

FACULTY OF ENGINEERING AND TECHNOLOGY

COMPUTER SCIENCE DEPARTMENT

COMP233 Discrete Mathematics

CHAPTER 8

Relations

Outline

- Relations on Sets
- Properties of Relations
- Equivalence Relations

Outline

- Relations on Sets
- Properties of Relations
- Equivalence Relations

- Partition Sets
- Equivalence Relations
	- *Equivalence Relation on a Set of Subsets*
	- *Equivalence Relation of Digital Logic Circuits*
	- *Equivalence Relation on a Set of Identifiers*
- Equivalence Classes
	- *Congruence Modulo n*

■ Partition Sets

- Equivalence Relations
	- *Equivalence Relation on a Set of Subsets*
	- *Equivalence Relation of Digital Logic Circuits*
	- *Equivalence Relation on a Set of Identifiers*
- Equivalence Classes
	- *Congruence Modulo n*
	- *Relational Numbers*

Partitions of Sets

- A partition of a set is a grouping of its elements into non-empty subsets, in such a way that every element is included in exactly one subset.
- For example, if we divide all the students in this class to groups, where no student is in two groups at the same time, then these groups will be a partition of the class.

Partition of Sets – Formal Definition

- A finite or infinite collection of non-empty sets $\{A_1, A_2, A_3, ...\}$ is a partition of a set A if, and only if,
- 1. The set A is the union of all the $A_i s$
- 2. The sets A_1 , A_2 , A_3 , ... are mutually disjoint

Partition of Sets - Example

Let Z be the set of all integers, and let

 $T_0 = \{ n \in \mathbb{Z} \mid n = 3k, \text{ for some integer } k \},$ $T_1 = \{ n \in \mathbb{Z} \mid n = 3k + 1, \text{ for some integer } k \},$ $T_2 = \{ n \in \mathbb{Z} \mid n = 3k + 2, \text{ for some integer } k \}.$

Is $\{T_0, T_1, T_2\}$ a partition of \mathbb{Z} ?

Yes. By the quotient-remainder theorem, every integer n can be represented in exactly one of the three forms

n=3k or n=3k+1 or n=3k+2

It also implies that every integer is in one of the sets T_0 , T_1 , T_2 , so $\mathbb{Z} = T_0 \cup T_1 \cup T_2$.

Relations Induced by Partitions

- A relation induced by a partition is a relation between two elements in the same partition.
- **E** Given a partition of a set A, the relation induced by the partition, R, is defined on A as follows:
- For all $x, y \in A$,

 $x R y \leftrightarrow$ there is a subset A_i of the partition such that both x and y are in A_i .

Relations Induced by Partitions – Example

- Let $A = \{0, 1, 2, 3, 4\}$ and consider the following partition of A: $\{0, 3, 4\}, \{1\}, \{2\}$
- Find the relation R induced by this partition.

Since {0, 3, 4} is a subset of the partition,

0 R 3 because both 0 and 3 are in $\{0, 3, 4\}$,

3 R 0 because both 3 and 0 are in $\{0, 3, 4\}$,

0 R 4 because both 0 and 4 are in $\{0, 3, 4\}$,

4 R 0 because both 4 and 0 are in $\{0, 3, 4\}$,

3 R 4 because both 3 and 4 are in $\{0, 3, 4\}$,

 $4 R 3$ because both 4 and 3 are in $\{0, 3, 4\}$.

Relations Induced by Partitions – Example

- Let $A = \{0, 1, 2, 3, 4\}$ and consider the following partition of A: {0, 3, 4},{1},{2}
- Find the relation R induced by this partition.

Also,

- 0 R 0 because both 0 and 0 are in $\{0, 3, 4\}$
- 3 R 3 because both 3 and 3 are in $\{0, 3, 4\}$,
- $4 R 4$ because both 4 and 4 are in $\{0, 3, 4\}.$

Relations Induced by Partitions – Example

- Let $A = \{0, 1, 2, 3, 4\}$ and consider the following partition of A: {0, 3, 4},{1},{2}
- Find the relation R induced by this partition.

Since {1} is a subset of the partition,

1 R 1 because both 1 and 1 are in $\{1\}$,

and since {2} is a subset of the partition,

2 R 2 because both 2 and 2 are in $\{2\}$.

Hence

 $R = \{(0, 0), (0, 3), (0, 4), (1, 1), (2, 2), (3, 0), (3, 3), (3, 4), (4, 0), (4, 3), (4, 4)\}\$

Properties of Relations Induced by Partitions

■ Let A be a set with a partition and let R be the relation induced by the partition. Then is *reflexive*, *symmetric*, and *transitive*.

Proof that R is reflexive:

- Suppose $x \in A$. Since $\{A_1, A_2, ..., A_n\}$ is a partition of A, it follows that $x \in A_i$ for some i .
- But then the statement

there is a set A_i of the partition such that $x \in A_i$ and $x \in A_i$ is true.

Thus, by definition of R , $x R x$.

Properties of Relations Induced by Partitions

■ Let A be a set with a partition and let R be the relation induced by the partition. Then R is *reflexive*, *symmetric*, and *transitive*.

Proof that R is symmetric:

- Suppose x and y are elements of A such that $x R y$.
- Then there is a subset A_i of the partition such that $x \in A_i$ and $y \in A_i$ by definition of R.
- It follows that

there is a subset A_i of the partition such that $y \in A_i$ and $x \in A_i$

Hence, by definition of R , $y R x$.

Properties of Relations Induced by Partitions

■ Let A be a set with a partition and let R be the relation induced by the partition. Then is *reflexive*, *symmetric*, and *transitive*.

Proof that R is transitive:

- **■** Suppose x, y, and z are in A and x R y and y R z. By definition of R, there are subsets A_i and A_j of the partition such that x and y are in A_i and y and z are in A_j .
- Suppose $A_i \neq A_j$. Then $A_i \cap A_j = \emptyset$ since $\{A_1, A_2, ..., A_n\}$ is a partition of A.
- But y is in A_i and y is also in A_i . Hence $A_i \cap A_j \neq \emptyset$. Thus, $A_i = A_i$ (by contradiction).
- It follows that x, y, and z are all in A_i , and so in particular, x and z are in A_i .
- Thus, by definition of R , $x R z$.

■ Partition Sets

■ Equivalence Relations

- *Equivalence Relation on a Set of Subsets*
- *Equivalence Relation of Digital Logic Circuits*
- *Equivalence Relation on a Set of Identifiers*
- Equivalence Classes
	- *Congruence Modulo n*
	- *Relational Numbers*

■ A relation on a set that satisfies the three properties of reflexivity, symmetry, and transitivity is called an equivalence relation.

Definition:

Let A be a set and R a relation on A. R is an equivalence relation if, and only if, R is reflexive, symmetric, and transitive.

■ Thus, according to the theorem that we have just proved, the relation induced by a partition is an equivalence relation.

■ Partition Sets

■ Equivalence Relations

- *Equivalence Relation on a Set of Subsets*
- *Equivalence Relation of Digital Logic Circuits*
- *Equivalence Relation on a Set of Identifiers*
- Equivalence Classes
	- *Congruence Modulo n*
	- *Relational Numbers*

- Let X be the set of all nonempty subsets of $\{1, 2, 3\}$. Then $X = \{\{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}\$
- **Define a relation R on X as follows: For all A and B in X,** A R $B \Leftrightarrow$ the least element of A equals the least element of B
- **■** Prove that R is an equivalence relation on X.
- \blacksquare R is reflexive:

Suppose A is a nonempty subset of $\{1, 2, 3\}$. We must show that A R A.

It is true to say that the least element of A equals the least element of A . Thus, by definition of R , A R A .

- Let X be the set of all nonempty subsets of $\{1, 2, 3\}$. Then $X = \{\{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}\$
- Define a relation R on X as follows: For all A and B in X , $A \, R \, B \Leftrightarrow$ the least element of A equals the least element of B
- Prove that R is an equivalence relation on X .
- R is symmetric:

Suppose A and B are nonempty subsets of $\{1, 2, 3\}$ and A R B. We must show that B R A.

Since $A \, R \, B$, the least element of A equals the least element of B . But this implies that the least element of B equals the least element of A, and so, by definition of R, B R A.

- Let X be the set of all nonempty subsets of $\{1, 2, 3\}$. Then $X = \{\{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}\$
- Define a relation R on X as follows: For all A and B in X, A R $B \Leftrightarrow$ the least element of A equals the least element of B
- Prove that R is an equivalence relation on X .
- R is transitive:

Suppose A, B, and C are nonempty subsets of $\{1, 2, 3\}$, A R B, and B R C. We must show that A R C.

Since A R B, the least element of A equals the least element of B, and since B R C, the least element of B equals the least element of C .

Thus, the least element of A equals the least element of C, and so, by definition of R, A R C.

- Let X be the set of all nonempty subsets of $\{1, 2, 3\}$. Then $X = \{\{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}\$
- Define a relation R on X as follows: For all A and B in X , $A \, R \, B \Leftrightarrow$ the least element of A equals the least element of B
- **Prove that R** is an equivalence relation on X.
- Since R is reflexive, symmetric, and transitive, then R is an equivalence relation on X .

■ Partition Sets

■ Equivalence Relations

- *Equivalence Relation on a Set of Subsets*
- *Equivalence Relation of Digital Logic Circuits*
- *Equivalence Relation on a Set of Identifiers*
- Equivalence Classes
	- *Congruence Modulo n*
	- *Relational Numbers*

■ Let S be the set of all digital logic circuits with a fixed number n of inputs. Define a relation E on S as follows:

For all circuits C_1 and C_2 in S,

 $C_1 E C_2 \leftrightarrow C_1$ has the same input/output table as C_2 .

- **■** If C_1 E C_2 , then circuit C_1 is said to be equivalent to circuit C_2 .
- **■** Prove that E is an equivalence relation on S .

For all circuits C_1 and C_2 in S,

 $C_1 E C_2 \leftrightarrow C_1$ has the same input/output table as C_2 .

 \blacksquare E is reflexive:

Suppose C is a digital logic circuit in S . We must show that $C E C$.

Certainly, C has the same input/output table as itself.

Thus, by definition of E, C, E, C as was to be shown.

For all circuits C_1 and C_2 in S,

 $C_1 E C_2 \leftrightarrow C_1$ has the same input/output table as C_2 .

 \blacksquare *E* is symmetric:

Suppose C_1 and C_2 are digital logic circuits in S such that C_1 E C_2 . We must show that $C_2 E C_1$.

By definition of E, since $C_1 \mathrel{E} C_2$, then C_1 has the same input/output table as C_2 .

It follows that C_2 has the same input/output table as C_1 .

Hence, by definition of E, C_2 E C_1 as was to be shown.

For all circuits C_1 and C_2 in S,

 $C_1 E C_2 \leftrightarrow C_1$ has the same input/output table as C_2 .

E is transitive:

Suppose C_1 , C_2 , and C_3 are digital logic circuits in S such that C_1 E C_2 and C_2 E C_3 . We must show that $C_1 E C_3$.

By definition of E, since C_1 E C_2 and C_2 E C_3 , then

 C_1 has the same input/output table as C_2

and C_2 has the same input/output table as C_3 .

It follows that C_1 has the same input/output table as C_3

Hence, by definition of E, C_1 E C_3 as was to be shown.

For all circuits C_1 and C_2 in S,

 $C_1 E C_2 \leftrightarrow C_1$ has the same input/output table as C_2 .

Since E is reflexive, symmetric, and transitive, then E is an equivalence relation on S.

■ Partition Sets

■ Equivalence Relations

- *Equivalence Relation on a Set of Subsets*
- *Equivalence Relation of Digital Logic Circuits*
- *Equivalence Relation on a Set of Identifiers*
- Equivalence Classes
	- *Congruence Modulo n*
	- *Relational Numbers*

 \blacksquare Let L be the set of all allowable identifiers in a certain computer language, and define a relation R on L as follows: For all strings s and t in L ,

s R $t \leftrightarrow$ the first eight characters of s equal the first eight characters of t.

 \blacksquare Prove that R is an equivalence relation on L.

R is reflexive:

- **■** Let $s \in L$. We must show that $s R s$.
- **■** Clearly s has the same first eight characters as itself. Thus, by definition of R, s R s as was to be shown.

 R is symmetric:

- **■** Let s and t be in L and suppose that $s R t$. We must show that $t R s$.
- **■** By definition of R, since s R t , the first eight characters of s equal the first eight characters of t .
- But then the first eight characters of t equal the first eight characters of s .
- And so, by definition of R, $t \, R \, s$ as was to be shown.

 R is transitive:

- Let s, t, and u be in L and suppose that $s R t$ and $t R u$. We must show that $s R u$.
- **■** By definition of R, since $s R t$ and $t R u$,

the first eight characters of s equal the first eight characters of t ,

and the first eight characters of t equal the first eight characters of u .

- **■** Hence the first eight characters of s equal the first eight characters of u .
- Thus, by definition of R, $s R u$ as was to be shown.

 \blacksquare Let L be the set of all allowable identifiers in a certain computer language, and define a relation R on L as follows: For all strings s and t in L ,

s R $t \leftrightarrow$ the first eight characters of s equal the first eight characters of t.

- \blacksquare Prove that R is an equivalence relation on L.
- **Since R** is reflexive, symmetric, and transitive, then R is an equivalence relation on L.

- Partition Sets
- Equivalence Relations
	- *Equivalence Relation on a Set of Subsets*
	- *Equivalence Relation of Digital Logic Circuits*
	- *Equivalence Relation on a Set of Identifiers*

■ Equivalence Classes

- *Congruence Modulo n*
- *Relational Numbers*

Equivalence Classes of an Equivalence Relation

- Suppose A is a set and R is an equivalence relation on A. For each element a in A, the equivalence class of a, denoted [a] and called the class of a for short, is the set of all elements x in A such that x is related to a by R .
- In symbols:

$$
[a] = \{x \in A \mid x R a\}
$$

- When several equivalence relations on a set are under discussion, the notation $[a]_R$ is often used to denote the equivalence class of a under R .
- The procedural version of this definition is

```
for all x \in A, x \in [a] \leftrightarrow x R a
```
Equivalence Classes of a Relation – Example

- Let $A = \{0, 1, 2, 3, 4\}$ and define a relation R on A as follows: $R = \{(0, 0), (0, 4), (1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 0), (4, 4)\}\$
- \blacksquare Draw the directed graph of R.
- Does this graph show that R is an equivalence relation? Yes, it does.

Equivalence Classes of a Relation – Example

■ Let $A = \{0, 1, 2, 3, 4\}$ and define a relation R on A as follows: $R = \{(0, 0), (0, 4), (1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 0), (4, 4)\}\$

Find the distinct equivalence classes of R .

First find the equivalence class of every element of A .

 $[0] = \{x \in A \mid x R 0\} = \{0, 4\}$ $[1] = \{x \in A \mid x R 1\} = \{1, 3\}$ $[2] = \{x \in A \mid x R 2\} = \{2\}$ $[3] = \{x \in A \mid x R 3\} = \{1, 3\}$ $[4] = \{x \in A \mid x R 4\} = \{0, 4\}$

Equivalence Classes of a Relation – Example

■ Let $A = \{0, 1, 2, 3, 4\}$ and define a relation R on A as follows: $R = \{(0, 0), (0, 4), (1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 0), (4, 4)\}\$

Find the distinct equivalence classes of R . Note that $[0] = [4]$ and $[1] = [3]$. Thus, the distinct equivalence classes of the relation are $\{0, 4\}, \{1, 3\}, \text{and } \{2\}.$

Lemmas of Equivalence Classes

- **E** Suppose A is a set, R is an equivalence relation on A, and a and b are elements of A. If $a R b$, then $[a] = [b]$.
- **If** If A is a set, R is an equivalence relation on A, and a and b are elements of A, then either $[a] \cap [b] = \emptyset$ or $[a] = [b]$.
- \blacksquare If A is a set and R is an equivalence relation on A, then the distinct equivalence classes of R form a partition of A ; that is, the union of the equivalence classes is all of A , and the intersection of any two distinct classes is empty.

Class Representative

- **E** Suppose R is an equivalence relation on a set A and S is an equivalence class of R.
- A representative of the class S is any element a such that $[a] = S$.

- Partition Sets
- Equivalence Relations
	- *Equivalence Relation on a Set of Subsets*
	- *Equivalence Relation of Digital Logic Circuits*
	- *Equivalence Relation on a Set of Identifiers*
- Equivalence Classes
	- *Congruence Modulo n*
	- *Relational Numbers*

- **■** Let R be the relation of congruence modulo 3 on the set $\mathbb Z$ of all integers.
- **■** That is, for all integers m and n , $m R n \Leftrightarrow 3 \mid (m - n) \leftrightarrow m \equiv n \pmod{3}$
- Describe the distinct equivalence classes of R .
- **■** For each integer a , $[a] = \{x \in Z | x R a\}$ $= \{ x \in Z | 3 | (x - a) \}$ $= \{x \in Z | x - a = 3k, for some integer k\}$

■ Therefore,

 $[a] = \{x \in Z | x = 3k + a, for some integer k\}$

In particular,

$$
[0] = \{x \in Z | x = 3k + 0, \text{ for some integer } k\}
$$

= $\{x \in Z | x = 3k, \text{ for some integer } k\}$
= $\{... - 9, -6, -3, 0, 3, 6, 9, ...\}$

 $[1] = \{x \in Z | x = 3k + 1, for some integer k\}$ $= \{... - 8, -5, -2, 1, 4, 7, 10, ...\}$

 $[2] = \{x \in Z | x = 3k + 2, for some integer k\}$ $= \{... - 7, -4, -1, 2, 5, 8, 11, ...\}$

- Now since $3R0$, then $[3] = [0]$.
- More generally, by the same reasoning, $[0] = [3] = [-3] = [6] = [-6] = \cdots$, and so on.
- Similarly, $[1] = [4] = [-2] = [7] = [-5] = \cdots$, and so on.
- And $[2] = [5] = [-1] = [8] = [-4] = \cdots$, and so on.
- Notice that every integer is in class $[0], [1],$ or $[2]$. Hence the distinct equivalence classes are

 ${x \in Z | x = 3k, for some integer k},$ ${x \in Z | x = 3k + 1, for some integer k},$ and $\{x \in Z | x = 3k + 2, for some integer k\}.$

the distinct equivalence classes are

 $\{x \in Z | x = 3k, for some integer k\},\$ ${x \in Z | x = 3k + 1, for some integer k}$, and $\{x \in Z | x = 3k + 2, for some integer k\}.$

- In words, the three classes of congruence modulo 3 are
- (1) the set of all integers that are divisible by 3,
- (2) the set of all integers that leave a remainder of 1 when divided by 3, and
- (3) the set of all integers that leave a remainder of 2 when divided by 3.

Congruence Modulo n

- Let m and n be integers and let d be a positive integer.
- We say that m is congruent to n modulo d and write

 $m \equiv n \pmod{d}$ if, and only if, $d \mid (m - n)$.

■ Symbolically:

$$
m \equiv n \ (mod \ d) \leftrightarrow d \mid (m - n)
$$

Evaluating Congruences

- Determine which of the following congruences are true and which are false.
- a. $12 \equiv 7 \pmod{5}$
	- *True. 12 − 7 = 5 = 5 · 1. Hence 5 | (12 − 7), and so 12 ≡ 7 (mod 5).*
- b. $6 \equiv -8 \pmod{4}$
	- *False. 6 − (−8) = 14, and 4* ∤*14 because 14* ≠ *4 · k for any integer k. Consequently, 6* ≢ *−8 (mod 4).*
- c. $3 \equiv 3 \pmod{7}$
	- *True. 3 − 3 = 0 = 7 · 0. Hence 7 | (3 − 3), and so 3 ≡ 3 (mod 7).*

- Partition Sets
- Equivalence Relations
	- *Equivalence Relation on a Set of Subsets*
	- *Equivalence Relation of Digital Logic Circuits*
	- *Equivalence Relation on a Set of Identifiers*

■ Equivalence Classes

- *Congruence Modulo n*
- *Relational Numbers*

Rational Numbers As Equivalence Classes

 \blacksquare Let A be the set of all ordered pairs of integers for which the second element of the pair is nonzero. Symbolically,

 $A = Z \times (Z - \{0\})$

- Define a relation R on A as follows: For all (a, b) , $(c, d) \in A$, $(a, b)R(c, d) \leftrightarrow ad = bc$
- \blacksquare The fact is that R is an equivalence relation.

Describe the distinct equivalence classes of R .

Rational Numbers As Equivalence Classes

- There is one equivalence class for each distinct rational number.
- Each equivalence class consists of all ordered pairs (a, b) that, if written as fractions $\frac{a}{b}$ \boldsymbol{b} , would equal each other.
- The reason for this is that the condition for two rational numbers to be equal is the same as the condition for two ordered pairs to be related.
- For instance, the class of $(1, 2)$ is $[(1, 2)] = {(1, 2), (-1, -2), (2, 4), (-2, -4), (3, 6), (-3, -6), ...}$ since $\frac{1}{2}$ \overline{c} $= \frac{-1}{2}$ -2 $=\frac{2}{4}$ * $=\frac{-2}{4}$ -4 $=\frac{3}{5}$ $\overline{6}$ $=\frac{-3}{6}$ -6 and so forth.