1+2+3+4+5+6+7+...+50-(1+2+3+4)$ $=\frac{50\times51}{2}-10=1,265$

3. For an integer $h \ge 2$, write $1 + 2 + 3 + \cdots + (h - 1)$ in closed form $=\frac{(h-1)((h-1)+1)}{2}$

Evaluate the following expressions: \blacksquare

1. 2 + 4 + 6 + … + 500 = 2 (1 + 2 + 3 + … + 250) = $2 \times \frac{250 \times 251}{2}$ = 62,750 2. $5+6+7+ ...+50 = 1+2+3+4+5+6+7+...+50-(1+2+3+4)$ $=\frac{50\times51}{2}-10=1,265$

3. For an integer $h \ge 2$, write $1 + 2 + 3 + \cdots + (h - 1)$ in closed form

$$
=\frac{(h-1)((h-1)+1)}{2}=\frac{(h-1)h}{2}
$$

Mathematical Induction

- Part 1: Introduction
- Part 2: Induction is a Method of Proof
- Part 3: Proving Sum of Integers
- Part 4: Proving Geometric Sequences
- Part 5: Proving a Divisibility Property
- Part 6: Proving Inequality
- Part 7: Proving a Property of a Sequence
- Part 8: Deduction vs Induction vs Abduction

For any real number r other than 1, and any integer $n \geq 0$: \blacksquare $\sum_{i=1}^{n} r^{i} = \frac{r^{n+1}-1}{r-1}$

Prove this using mathematical induction.

■
$$
P(0) = \sum_{i=0}^{0} r^{i} = \frac{r^{0+1}-1}{r-1} = \frac{r-1}{r-1} = 1
$$

\n■
$$
P(k) = \sum_{i=0}^{k} r^{i} = \frac{r^{k+1}-1}{r-1}
$$

\n■
$$
P(k+1) = \sum_{i=0}^{k+1} r^{i} = \frac{r^{k+2}-1}{r-1}
$$

basis step

inductive hypothesis

we need to show that this is true.

 $P(k + 1) = P(k) + r^{(k+1)}$

$$
P(k + 1) = P(k) + r^{(k+1)} = \sum_{i=0}^{k} r^{i} + r^{(k+1)}
$$

=
$$
\frac{r^{(k+1)} - 1}{r - 1} + r^{(k+1)}
$$

=
$$
\frac{r^{(k+1)} - 1}{r - 1} + \frac{r^{(k+1)}(r - 1)}{r - 1}
$$

=
$$
\frac{r^{(k+1)} - 1 + r \times r^{(k+1)} - r^{(k+1)}}{r - 1}
$$

=
$$
\frac{r^{(k+1)} - 1 + r^{(k+2)} - r^{(k+1)}}{r - 1}
$$

=
$$
\frac{r^{(k+2)} - 1}{r - 1}
$$

which we wanted to prove

Food for Thought

- Can you write two different algorithms that produce the sum of a geometric sequences, one that uses a loop and one that doesn't?
- Which one is cheaper^{*} for the computer?
	- *cheaper means less resources (e.g. memory) and/or less time

■ Assuming that $m \geq 3$, write the following summations in closed forms:

1. 1 + 3 + 9 + 27 + ... + 3^{m-2}

- Assuming that $m \geq 3$, write the following summations in closed forms: \blacksquare
- 1. 1 + 3 + 9 + 27 + ... + $3^{m-2} = 3^0 + 3^1 + 3^2 + \dots + 3^{m-2}$

■ Assuming that $m \geq 3$, write the following summations in closed forms:

1. $1+3+9+27+...+3^{m-2}=3^0+3^1+3^2+...+3^{m-2}$

$$
=\frac{3^{(m-2)+1}-1}{3-1}
$$

■ Assuming that $m \geq 3$, write the following summations in closed forms:

1. $1+3+9+27+...+3^{m-2}=3^0+3^1+3^2+...+3^{m-2}$

$$
=\frac{3^{(m-2)+1}-1}{3-1}=\frac{3^{m-1}-1}{2}
$$

■ Assuming that $m \geq 3$, write the following summations in closed forms:

1. $1 + 3 + 9 + 27 + ... + 3^{m-2} = 3^0 + 3^1 + 3^2 + ... + 3^{m-2}$

$$
=\frac{3^{(m-2)+1}-1}{3-1}=\frac{3^{m-1}-1}{2}
$$

2. $9 + 27 + 81 + \dots + 3^m$

■ Assuming that $m \geq 3$, write the following summations in closed forms: 1. $1 + 3 + 9 + 27 + ... + 3^{m-2} = 3^0 + 3^1 + 3^2 + ... + 3^{m-2}$ = $3^{(m-2)+1}-1$ $3 - 1$ = $3^{m-1}-1$) 2. $9 + 27 + 81 + \dots + 3^m = 3^2 + 3^3 + 3^4 + \dots + 3^m$

■ Assuming that $m \geq 3$, write the following summations in closed forms: 1. $1 + 3 + 9 + 27 + ... + 3^{m-2} = 3^0 + 3^1 + 3^2 + ... + 3^{m-2}$ = $3^{(m-2)+1}-1$ $3 - 1$ = $3^{m-1}-1$) 2. $9 + 27 + 81 + \dots + 3^m = 3^2 + 3^3 + 3^4 + \dots + 3^m$ $= 3^2 \times (3^0 + 3^1 + 3^2 + \cdots + 3^{(m-2)})$

■ Assuming that $m \geq 3$, write the following summations in closed forms: 1. $1 + 3 + 9 + 27 + ... + 3^{m-2} = 3^0 + 3^1 + 3^2 + ... + 3^{m-2}$ = $3^{(m-2)+1}-1$ $3 - 1$ = $3^{m-1}-1$) 2. $9 + 27 + 81 + \dots + 3^m = 3^2 + 3^3 + 3^4 + \dots + 3^m$ $= 3^2 \times (3^0 + 3^1 + 3^2 + \dots + 3^{(m-2)}) = 9 \times \frac{3^{m-1}-1}{2}$)

Mathematical Induction

- Part 1: Introduction
- Part 2: Induction is a Method of Proof
- Part 3: Proving Sum of Integers
- Part 4: Proving Geometric Sequences
- Part 5: Proving a Divisibility Property
- Part 6: Proving Inequality
- Part 7: Proving a Property of a Sequence
- Part 8: Deduction vs Induction vs Abduction

Proving a Divisibility Property

■ Use mathematical induction to prove that for all integers $n \geq 1$, $2^{2n} - 1$ is divisible by 3.

Basis step: $P(1) = 2^{2 \cdot 1} - 1 = 4 - 1 = 3$, which is divisible by 3.

Inductive hypothesis: $2^{2k} - 1$ is divisible by 3.

show that $P(k + 1) = 2^{2(k+1)} - 1$ is divisible by 3.

 $2^{2(k+1)} - 1 = 2^{2k+2}$ $= 2^{2k} \cdot 2^2 - 1$ $= 2^{2k} \cdot 4 - 1 = 2^{2k} \cdot (3 + 1) - 1$ $= 3 \cdot 2^{2k} + 2^{2k} - 1$ Divisible by 3 from the inductive hypothesis

Dima Taji – Birzeit University – COMP233 – First Semester 2021/2022 Divisible by 3 because 2^{2k} is an integer

Mathematical Induction

- Part 1: Introduction
- Part 2: Induction is a Method of Proof
- Part 3: Proving Sum of Integers
- Part 4: Proving Geometric Sequences
- Part 5: Proving a Divisibility Property
- Part 6: Proving Inequality
- Part 7: Proving a Property of a Sequence
- Part 8: Deduction vs Induction vs Abduction

Proving an Inequality

- Use mathematical induction to prove that for all integers $n \geq 3$, $2n + 1 < 2^n$.
- What's different about this property is that it is an inequality, but inequalities work the same as any other property.
- Basis step: $P(3)$: $2 \times 3 + 1 < 2^3$
	- $7 < 8$, which is true.
- Inductive Hypothesis: $P(k)$: $2 \cdot k + 1 < 2^k$ (we assume this is true)
- We need to show that $P(k + 1)$: $2(k + 1) + 1 < 2^{(k+1)}$

Proving an Inequality – cont.

■ Use mathematical induction to prove that for all integers $n \geq 3$, $2n + 1 < 2^n$.

$$
2(k + 1) + 1 = 2k + 2 + 1 = 2k + 3 = (2k + 1) + 2
$$

Since we know that $2k + 1 < 2^k$ from our inductive hypothesis we can use the inequality $2 \cdot k + 1 < 2^k$

And since $n \geq 3$, then by default $k > 2$, which makes $2 < 2^k$

And by using these two inequalities:

$$
(2k+1) + 2 < 2^k + 2^k
$$
\n
$$
(2k+1) + 2 < 2^{k+1}
$$
\nwhich is what we needed to show

Mathematical Induction

- Part 1: Introduction
- Part 2: Induction is a Method of Proof
- Part 3: Proving Sum of Integers
- Part 4: Proving Geometric Sequences
- Part 5: Proving a Divisibility Property
- Part 6: Proving Inequality
- Part 7: Proving a Property of a Sequence
- Part 8: Deduction vs Induction vs Abduction

Proving a Property of a Sequence

■ We have a sequence that is defined as follows:

$$
a_1 = 2
$$

- $a_k = 5a_{k-1}$ for all integers $k \geq 2$
- We need to use mathematical induction to show that the terms of the sequence satisfy the property

 $a_n = 2 \times 5^{n-1}$ for all integers n ≥ 1

Proving a Property of a Sequence – cont.

■ For practice, let's write the first five terms of the sequence: $a_1 = 2$ $a_2 = 5a_{2-1} = 5a_1 = 5 \times 2 = 10$ $a_3 = 5a_{3-1} = 5a_2 = 5 \times 10 = 50$ $a_4 = 5a_{4-1} = 5a_3 = 5 \times 50 = 250$ $a_5 = 5a_{5-1} = 5a_4 = 5 \times 250 = 1250$

Proving a Property of a Sequence – cont.

- We want to use mathematical induction to prove that $a_n = 2 \times 5^{n-1}$ for all integers n ≥ 1
- Basis step: $P(1) = 2 \times 5^{1-1} = 2 \times 5^0 = 2 \times 1 = 2$, which matches the first term in our definition.
- Inductive hypothesis: we assume that $P(k) = 2 \times 5^{k-1}$ is true

We need to show that

 $P(k + 1) = 2 \times 5^{(k+1)-1} = 2 \times 5^k$

Proving a Property of a Sequence – cont.

■ According to the definition of the sequence: $a_{k+1} = 5a_{(k+1)-1} = 5a_k$

And through our inductive hypothesis, we know that $a_k = 2 \times 5^{k-1}$ Therefore:

$$
a_{k+1} = 5 \times (2 \times 5^{k-1})
$$

= 2 \times (5 \times 5^{k-1})
= 2 \times (5^k) \twhich is what we needed to show

Mathematical Induction

- Part 1: Introduction
- Part 2: Induction is a Method of Proof
- Part 3: Proving Sum of Integers
- Part 4: Proving Geometric Sequences
- Part 5: Proving a Divisibility Property
- Part 6: Proving Inequality
- Part 7: Proving a Property of a Sequence
- Part 8: Deduction vs Induction vs Abduction

Deduction vs Induction vs A

Deductive reasoning, or *deduction*, is making an inference facts or premises. If a beverage is defined as "drinkable thr deduction to determine soup to be a beverage.

Inductive reasoning, or *induction*, is making an inference band often of a sample. You can induce that the soup is tasty if y consuming it.

Abductive reasoning, or *abduction*, is making a probable co know. If you see an abandoned bowl of hot soup on the tab conclude the owner of the soup is likely returning soon.