

FACULTY OF ENGINEERING AND TECHNOLOGY

COMPUTER SCIENCE DEPARTMENT

COMP233 Discrete Mathematics

CHAPTER 6

Set Theory

Set Theory

6.1. Basic Definitions of Set Theory 6.2 Properties of Sets 6.3 Algebraic Proofs 6.4 Boolean Algebras

Set Theory

6.1. Basic Definitions of Set Theory

6.2 Properties of Sets

6.3 Algebraic Proofs

6.4 Boolean Algebras

Basic Definitions of Set Theory

- Basic Definitions and Set Properties
- Subsets and Proper Subsets
- Set Equality
- Operations on Sets
- Partitions of Sets
- Cartesian Products

Basic Definitions of Set Theory

■ Basic Definitions and Set Properties

- Subsets and Proper Subsets
- Set Equality
- Operations on Sets
- Partitions of Sets
- Cartesian Products

Basic Definitions

"A set is a collection into a whole M of definite and separate objects of our intuition or our thought. These objects are called the elements of M."

Georg Cantor

A set is an *unordered* collection of *different* elements.

An element (or a member) of a set is any one of the **distinct** objects that belong to that set.

Notation of Sets

Conventionally, we denote a set by a capital letter and denote the elements of the set by lower-case letters. We usually separate the elements using commas.

For example, we can write the set A that contains the vowels of the English alphabet as:

$$
A = \{a, e, i, o, u\}
$$

We read this as 'the set A containing the vowels of the English alphabet'.

Basic Definitions – cont.

By definition:

■ The order of elements in a set is not relevant.

For example, $\{a, e, i, o, u\}$ is the same set as $\{e, o, i, u, a\}$

■ Elements of a set cannot be repeated.

For example, $\{a, e, i, o, u, i\}$ is not allowed.

Notation of Sets

■ Defining a set by listing all the elements of set like this $A = \{a, e, i, o, u\}$

is called the roster nation.

■ Defining a set by its property like this $A = \{x \mid x \text{ is a vowel in the English language}\}\$

is called the set-builder notation.

■ Sets can also be defined using Venn diagrams:

Notation of Elements

In the previous example,

$$
A = \{a, e, i, o, u\}
$$

 a is an element of the set A .

However, $\{a\}$ is not an element of the set A.

 ${a} \neq a$

Notation of Elements – cont.

- An element of a set may be a different set.
- For example, $\{1,\{a\}\}\$ is a set that contains 2 elements: 1 and $\{a\}$.

Notation of Set Membership

In the example,

$$
A = \{a, e, i, o, u\}
$$

To say that a is an element (or a member) of the set A, we use the notation $a \in A$. To say that b is not an element (or a member) of the set A, we use the notation $b \notin A$.

These statements can have a truth value:

 $a \in A$ is true

 $h \in A$ is false

Empty Set Notation

- A set can potentially have no elements. In this case, it is
- An empty set is denoted by $\{ \}$ or the null sign Ø
- In the past, "O" was occasionally used as a symbol for th considered to be an improper use of notation. (Wikipedia,

Empty Set Notation – cont.

- An empty set is **NOT** the same as a set containing the element Ø: $\{\} \neq \{\emptyset\}$
- An empty set is **NOT** the same as a set containing the element 0: $\{\}\neq\{0\}$

Basic Definitions of Set Theory

- Basic Definitions and Set Properties
- Subsets and Proper Subsets
- Set Equality
- Operations on Sets
- Partitions of Sets
- Cartesian Products

Subsets

■ If A and B are sets, then A is called a subset of B, written $A \subseteq B$, if, and only if, every element of A is also an element of B .

$$
A \subseteq B \iff \forall x, \qquad x \in A \to x \in B
$$

■ This is equivalent to saying A is contained in B , and B contains A .

Subsets – example

- **Z** is the set of all integers
- **Q** is the set of all rational numbers
- \blacksquare \blacksquare is the set of all real numbers

 $\mathbb{Z} \subseteq \mathbb{Q}$ ℚ ⊆ ℝ ℤ ⊆ ℝ

Proper Subsets

- If A and B are sets, then A is called a proper subset of B, denoted by $A \subset B$, if, and only if, every element of A is also an element of B , but there is at least on element of B that is not in A .
- For example,

$$
A = \{1, 2, 3\}, B = \{1, 2, 3\}
$$

A is a subset of B, but it is not a proper subset of B. $A = \{1, 2, 3\}, B = \{1, 2, 3, 4\}$

A is a proper subset of B .

Not-a-Subset Relation

- The relationship 'not a subset', denoted by $A \nsubseteq B$, can happen in three cases:
- 1. When none of the elements in A is in B.

2. When some elements in A are in B, but some elements of A are not in B.

 $\sf B$

A

3. When B is a proper subset of A.

∈ vs ⊆

Are the following statements true or false?

- \blacksquare 2 $\in \{1, 2, 3\}$ ✓
- \blacksquare $\{2\} \in \{1, 2, 3\}$ \times
- \blacksquare 2 \subseteq {1, 2, 3} ✗
- \blacksquare $\{2\} \subseteq \{1, 2, 3\}$ ✓
- ${2} \subseteq {1}, {2}$ ✗
- $\{\{2\}\}\subseteq \{\{1\},\{2\}\}\$ \checkmark
- ${\bullet}$ ${2} \in {1}, {2}$ ✓

Proof of Subset Relations

■ Define the sets A and B as follows:

$$
A = \{ m \in \mathbb{Z} \mid m = 6r + 12 \text{ for some } r \in \mathbb{Z} \}
$$

$$
B = \{ n \in \mathbb{Z} \mid n = 3s \text{ for some } s \in \mathbb{Z} \}
$$

Prove that $A \subseteq B$.

- Suppose x is an arbitrarily chosen element of A .
- Show that $x \in B$, meaning show that $x = 3s$ for some $s \in \mathbb{Z}$.

Proof of Subset Relations – cont.

Suppose $x \in A$

Then, by definition,

 $x = 6r + 12$ $x = 3(2r + 4)$

Let $2r + 4 = s$, which is an integer because it's the result of the multiplication and addition of integers

 $x = 3s$

Therefore, $x \in B$, and as such, $A \subseteq B$

Power Sets

 \blacksquare Given a set A, the power set of A, denoted $\mathcal{P}(A)$, is the set of all subsets of A.

■ For example,

 $\mathcal{P}(\{x, y\}) = \{\emptyset, \{x\}, \{y\}, \{x, y\}\}\$

Basic Definitions of Set Theory

- Basic Definitions and Set Properties
- Subsets and Proper Subsets
- Set Equality
- Operations on Sets
- Partitions of Sets
- Cartesian Products

Set Equality

Given sets A and B, A equals B, written $A = B$, if, and only if, every element of A is in B and every element of B is in A . $A \subseteq B$

 $B \subseteq A$

 $A = B \Leftrightarrow A \subseteq B$ and $B \subseteq A$

Proof of Set Equality

■ Define the sets A and B as follows:

$$
A = \{ m \in \mathbb{Z} \mid m = 2r \text{ for some } r \in \mathbb{Z} \}
$$

$$
B = \{ n \in \mathbb{Z} \mid n = 2s - 2 \text{ for some } s \in \mathbb{Z} \}
$$

Prove that $A = B$.

• *Prove that* $A \subseteq B$.

An exercise to do at home

• Prove that $B \subseteq A$.

Basic Definitions of Set Theory

- Basic Definitions and Set Properties
- Subsets and Proper Subsets
- Set Equality
- Operations on Sets
- Partitions of Sets
- Cartesian Products

Universal Sets

- \blacksquare A universal set, usually denoted by U, is a set which has elements of all the related sets, without any repetition of elements.
- If we talk about people, a universal set in this context is a set of all the people in the world.
- If we talk about numbers, a universal set in this case is the set of all real numbers.
- Universal sets are also called a universe of discourse.

Operations on Sets

• **Definition**

Let *A* and *B* be subsets of a universal set *U*.

- 1. The **union** of *A* and *B*, denoted *A* ∪ *B,* is the set of all elements that are in at least one of *A* or *B*.
- 2. The **intersection** of *A* and *B*, denoted $A \cap B$, is the set of all elements that are common to both *A* and *B*.
- 3. The **difference** of *B* minus *A* (or **relative complement** of *A* in *B*), denoted *B* − *A,* is the set of all elements that are in *B* and not *A*.
- 4. The **complement** of A, denoted A^c , is the set of all elements in U that are not in *A*.

Symbolically: $A \cup B = \{x \in U \mid x \in A \text{ or } x \in B\},\$ $A \cap B = \{x \in U \mid x \in A \text{ and } x \in B\},\$ $B - A = \{x \in U \mid x \in B \text{ and } x \notin A\},\$ $A^{c} = \{x \in U \mid x \notin A\}.$

Venn Diagrams of Set Operations Print Diagrams of Soc operations Stock Montage

Giuseppe Peano

Dima Taji - Birzeit University - COMP233 - First Semester 2021/2022 *B* $\frac{1}{2}$ *d*_, $\frac{1}{2}$ $\frac{1}{2}$ *^B* = {*d, ^e, ^f, ^g*}. Find *^A* [∪] *^B, ^A* [∩] *^B, ^B* [−] *^A*, and *^A^c*. *B* $\frac{1}{2}$ *d*_{*d*} $\frac{1}{2}$ *e*_{*d*} $\frac{1}{2}$ *d* $\frac{1}{2}$ *d* $\frac{1}{2}$ $\frac{1}{2$ *^B* = {*d, ^e, ^f, ^g*}. Find *^A* [∪] *^B, ^A* [∩] *^B, ^B* [−] *^A*, and *^A^c*.

Example 6.1.5 Unions, Intersections, Differences, and Complements

Basic Definitions of Set Theory

- Basic Definitions and Set Properties
- Subsets and Proper Subsets
- Set Equality
- Operations on Sets
- Partitions of Sets
- Cartesian Products

Disjoint Sets

■ Two sets are called disjoint if, and only if, they have no elements in common.

A and B are disjoint $\Leftrightarrow A \cap B = \emptyset$

■ For example,

$$
A = \{1, 3, 5\}
$$

$$
B = \{2, 4, 6\}
$$

 A and B are disjoint because

 $\{1, 3, 5\} \cap \{2, 4, 6\} = \{\}\$

Mutually Disjoint Sets

■ Sets $A_1, A_2, ..., A_n$ are mutually disjoint (or pairwise disjoint, or nonoverlapping) if, and only if, no two sets A_i and A_j with distinct subscripts have any elements in common.

■ More precisely, for all
$$
i, j = 1, 2, ..., n
$$

\n $A_i \cap A_j = \emptyset$ whenever $i \neq j$

Mutually Disjoint Sets – examples

■ Let

$$
A_1 = \{3, 5\}
$$

$$
A_2 = \{1, 4, 6\}
$$

$$
A_3 = \{2\}
$$

Are A_1 , A_2 , and A_3 mutually disjoint? Yes, they are.

■ Let

$$
B_1 = \{2, 4, 6\}
$$

\n
$$
B_2 = \{3, 7\}
$$

\n
$$
B_3 = \{4, 5\}
$$

Are B_1 , B_2 , and B_3 mutually disjoint? No, they are not.

Partitions of Sets

- A partition of a set is a grouping of its elements into non-empty subsets, in such a way that every element is included in exactly one subset.
- For example, if we divide all the students in this class to groups, where no student is in two groups at the same time, then these groups will be a partition of the class.

Partition of Sets – Formal Definition

- A finite or infinite collection of non-empty sets $\{A_1, A_2, A_3, ...\}$ is a partition of a set A if, and only if,
- 1. The set A is the union of all the $A_i s$
- 2. The sets A_1 , A_2 , A_3 , ... are mutually disjoint

Partition of Sets - Example

Let Z be the set of all integers, and let

 $T_0 = \{ n \in \mathbb{Z} \mid n = 3k, \text{ for some integer } k \},$ $T_1 = \{ n \in \mathbb{Z} \mid n = 3k + 1, \text{ for some integer } k \},$ $T_2 = \{ n \in \mathbb{Z} \mid n = 3k + 2, \text{ for some integer } k \}.$

Is $\{T_0, T_1, T_2\}$ a partition of \mathbb{Z} ?

Yes. By the quotient-remainder theorem, every integer n can be represented in exactly one of the three forms

n=3k or n=3k+1 or n=3k+2

It also implies that every integer is in one of the sets T_0 , T_1 , T_2 , so $\mathbb{Z} = T_0 \cup T_1 \cup T_2$.

Basic Definitions of Set Theory

- Basic Definitions and Set Properties
- Subsets and Proper Subsets
- Set Equality
- Operations on Sets
- Partitions of Sets
- Cartesian Products

n-tuples {*a, a, b*} all represent the same set. The notation for an *ordered n-tuple* is a generalization into account.

• **Definition**

Let *n* be a positive integer and let x_1, x_2, \ldots, x_n be (not necessarily distinct) elements. The **ordered** *n*-tuple, (x_1, x_2, \ldots, x_n) , consists of x_1, x_2, \ldots, x_n together with the ordering: first x_1 , then x_2 , and so forth up to x_n . An ordered 2-tuple is called an **ordered pair,** and an ordered 3-tuple is called an **ordered triple.**

Two ordered *n*-tuples (x_1, x_2, \ldots, x_n) and (y_1, y_2, \ldots, y_n) are **equal** if, and only if, $x_1 = y_1, x_2 = y_2, \ldots, x_n = y_n$.

Symbolically:

 $(x_1, x_2, \ldots, x_n) = (y_1, y_2, \ldots, y_n) \Leftrightarrow x_1 = y_1, x_2 = y_2, \ldots, x_n = y_n.$

In particular,

$$
(a, b) = (c, d) \Leftrightarrow a = c \text{ and } b = d.
$$

Learning Rights Reserved. May not be copied, scannDimed TaplicarBitza in Multicare Right Compassam Fireth Sesses that 2021/2022 may be suppressed from the eBook and/or eChapter(s). od that a unproceed contant does not meterially effect the overall learning experience. Congege I earning recepted to right to remove additional contant of any time if subsequent rights restrictions require it.

n -tuples – example

 $(1, 2) = (2, 1)$?

– *No, by definition of equality and order of pairs:* $(1, 2) = (2, 1) \Leftrightarrow 1 = 2$ and $2 = 1$

But $1 \neq 2$, and so the ordered pairs are not equal.

- $(3, (-2)^2, \frac{1}{2}) = (\sqrt{9}, 4, 3/6)$?
	- *Yes, by definition of equality and order of pairs: (3, (-2)², ½)* = (√9, 4, 3/6) ⇔ 3 = √9 and (-2)² = 4 and ½ = 3/6.

Because all these equations are true, the two ordered triples are equal.

Cartesian Product and the two orders are all the two orders are equations are equations are equations are equal.

• **Definition**

Given sets A_1, A_2, \ldots, A_n , the **Cartesian product** of A_1, A_2, \ldots, A_n denoted $A_1 \times A_2 \times \ldots \times A_n$, is the set of all ordered *n*-tuples (a_1, a_2, \ldots, a_n) where $a_1 \in A_1, a_2 \in A_2, \ldots, a_n \in A_n$. Symbolically:

$$
A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \ldots, a_n) \mid a_1 \in A_1, a_2 \in A_2, \ldots, a_n \in A_n\}.
$$

In particular,

$$
A_1 \times A_2 = \{(a_1, a_2) \mid a_1 \in A_1 \text{ and } a_2 \in A_2\}
$$

is the Cartesian product of A_1 and A_2 .

Dima Taji – Birzeit University – COMP233 – First Semester 2021/2022 **Example 6.1.14 Cartesian Products**

Cartesian Product – example

Let
$$
A = \{x, y\}
$$
, $B = \{1, 2, 3\}$, and $C = \{a, b\}$

1. Find $A \times B$

 $A \times B = \{(x, 1), (x, 2), (x, 3), (y, 1), (y, 2), (y, 3)\}\$

2. Find $A \times B \times C$

$$
A \times B \times C = \begin{cases} (x, 1, a), (x, 2, a), (x, 3, a), (y, 1, a), (y, 2, a), (y, 3, a), \\ (x, 1, b), (x, 2, b), (x, 3, b), (y, 1, b), (y, 2, b), (y, 3, b) \end{cases}
$$

3. Find $(A \times B) \times C$

 $(A\times B)\times C = \{(u, v) | u \in (A\times B) \text{ and } v \in C\}$ $A\times B)\times C =$ $(x, 1), a$), $((x, 2), a)$, $((x, 3), a)$, $((y, 1), a)$, $((y, 2), a)$, $((y, 3), a)$, $((x, 1), b), ((x, 2), b), ((x, 3), b), ((y, 1), b), ((y, 2), b), ((y, 3), b)$