

FACULTY OF ENGINEERING AND TECHNOLOGY

COMPUTER SCIENCE DEPARTMENT

COMP233 Discrete Mathematics

CHAPTER 8

Relations

Outline

- Relations on Sets
- Properties of Relations
- Equivalence Relations

Outline

- Relations on Sets
- Properties of Relations
- Equivalence Relations

Properties of Relations

- Reflexivity, Symmetry, and Transitivity
- The Transitive Closure of a Relation
- Properties of Relations on Infinite Sets

Properties of Relations

■ Reflexivity, Symmetry, and Transitivity

- The Transitive Closure of a Relation
- Properties of Relations on Infinite Sets

Reflexivity – Definition

■ Let R be a binary relation on a set A. R is reflexive if, and only if, for all $x \in A$, $x \in X$.

■ Symbolically,

$$
R \text{ is reflexive } \longleftrightarrow for \text{ all } x \text{ in } A, (x, x) \in R
$$

- Informally: each element is related to itself.
- In directed graphs: each point of the graph has an arrow looping around from it back to itself.

Symmetry – Definition

- R is symmetric if, and only if, for all $x \in A$, if $x R y$ then $y R x$.
- Symbolically,

R is symmetric \leftrightarrow for all x and y in A, if $(x, y) \in R$ then $(y, x) \in R$

- Informally: if any one element is related to any other element, then the second element is related to the first.
- In directed graphs: in each case where there is an arrow going from one point to a second, there is an arrow going from the second point back to the first.

Transitivity - Definition

- R is transitive if, and only if, for all $x, y, z \in A$, if $x R y$ and $y R z$ then $x R z$.
- Symbolically, R is transitive \leftrightarrow for all x, y, and z in A, if $(x, y) \in R$ and $(y, z) \in R$ then $(x, z) \in R$
- Informally: if any one element is related to a second and that second element is related to a third, then the first element is related to the third.
- In directed graphs: in each case where there is an arrow going from one point to a second and from a second point to a third, there is an arrow going from the first point to the third.

Negation of Reflexivity, Symmetry, and Transitivity

- Since the definition of reflexivity, symmetry, and transitivity are universal statements, their negation are existential statements as follows:
- R is not reflexive if, and only if, there is an element x in A such that $(x, x) \notin R$.
- R is not symmetric if, and only if, there are elements x and y in A such that $(x, y) \in$ R, but $(y, x) \notin R$.
- R is not transitive if, and only if, there are elements x, y , and z in A such that $(x, y) \in R$ and $(y, z) \in R$ but $(x, z) \notin R$.

- Let $A = \{2, 3, 4, 6, 7, 9\}$ and define a relation R on A as follows: For all $x, y \in A$, $x R y \leftrightarrow 3 | (x - y)$
- Draw the directed graph of R .

Example – cont.

 \blacksquare Is R reflexive?

Yes, because $(2, 2)$ ∈ R, $(3, 3)$ ∈ R, $(4, 4)$ ∈ R, $(6, 6) \in R$, $(7, 7) \in R$, and $(9, 9) \in R$.

In other words,

 $\forall x \in A, (x, x) \in R$.

Example – cont.

 \blacksquare Is R symmetric?

Yes, because both $(3, 9) \in R$ and $(9, 3) \in R$, and both $(3, 6) \in R$ and $(6, 3) \in R$, and both $(6, 9) \in R$ and $(9, 6) \in R$, and both $(4, 7) \in R$ and $(7, 4) \in R$

In other words,

 $\forall x, y \in A$, if $(x, y) \in R$ then $(y, x) \in R$.

Example – cont.

Is *transitive?*

Yes, because $(3, 6)$ ∈ R, $(6, 9)$ ∈ R, and $(3, 9)$ ∈ R. And $(3, 9) \in R$, $(9, 6) \in R$, and $(3, 6) \in R$ And $(6, 3) \in R$, $(3, 9) \in R$, and $(6, 9) \in R$ And $(6, 9) \in R$, $(9, 3) \in R$, and $(6, 3) \in R$ And $(9, 3) \in R$, $(3, 6) \in R$, and $(9, 6) \in R$ And $(9, 6) \in R$, $(6, 3) \in R$, and $(9, 3) \in R$

In other words, $\forall x, y, z \in R$, if $(x, y) \in R$ and $(y, z) \in R$ then $(x, z) \in R$

- Is the relation represented in the following graph:
	- *Reflexive?*
		- Yes
	- *Symmetric?*
		- Yes
	- *Transitive?*
		- No, because $(1, 0) \in R$ and $(0, 3) \in R$ but $(1, 3) \notin R$.

- Is the relation represented in the following graph:
	- *Reflexive?*
		- No, because $(1, 1) \notin R$
	- *Symmetric?*
		- No, because $(0, 2) \in R$ but $(2, 0) \notin R$.
	- *Transitive?*
		- Yes.

- Is the relation represented in the following graph:
	- *Reflexive?*
		- No, because $(0, 0) \notin R$
	- *Symmetric?*
		- No, because $(0, 1) \in R$ but $(1, 0) \notin R$.
	- *Transitive?*

■ Yes.

Properties of Relations

- Reflexivity, Symmetry, and Transitivity
- The Transitive Closure of a Relation
- Properties of Relations on Infinite Sets

The Transitive Closure of a Relation

- **■** Let A be a set and R a binary relation on A. The transitive closure of R is the binary relation R^t on A that satisfies the following three properties:
	- ! *is transitive*
	- $-R \subseteq R^t$
	- \vdash *If S is any other transitive relation that contains R, then R^t ⊆ S*
- In other words, R^t is the relation that is obtained by adding *the least number* of ordered pairs to ensure transitivity.

Transitive Closure – example

- Let $A = \{0, 1, 2, 3\}$ and consider the relation R defined on A as follows: $R = \{(0, 1), (1, 2), (2, 3)\}\$
- Find the transitive closure of *.*

The directed graph of R looks like this:

All the ordered pairs in R are in R^t .

Since there are arrows going from 0 to 1 and from 1 to 2, R^t must have an arrow going from 0 to 2. Hence $(0, 2) \in R^t$

This results in both (0, 2) $\in R^t$ and (2, 3) $\in R^t$, which means we must also add (0, 3) to R^t .

Transitive Closure – example

- Let $A = \{0, 1, 2, 3\}$ and consider the relation R defined on A as follows: $R = \{(0, 1), (1, 2), (2, 3)\}\$
- \blacksquare Find the transitive closure of R.

Also, since $(1, 2) \in R^t$ and $(2, 3) \in R^t$, then we need to also add $(1, 3)$ to R^t .

Therefore,

$$
Rt = \{(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)\}
$$

 $^{\circ}$

 $3 -$

Properties of Relations

- Reflexivity, Symmetry, and Transitivity
- The Transitive Closure of a Relation
- Properties of Relations on Infinite Sets

Proving Properties of Relations on Infinite Sets

- Proving that relations are reflexive, symmetric, or transitive are proofs of universal statements.
- This means, we need to use methods of direct proof to prove them.
- Or we need a counterexample to disprove them.

Properties of Equality

■ Define a relation R on $\mathbb R$ as follows:

For all real numbers x and y, $x R y \leftrightarrow x = y$.

 \blacksquare Is R reflexive?

Yes, because for all $x \in \mathbb{R}$, $x R x$.

Which is the same as saying:

for all $x \in \mathbb{R}$, $x = x$.

Properties of Equality

■ Define a relation R on $\mathbb R$ as follows:

For all real numbers x and y, $x R y \leftrightarrow x = y$.

 \blacksquare Is R symmetric?

Yes, because for all $x, y \in \mathbb{R}$, if $x R y$ then $y R x$.

Which is the same as saying:

for all $x, y \in \mathbb{R}$, if $x = y$ then $y = x$.

Properties of Equality

■ Define a relation R on $\mathbb R$ as follows:

For all real numbers x and y, $x R y \leftrightarrow x = y$.

 \blacksquare Is R transitive?

Yes, because for all $x, y, z \in \mathbb{R}$, if $x R y$ and $y R z$ then $x R z$.

Which is the same as saying:

for all $x, y, z \in \mathbb{R}$, if $x = y$ and $y = z$ then $x = z$.

Properties of "Less Than"

■ Define a relation R on $\mathbb R$ as follows:

For all real numbers x and y, $x R y \leftrightarrow x < y$.

 \blacksquare Is R reflexive?

No, because for all $x \in \mathbb{R}$, $x \neq x$.

Counterexample:

 $0 \in \mathbb{R}$, and $0 \nless 0$

Properties of "Less Than"

■ Define a relation R on $\mathbb R$ as follows:

For all real numbers x and y, $x R y \leftrightarrow x < y$.

 \blacksquare Is R symmetric?

No, because for all $x, y \in \mathbb{R}$, if $x < y$, $y \notin x$.

Counterexample:

 $0, 1 \in \mathbb{R}$, and $0 < 1$ but $1 \neq 0$.

Properties of "Less Than"

■ Define a relation R on $\mathbb R$ as follows:

For all real numbers x and y, $x R y \leftrightarrow x < y$.

 \blacksquare Is R transitive?

Yes, because for all $x, y, z \in \mathbb{R}$, if $x < y$ and $y < z$ then $x < z$. by the transitive law of order for real number.

Properties of Congruence Modulo 3

■ Define a relation T on $\mathbb Z$ (the set of all integers) as follows: For all integers m and n, $m T n \leftrightarrow 3 | (m - n)$

■ This relation is called congruence modulo 3.

 \blacksquare Is T reflexive?

Suppose m is a particular but arbitrarily chosen integer. We must show that $m T m$.

Now $m - m = 0$.

```
But 3 | 0 since 0 = 3 \cdot 0.
```
Hence $3 \mid (m - m)$.

Thus, by definition of T, mTm , as was to be shown.

Properties of Congruence Modulo 3

- Define a relation T on $\mathbb Z$ (the set of all integers) as follows: For all integers m and n, $m T n \leftrightarrow 3 | (m - n)$
- \blacksquare Is T symmetric?

Suppose m and n are particular but arbitrarily chosen integers that satisfy the condition $m T n$. We must show that $n T m$.

By definition of T, since $m T n$ then 3 | $(m - n)$.

By definition of "divides," this means that $m - n = 3k$, for some integer k.

Multiplying both sides by -1 gives $n - m = 3(-k)$.

Since $-k$ is an integer, this equation shows that 3 | $(n - m)$.

Hence, by definition of T, nT m as was to be shown.

Properties of Congruence Modulo 3

- **■** Define a relation T on $\mathbb Z$ (the set of all integers) as follows: For all integers m and n, $m T n \leftrightarrow 3 | (m - n)$
- \blacksquare Is T transitive?

Suppose m , n , and p are particular but arbitrarily chosen integers that satisfy the condition $m T n$ and $n T p$. We must show that $m T p$.

By definition of T, since $m T n$ and $n T p$, then 3 | $(m - n)$ and 3 | $(n - p)$.

By definition of "divides," this means that $m - n = 3r$ and $n - p = 3s$, for some integers r and s .

Adding the two equations gives $(m - n) + (n - p) = 3r + 3s$,

and simplifying gives that $m - p = 3(r + s)$.

Since $r + s$ is an integer, this equation shows that 3 | $(m - p)$. Hence, by definition of T, m T p as was to be shown.