



#### FACULTY OF ENGINEERING AND TECHNOLOGY

#### COMPUTER SCIENCE DEPARTMENT

COMP233 Discrete Mathematics

## CHAPTER 6

Set Theory

## Set Theory

6.1. Basic Definitions of Set Theory6.2 Properties of Sets6.3 Algebraic Proofs6.4 Boolean Algebras

## Set Theory

6.1. Basic Definitions of Set Theory6.2 Properties of Sets6.3 Algebraic Proofs6.4 Boolean Algebras

- Introduction
- Properties of Boolean Algebras
- Proof of Boolean Algebra Properties

#### Introduction

- Properties of Boolean Algebras
- Proof of Boolean Algebra Properties

#### Introduction

- Logical equivalences that we covered in chapter 2 and set properties that we covered in pervious sections of this chapter are very similar.
- If you let
  - V (or) correspond to U (union),
  - $\land$  (and) correspond to  $\cap$  (intersection),
  - **t** (a tautology) correspond to U (a universal set),
  - *c* (a contradiction) correspond to Ø (the empty set),
  - ~ (negation) correspond to  $^{c}$  (complementation)

you can see that the structures are identical.

#### Introduction – cont.

#### ■ For example,

| Logical Equivalence                                      | Set Property                                          |
|----------------------------------------------------------|-------------------------------------------------------|
| $p \lor q \equiv q \lor p$                               | $A \cup B = B \cup A$                                 |
| $p \land (q \land r) \equiv p \land (q \land r)$         | $A \cup (B \cup C) \equiv A \cup (B \cup C)$          |
| $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$ | $A \cap (B \cup C) \equiv (A \cap B) \cup (A \cap C)$ |
| $p \lor c \equiv p$                                      | $A \cup \emptyset = A$                                |
| $p \lor \sim p \equiv t$                                 | $A \cup A^c = U$                                      |
| $\sim (\sim p) \equiv p$                                 | $(A^c)^c = A$                                         |
| $\sim (p \lor q) \equiv \sim p \land \sim q$             | $(A \cup B)^c = A^c \cap B^c$                         |
| $p \lor (p \land q) \equiv p$                            | $A \cup (A \cap B) \equiv A$                          |
| $\sim t \equiv c$                                        | $U^c = \emptyset$                                     |

■ The full table can be found in the book.

- Introduction
- Properties of Boolean Algebras
- Proof of Boolean Algebra Properties

- A Boolean algebra is a set B together with two operations, generally denoted + and ·, such that for all a and b in B both a + b and a · b are in B and the following properties hold:
  - Commutative Laws
  - Associative Laws
  - Distributive Laws
  - Identity Laws
  - Complement Laws

#### Boolean Algebra – cont.

- <u>Commutative Laws:</u> For all a and b in B:
  a) a + b = b + a
  b) a · b = b · a
- <u>Associative Laws:</u> For all *a*, *b*, and *c* in *B*:

a) 
$$(a+b) + c = a + (b+c)$$

b)  $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ 

#### Boolean Algebra – cont.

- Distributive Laws: For all a, b, and c in B:  $a) \quad a + (b \cdot c) = (a + b) \cdot (a + c)$  $b) \quad a \cdot (b + c) = (a \cdot b) + (a \cdot c)$
- Identity Laws: There exist distinct elements 0 and 1 in *B* such that for all *a* in *B*:
  - $a) \quad a+0=a$
  - *b*)  $a \cdot 1 = a$

#### Boolean Algebra – cont.

• <u>Complement Laws</u>: For each a in B, there exists an element in B, denoted  $\overline{a}$  and called the **complement** or **negation** of a, such that:

a) 
$$a + \overline{a} = 1$$
  
b)  $a \cdot \overline{a} = 0$ 

#### **Properties of Boolean Algebra**

Let *B* be any Boolean algebra.

- Uniqueness of the Complement Law: For all a and x in B, if a + x = 1 and  $a \cdot x = 0$ then  $x = \overline{a}$ .
- Uniqueness of 0 and 1: If there exists x in B such that a + x = a for all a in B, then x = 0, and if there exists y in B such that  $a \cdot y = a$  for all a in B, then y = 1.
- Idempotent Law: For all  $a \in B$ ,

$$a) \quad a+a=a$$

b) 
$$a \cdot a = a$$

#### Properties of Boolean Algebra – cont.

Let *B* be any Boolean algebra.

- Double Complement Law: For all  $a \in B$ ,  $\overline{(\overline{a})} = a$ .
- Universal Bound Law: For all  $a \in B$ ,

*a*) 
$$a + 1 = 1$$

- b)  $a \cdot 0 = 0$
- De Morgan's Law: For all  $a \in B$ ,

a) 
$$\overline{a+b} = \overline{a} \cdot \overline{b}$$
  
b)  $\overline{a \cdot b} = \overline{a} + \overline{b}$ 

#### Properties of Boolean Algebra – cont.

Let *B* be any Boolean algebra.

• Absorption Law: For all  $a, b \in B$ ,

a) 
$$(a+b) \cdot a = a$$

- *b)*  $(a \cdot b) + a = a$
- Complements of 0 and 1: *a*)  $\overline{0} = 1$ *b*)  $\overline{1} = 0$

b) 
$$1 = 0$$

- Introduction
- Properties of Boolean Algebras
- Proof of Boolean Algebra Properties

# Proving the Uniqueness of the Complement Law

Suppose *a* and *x* are particular, but arbitrarily chosen, elements of *B* that satisfy the following hypothesis: a + x = 1 and  $a \cdot x = 0$ . Then:

| because 1 is an identity for $\cdot$      |
|-------------------------------------------|
| by the complement law of +                |
| by the distributive law of $\cdot$ over + |
| by the commutative law of $\cdot$         |
| by hypothesis                             |
| by the complement law of $\cdot$          |
| by the commutative law $\cdot$            |
| by the distributive law of $\cdot$ over + |
| by hypothesi                              |
| because 1 is an identity for $\cdot$      |
|                                           |