
© Dr. Adel Taweel 2017 COMP433: Software Engineering

Software Engineering

Software Processes
(Software Process Models)

Dr. Adel Taweel

ataweel@birzeit.edu

1

© Dr. Adel Taweel 2017 COMP433: Software Engineering

What is a Process … ?

When we provide a service or create a product we always
follow a sequence of steps to accomplish a set of tasks
You do not usually

Paint the wall before the wiring for a house is installed !
We can think of a series of activities as a process

Any process has the following characteristics
It prescribes all of the major activities
It uses resources and produces intermediate and final products
It may include sub-processes and has entry and exit criteria
The activities are organized in a sequence
Constrains or control may apply to activities

 (budget control, availability of resources)

2

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Software Processes

Coherent sets of activities for
 Specifying,
 Developing (Designing,
 Implementing) and
 Validating (Testing) software

systems

3

When the process involves the building of some product
we refer to the process as a life cycle

Software development process – software life cycle

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Major problems in software developments …

4

The requirements
specification was
defined like this

The developers
understood it in

that way
This is how the
problem was
solved before.

This is how the problem
is solved now

That is the program after
debugging

This is how the program is
described by marketing

department
This, in fact, is what the
customer wanted … ;-)

© Dr. Adel Taweel 2017 COMP433: Software Engineering

The Software Process

! A structured set of activities required to
develop a software system
o  Specification
o  Development/Design
o  Validation
o  Evolution

! A software process model is an abstract
representation of a process
o  It presents a description of a process from some

particular perspective

5

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Generic Software Process Models
The waterfall model

Separate and distinct phases of specification and
development

Evolutionary/Agile development

Specification and development are interleaved

Formal systems development (example - ASML)
A mathematical system model is formally

transformed to an implementation

Reuse-based development
The system is assembled from existing components

6

© Dr. Adel Taweel 2017 COMP433: Software Engineering

1. Waterfall Model

7

Requirements
definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

It partitions projects’
development into distinct
stages

The drawback of the
waterfall model is the
difficulty of
accommodating
change after the
process is underway

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Waterfall model problems
!  Inflexible partitioning of the project into distinct

stages
! This makes it difficult to respond to changing

customer requirements

! Applicability
!  Therefore, this model is only appropriate when the

requirements are well-understood at the start
!  Large and complex systems (too expensive to use for

small systems)

8

Waterfall model describes a
process of stepwise refinement

!  Based on hardware engineering models
!  Widely used in military and aerospace
 industries

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Why Not Waterfall

But software is different :
! No fabrication step

!  Program code is another design level
!  Hence, no “commit” step – software can always be

changed..!
! No body of experience for design analysis (yet)

!  Most analysis (testing) is done on program code
!  Hence, problems not detected until late in the process

! Waterfall model takes a static view of requirements
!  Ignore changing needs
!  Minimal user involvement after specification is written

! Unrealistic separation of specification from the
design

! Does not accommodate well prototyping, reuse, etc

9

© Dr. Adel Taweel 2017 COMP433: Software Engineering

2. Evolutionary/Agile development

! Exploratory development
-  Aims to work with customers and to evolve a final system

from an initial outline specification.
-  Should start with some well-understood requirements.
-  The system evolves by adding new features as they are

proposed by the customer.

! Prototyping
o  A technique, used to help understand system

requirements. May start with poorly understood
requirements
-  Develop “quick and dirty” (or KISS: Keep It Simple and

Stupid) system quickly;
-  Expose development to users’ feedback continuously;
-  Refine and re-develop;

 Until an adequate system is developed.
10

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Evolutionary development

11

Validation Final
version

Development Intermediate
versions

Specification Initial
version

Outline
description

Concurrent
activities

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Evolutionary/Agile development

! Problems
o  Lack of process visibility
o  Systems are often poorly structured
o  Special skills (e.g. rapid prototyping)

 may be required

! Applicability
o  For small or medium-size interactive systems
o  For parts of large systems (e.g. the user interface)
o  For short-lifetime systems
o  Particularly suitable where:
-  requirements are not possible to detail at the start;
-  powerful development (e.g. visual) tools are available and

could be used to aid development

12

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Agile	 Process	 Models:	 Examples	

"  	 Extreme	 Programming	 (XP) 	
"  	 Adap3ve	 So6ware	 Development	 (ASD) 	
"  	 Scrum	
"  	 Dynamic	 Systems	 Development	 Method	 (DSDM) 	
"  	 Crystal	
"  	 Feature	 Driven	 Development	 (FDD)	
"  	 Lean	 So6ware	 Development	 (LSD)	
"  	 Agile	 Modeling	 (AM)	
"  	 Agile	 Unified	 Process	 (AUP)	

© Dr. Adel Taweel 2017 COMP433: Software Engineering

3. Formal systems development

Based on the transformation of a
mathematical specification through different
representations to an executable program

Transformations are ‘correctness-
preserving’ so it is straightforward to show
that the program conforms to its specification

 Embodied in the ‘Cleanroom’ approach
(which was originally developed by IBM) to
software development

14

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Formal systems development

15

Requirements
definition

Formal
specification

Formal
transformation

Integration and
system testing

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Formal transformations

16

R2Formal
specification R3 Executable

program

P2 P3 P4

T1 T2 T3 T4

Proofs of transformation correctness

Formal transformations

R1

P1

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Formal systems development

! Problems
•  Need for specialised skills and training to apply the

technique
•  Difficult to formally specify some aspects of the system

(mathematically) such as the user interface

! Applicability
•  Critical systems, especially for those where a safety or

security case must be made before the system is put
into operation

•  Small systems or parts of a large system

17

© Dr. Adel Taweel 2017 COMP433: Software Engineering

4. Reuse-oriented development

! Based on systematic reuse where systems are
integrated from existing components or COTS
(Commercial-off-the-shelf) or (Component-off-the-
shelf) systems

! Process stages
o  Component analysis
o  Requirements modification
o  System design with reuse
o  Development and integration

This approach is becoming more important and
popular but we still have limited experience with

its wide use across different domains.

18

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Reuse-oriented development

19

Requirements
specification

Component
analysis

Development
and integration

System design
with reuse

Requirements
modification

System
validation

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Reuse-oriented development

! Problems
•  Need for specialised (component) analysis and

integration skills to ensure appropriate selection of
components, for both functionality and quality aspects.

•  Some aspects (or parts) of the system may not be easily
reused, such as the user interface

•  Concerns over maintainability and support of reused
components

•  Concerns over system evolution that development is
controlled by reused component suppliers.

! Applicability
•  Not critical systems, that may include common

functionality (reusable) components
•  Large systems! (components analysis and integration

may be too expensive for small and mid-size systems)

20

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Process iteration

! Modern development processes take iteration
as fundamental, and try to provide ways of
managing, rather than ignoring, the risk

! System requirements ALWAYS evolve in the
course of a project so process iteration where
earlier stages are reworked is always part of the
process for large systems

! Iteration can be applied to any of the generic
process models

! Two (related) approaches
o  Incremental development
o  Spiral development

21

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Incremental development

! Rather than deliver the system as a single
delivery, the development and delivery is
broken down into increments with each
increment delivering part of the required
functionality

! User requirements are prioritised and the
highest priority requirements are included in early
increments

! Once the development of an increment is
started, the requirements are frozen though
requirements for later increments can continue to
evolve

22

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Incremental development

23

Validate
increment

Develop system
increment

Design system
architecture

Integrate
increment

Valida te
system

Define outline
 requirements

Assign requirements
 to increments

System incomplete

Final
system

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Incremental development advantages

Customer value can be delivered with each
increment so system functionality is available
earlier (earlier return on investment)

Early increments act as a prototype to help elicit
requirements for later increments

Lower risk of overall project failure
The highest priority system services tend to

receive the most testing

24

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Extreme programming-XP (Agile)

! Incremental approach to development based
on the development and delivery of very small
increments of functionality (often no longer
than two weeks)

! Relies on constant code improvement, user
involvement in the development team and
pairwise programming

! Design of the test plan/suites first !
 Then you perform testing of the system after
each small increment

25

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Extreme	 Programming-‐XP	

	 Developed	 by	 Kent	
Beck	 (published	
1999)	
-‐in	 Pairs:	 a	 Coder	
and	 a	 Reviewer	
-‐	 XP	 prac3ces:	
Simple	 design,	 test-‐
driven	
development,	
refactoring,	 code	
conven3on,	 strict	
releases.	 	

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Scrum	 (Agile)	

-‐Development	 work	 is	 par33oned	 into	 “packets”	

-‐TesDng	 and	 documentaDon	 are	 on-‐going	 as	 the	
product	 is	 constructed	

-‐Increments	 are	 made	 into	 “sprints”	 and	 is	 derived	
from	 a	 “backlog”	 of	 priori3sed	 requirements	

-‐(OGen	 daily	 15-‐min)	 meeDngs,	 o6en	 casual-‐	 may	
get	 conducted	 without	 chairs	

-‐“Demos”	 are	 delivered	 to	 the	 customer	 within	 the	
allocated	 3me-‐frame	

	 © Dr Adel Taweel 2014

27

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Scrum Framework

28

Source: I Mitchell

Jeff
Sutherland

Ken
 Schwaber

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Scrum	 Process	 Flow	
29

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Spiral development

Process is represented as a spiral rather than
as a sequence of activities with backtracking

Each loop in the spiral represents a phase in
the process.

No fixed phases such as specification or
design - loops in the spiral are chosen
depending on what is required

Risks are explicitly assessed and resolved
throughout the process

30

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Spiral model of the software process

31

Risk
analysis

Risk
analysis

Risk
analysis

Risk
analysis Proto-

type 1

Prototype 2
Prototype 3

Opera-
tional
protoype

Concept of
Operation

Simulations, models, benchmarks

S/W
requirements

Requirement
validation

Design
V&V

Product
design Detailed

design
Code

Unit test
Integration

testAcceptance
testService Develop, verify

next-level product

Evaluate alternatives
identify, resolve risks

Determine objectives
alternatives and

constraints

Plan next phase
Integration

and test plan

Development
plan

Requirements plan
Life-cycle plan

REVIEW

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Spiral model sectors

Objective setting
Specific objectives for the phase are identified

Risk assessment and reduction
Risks are assessed and activities put in place to

reduce the key risks
Development and validation

A development model for the system is chosen
which can be any of the generic models

Planning
The project is reviewed and the next phase of the

spiral is planned

32

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Software Process

Fundamental/Core
 Activities

33

© Dr. Adel Taweel 2017 COMP433: Software Engineering

I. Software specification

 The process of establishing what functions
are required and the constraints on the
system’s operation and development

Requirements engineering process

Feasibility study
Requirements elicitation and analysis
Requirements specification
Requirements validation

34

© Dr. Adel Taweel 2017 COMP433: Software Engineering

The requirements engineering
process

35

Feasibility
study

Requirements
elicitation and

analysis
Requirements
specification

Requirements
validation

Feasibility
report

System
models

User and system
requirements

Requirements
document

© Dr. Adel Taweel 2017 COMP433: Software Engineering

II. Software design and
implementation

 The process of converting the system
specification into an executable system

Software design
Design a software structure that realises the

specification
Implementation

Translate this structure into an executable program

The activities of design and implementation are

closely related and may be inter-leaved

36

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Design process activities

•  Architectural design
•  Abstract specification
•  Interface design
•  Component design
•  Data structure design
•  Algorithm design

37

© Dr. Adel Taweel 2017 COMP433: Software Engineering

The software design process

38

Architec tural
design

Abstract
specification

Interface
design

Component
design

Data
structure
design

Algorithm
design

System
architec ture

Software
specification

Interface
specification

Component
specification

Data
structure

specification
Algorithm

specification

Requirements
specification

Design activities

Design products

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Design methods

 Systematic approaches to developing a
software design

The design is usually documented as a set of
graphical models

Possible models

Data-flow model
Entity-relation-attribute model
Structural model
Object models

39

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Implementation: Programming and
debugging

 Translating a design into an executable
program and removing errors from that
program

Programming is a personal skill-based

activity - there is no generic programming
process

Programmers carry out some program

testing to discover faults in the program and
remove these faults in the debugging process

40

© Dr. Adel Taweel 2017 COMP433: Software Engineering

The debugging process

41

Locate
error

Design
error repair

Repair
error

Re-test
program

© Dr. Adel Taweel 2017 COMP433: Software Engineering

III Software validation

! Verification and validation is intended to
show that a system conforms to its
specifications and meets the requirements of
the system’s customer

! Involves checking and review-processes and
system testing

! System testing involves executing the
system with test cases that are derived from
the specification of the real data to be
processed by the system

42

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Testing stages

! Unit testing
o  Individual components are tested

! Module testing
o  Related collections of dependent components are

tested
! Sub-system testing
o  Modules are integrated into sub-systems and tested.

The focus here would be on interface testing
! System testing
o  Testing of the system as a whole. Testing of

emergent properties
! Acceptance testing
o  Testing with customer data to check that it is

acceptable

43

© Dr. Adel Taweel 2017 COMP433: Software Engineering

The testing process

44

Sub-system
testing

Module
testing

Unit
testing

System
testing

Acceptance
testing

Component
testing

Integration testing User
testing

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Testing phases

45

Requirements
specification

System
specification

System
design

Detailed
design

Module and
unit code
and tess

Sub-system
integration
test plan

System
integration
test plan

Acceptance
test plan

Service Acceptance
test

System
integration test

Sub-system
integration test

© Dr. Adel Taweel 2017 COMP433: Software Engineering

IV Software evolution

Software is inherently flexible and can change.

! As requirements change through changing
business circumstances, the software that
supports the business must also evolve and
change

! Although there has been a demarcation between
development and evolution (maintenance) this is
increasingly irrelevant as fewer and fewer
systems are completely new

46

© Dr. Adel Taweel 2017 COMP433: Software Engineering

System evolution

47

Assess existing
systems

Define system
requirements

Propose system
changes

Modify
systems

New
system

Existing
systems

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Summary: Key points

Software processes are the activities involved in
producing and evolving a software system.
They are represented in a software process
model

General activities are specification, development
(design and implementation), validation and
evolution

Generic process models describe the
organisation of software processes

Iterative process models describe the software
process as a cycle of activities

50

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Summary: Key points

Requirements engineering is the process of
developing a software specification

Design and implementation processes transform
the specification to an executable program

Validation involves checking that the system
meets to its specification and user needs

Evolution is concerned with modifying the
system after it is in use

CASE technology supports software process
activities

51

