

FACULTY OF ENGINEERING AND TECHNOLOGY

COMPUTER SCIENCE DEPARTMENT

COMP233 Discrete Mathematics

CHAPTER 8

Relations

Outline

- Relations on Sets
- Properties of Relations
- Equivalence Relations

Outline

- Relations on Sets
- Properties of Relations
- Equivalence Relations

Properties of Relations

- Reflexivity, Symmetry, and Transitivity
- The Transitive Closure of a Relation
- Properties of Relations on Infinite Sets

Properties of Relations

- Reflexivity, Symmetry, and Transitivity
- The Transitive Closure of a Relation
- Properties of Relations on Infinite Sets

Reflexivity – Definition

• Let R be a binary relation on a set A. R is reflexive if, and only if, for all $x \in A$, $x \in R$.

Symbolically,

R is reflexive
$$\leftrightarrow$$
 for all *x* in *A*, (*x*, *x*) \in *R*

- Informally: each element is related to itself.
- In directed graphs: each point of the graph has an arrow looping around from it back to itself.

Symmetry – Definition

- *R* is symmetric if, and only if, for all $x \in A$, if x R y then y R x.
- Symbolically,

R is symmetric \leftrightarrow for all *x* and *y* in *A*, if $(x, y) \in R$ then $(y, x) \in R$

- Informally: if any one element is related to any other element, then the second element is related to the first.
- In directed graphs: in each case where there is an arrow going from one point to a second, there is an arrow going from the second point back to the first.

Transitivity - Definition

- *R* is transitive if, and only if, for all $x, y, z \in A$, if x R y and y R z then x R z.
- Symbolically, *R* is transitive \leftrightarrow for all *x*, *y*, and *z* in *A*, if $(x, y) \in R$ and $(y, z) \in R$ then $(x, z) \in R$
- Informally: if any one element is related to a second and that second element is related to a third, then the first element is related to the third.
- In directed graphs: in each case where there is an arrow going from one point to a second and from a second point to a third, there is an arrow going from the first point to the third.

Negation of Reflexivity, Symmetry, and Transitivity

- Since the definition of reflexivity, symmetry, and transitivity are universal statements, their negation are existential statements as follows:
- *R* is not reflexive if, and only if, there is an element *x* in *A* such that $(x, x) \notin R$.
- *R* is not symmetric if, and only if, there are elements *x* and *y* in *A* such that $(x, y) \in R$, but $(y, x) \notin R$.
- *R* is not transitive if, and only if, there are elements *x*, *y*, and *z* in *A* such that $(x, y) \in R$ and $(y, z) \in R$ but $(x, z) \notin R$.

- Let $A = \{2, 3, 4, 6, 7, 9\}$ and define a relation R on A as follows: For all $x, y \in A, x R y \leftrightarrow 3 \mid (x - y)$
- Draw the directed graph of R.

Example – cont.

■ Is *R* reflexive?

Yes, because $(2, 2) \in R$, $(3, 3) \in R$, $(4, 4) \in R$, $(6, 6) \in R$, $(7, 7) \in R$, and $(9, 9) \in R$.

In other words,

 $\forall x \in A, (x, x) \in R.$

Example – cont.

■ Is *R* symmetric?

Yes, because both $(3,9) \in R$ and $(9,3) \in R$, and both $(3,6) \in R$ and $(6,3) \in R$, and both $(6,9) \in R$ and $(9,6) \in R$, and both $(4,7) \in R$ and $(7,4) \in R$

In other words,

 $\forall x, y \in A, if (x, y) \in R then (y, x) \in R.$

Example – cont.

■ Is *R* transitive?

Yes, because $(3,6) \in R$, $(6,9) \in R$, and $(3,9) \in R$. And $(3,9) \in R$, $(9,6) \in R$, and $(3,6) \in R$ And $(6,3) \in R$, $(3,9) \in R$, and $(6,9) \in R$ And $(6,9) \in R$, $(9,3) \in R$, and $(6,3) \in R$ And $(9,3) \in R$, $(3,6) \in R$, and $(9,6) \in R$ And $(9,6) \in R$, $(6,3) \in R$, and $(9,3) \in R$

In other words, $\forall x, y, z \in R, if(x, y) \in R and(y, z) \in R then(x, z) \in R$

- Is the relation represented in the following graph:
 - Reflexive?
 - Yes
 - Symmetric?
 - Yes
 - Transitive?
 - No, because $(1,0) \in R$ and $(0,3) \in R$ but $(1,3) \notin R$.

■ Is the relation represented in the following graph:

- Reflexive?
 - No, because $(1, 1) \notin R$
- Symmetric?
 - No, because $(0, 2) \in R$ but $(2, 0) \notin R$.
- Transitive?

Yes.

■ Is the relation represented in the following graph:

- Reflexive?
 - No, because $(0, 0) \notin R$
- Symmetric?
 - No, because $(0, 1) \in R$ but $(1, 0) \notin R$.
- Transitive?

Yes.

Properties of Relations

- Reflexivity, Symmetry, and Transitivity
- The Transitive Closure of a Relation
- Properties of Relations on Infinite Sets

The Transitive Closure of a Relation

- Let A be a set and R a binary relation on A. The transitive closure of R is the binary relation R^t on A that satisfies the following three properties:
 - R^t is transitive
 - $R \subseteq R^t$
 - If S is any other transitive relation that contains R, then $R^t \subseteq S$
- In other words, R^t is the relation that is obtained by adding <u>the least number</u> of ordered pairs to ensure transitivity.

Transitive Closure – example

- Let $A = \{0, 1, 2, 3\}$ and consider the relation R defined on A as follows: $R = \{(0, 1), (1, 2), (2, 3)\}$
- Find the transitive closure of R.

The directed graph of *R* looks like this:

All the ordered pairs in R are in R^t .

Since there are arrows going from 0 to 1 and from 1 to 2, R^t must have an arrow going from 0 to 2. Hence $(0, 2) \in R^t$

This results in both $(0, 2) \in \mathbb{R}^t$ and $(2, 3) \in \mathbb{R}^t$, which means we must also add (0, 3) to \mathbb{R}^t .

Transitive Closure – example

- Let $A = \{0, 1, 2, 3\}$ and consider the relation R defined on A as follows: $R = \{(0, 1), (1, 2), (2, 3)\}$
- Find the transitive closure of R.

Also, since $(1, 2) \in \mathbb{R}^t$ and $(2, 3) \in \mathbb{R}^t$, then we need to also add (1, 3) to \mathbb{R}^t .

Therefore,

$$R^{t} = \{(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)\}$$

0.

3•

Properties of Relations

- Reflexivity, Symmetry, and Transitivity
- The Transitive Closure of a Relation
- Properties of Relations on Infinite Sets

Proving Properties of Relations on Infinite Sets

- Proving that relations are reflexive, symmetric, or transitive are proofs of universal statements.
- This means, we need to use methods of direct proof to prove them.
- Or we need a counterexample to disprove them.

Properties of Equality

• Define a relation R on \mathbb{R} as follows:

For all real numbers x and y, $x R y \leftrightarrow x = y$.

■ Is *R* reflexive?

Yes, because for all $x \in \mathbb{R}$, x R x.

Which is the same as saying:

for all $x \in \mathbb{R}$, x = x.

Properties of Equality

• Define a relation R on \mathbb{R} as follows:

For all real numbers x and y, $x R y \leftrightarrow x = y$.

■ Is *R* symmetric?

Yes, because for all $x, y \in \mathbb{R}$, if x R y then y R x.

Which is the same as saying:

for all $x, y \in \mathbb{R}$, if x = y then y = x.

Properties of Equality

• Define a relation R on \mathbb{R} as follows:

For all real numbers x and y, $x R y \leftrightarrow x = y$.

■ Is *R* transitive?

Yes, because for all $x, y, z \in \mathbb{R}$, if x R y and y R z then x R z.

Which is the same as saying:

for all $x, y, z \in \mathbb{R}$, if x = y and y = z then x = z.

Properties of "Less Than"

• Define a relation R on \mathbb{R} as follows:

For all real numbers x and y, $x R y \leftrightarrow x < y$.

■ Is *R* reflexive?

No, because for all $x \in \mathbb{R}$, $x \not < x$.

Counterexample:

 $0 \in \mathbb{R}$, and $0 \neq 0$

Properties of "Less Than"

• Define a relation R on \mathbb{R} as follows:

For all real numbers x and y, $x R y \leftrightarrow x < y$.

■ Is *R* symmetric?

No, because for all $x, y \in \mathbb{R}$, if x < y, $y \not\leq x$.

Counterexample:

 $0, 1 \in \mathbb{R}$, and 0 < 1 but $1 \not< 0$.

Properties of "Less Than"

• Define a relation R on \mathbb{R} as follows:

For all real numbers x and y, $x R y \leftrightarrow x < y$.

■ Is *R* transitive?

Yes, because for all $x, y, z \in \mathbb{R}$, *if* x < y *and* y < z *then* x < z. by the transitive law of order for real number.

Properties of Congruence Modulo 3

■ Define a relation *T* on \mathbb{Z} (the set of all integers) as follows: For all integers *m* and *n*, $m T n \leftrightarrow 3 \mid (m - n)$

■ This relation is called congruence modulo 3.

■ Is *T* reflexive?

Suppose m is a particular but arbitrarily chosen integer. We must show that m T m.

Now m - m = 0.

```
But 3 \mid 0 since 0 = 3 \cdot 0.
```

Hence $3 \mid (m - m)$.

Thus, by definition of T, mTm, as was to be shown.

Properties of Congruence Modulo 3

- Define a relation *T* on \mathbb{Z} (the set of all integers) as follows: For all integers *m* and *n*, $m T n \leftrightarrow 3 \mid (m - n)$
- Is *T* symmetric?

Suppose m and n are particular but arbitrarily chosen integers that satisfy the condition m T n. We must show that n T m.

By definition of T, since m T n then $3 \mid (m - n)$.

By definition of "divides," this means that m - n = 3k, for some integer k.

Multiplying both sides by -1 gives n - m = 3(-k).

Since -k is an integer, this equation shows that $3 \mid (n - m)$.

Hence, by definition of T, n T m as was to be shown.

Properties of Congruence Modulo 3

■ Define a relation *T* on \mathbb{Z} (the set of all integers) as follows: For all integers *m* and *n*, $m T n \leftrightarrow 3 \mid (m - n)$

■ Is *T* transitive?

Suppose m, n, and p are particular but arbitrarily chosen integers that satisfy the condition m T n and n T p. We must show that m T p.

By definition of T, since mTn and nTp, then $3 \mid (m - n)$ and $3 \mid (n - p)$.

By definition of "divides," this means that m - n = 3r and n - p = 3s, for some integers r and s.

Adding the two equations gives (m - n) + (n - p) = 3r + 3s,

and simplifying gives that m - p = 3(r + s).

Since r + s is an integer, this equation shows that $3 \mid (m - p)$. Hence, by definition of T, m T p as was to be shown.