Software Processes
(Software Process Models)

Dr. Adel Taweel
ataweel@birzeit.edu

© Dr. Adel Taweel 2017 . COMPA433: Software Engineering

What is a Process ... ?

When we provide a service or create a product we always
follow a sequence of steps to accomplish a set of tasks

You do not usually
Paint the wall before the wiring for a house is installed !

We can think of a series of activities as a process

Any process has the following characteristics
It prescribes all of the major activities
It uses resources and produces intermediate and final products
It may include sub-processes and has entry and exit criteria
The activities are organized in a sequence

Constrains or control may apply to activities
(budget control, availability of resources)

© Dr. Adel Taweel 2017 2 COMPA433: Software Engineering

Software Processes

When the process involves the building of some product
we refer to the process as a life cycle

Software development process — software life cycle

Coherent sets of activities for
Specifying,

Developing (Designing,
Implementing) and

Validating (Testing) software
systems

© Dr. Adel Taweel 2017 3 COMP433: Software Engineering

Major problems in software developments ...

e The devel) i
: e developers ..
The requirements understood it in This is how the This is how the problem

specification was

roblem was is solved now
defined like this that way p

) i

solved before.

e This is how the program is —_— =
at is the program after described by marketing This, in fact, is what the
debugging department customer wanted ... ;-)

© Dr. Adel Taweel 2017 4 COMP433: Software Engineering

The Software Process

¢ A structured set of activities required to

develop a software system
o Specification

o Development/Design

o Validation

o Evolution

e A software process model is an abstract

representation of a process
o It presents a description of a process from some
particular perspective

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Generic Software Process Models

The waterfall model
Separate and distinct phases of specification and
development

Evolutionary/Agile development
Specification and development are interleaved

Formal systems development (example - ASML)
A mathematical system model is formally
transformed to an implementation

Reuse-based development
The system is assembled from existing components

© Dr. Adel Taweel 2017 COMP433: Software Engineering

1. Waterfall Model

It partitions projects’

Requirements
definition

System and
software design

Implementation

and unit testing

development into distinct
stages

The drawback of the
waterfall model is the
difficulty of
accommodating
change after the

y process IS underway

Integration and
system testing

© Dr. Adel Taweel 2017

Operation and
maintenance

COMP433: Software Engineering

Waterfall model problems

o I?flexible partitioning of the project into distinct
stages

¢ This makes it difficult to respond to changing
customer requirements

OAqﬁlicability |
e Therefore, this model is only appropriate when the
requirements are well-understood at the start

e | arge and complex systems (too expensive to use for
small gystems)

1‘?
5

Waterfall model describes a

process of stepwise refinement

» Based on hardware engineering models
» Widely used in military and aerospace
industries

© Dr. Adel Taweel 2017 8 COMP433: Software Engineering

Why Not Waterfall

But software is different :

» No fabrication step

» Program code is another design level

> Hence, no “commit” step — software can always be

changed..!

» No body of experience for design analysis (yet)

» Most analysis (testing) is done on program code

» Hence, problems not detected until late in the process
» Waterfall model takes a static view of requirements

» Ignore changing needs

» Minimal user involvement after specification is written
»Unrealistic separation of specification from the

design
»Does not accommodate well prototyping, reuse, etc

© Dr. Adel Taweel 2017 COMP433: Software Engineering

2. Evolutionary/Agile development

e Exploratory development
- Aims to work with customers and to evolve a final system
from an initial outline specification.
- Should start with some well-understood requirements.

- The system evolves by adding new features as they are
proposed by the customer.

* Prototyping

o A technique, used to help understand system
requirements. May start with poorly understood
requirements

- Develop “quick and dirty” (or KISS: Keep It Simple and
Stupid) system quickly;
- Expose development to users’ feedback continuously;
- Refine and re-develop;
Until an adequate system is developed.

© Dr. Adel Taweel 2017

COMP433: Software Engineering

Evolutionary development

Concurrent
activities

CSp ecificatioD

Out.h e G)evelopmenD ,
description Versions
CVali dation) b n.al
‘ version I

© Dr. Adel Taweel 2017 1 COMP433: Software Engineering

Initial
version

Intermediate

Evolutionary/Agile development

e Problems
o Lack of process visibility
o Systems are often poorly structured
o Special skills (e.g. rapid prototyping)
may be required

e Applicability

o For small or medium-size interactive systems

o For parts of large systems (e.g. the user interface)
o For short-lifetime systems
O

Particularly suitable where:

- requirements are not possible to detail at the start;

- powerful development (e.g. visual) tools are available and
could be used to aid development

© Dr. Adel Taweel 2017 12 COMP433: Software Engineering

Agile Process Models: Examples

" Extreme Programming (XP)
= Adaptive Software Development (ASD)

= Scrum
" Dynamic Systems Development Method (DSDM)
= Crystal

" Feature Driven Development (FDD)
= Lean Software Development (LSD)
= Agile Modeling (AM)

= Agile Unified Process (AUP)

© Dr. Adel Taweel 2017 COMP433: Software Engineering

3. Formal systems development

Based on the transformation of a
mathematical specification through different
representations to an executable program

Transformations are ‘correctness-
preserving’ so it is straightforward to show
that the program conforms to its specification

Embodied in the ‘Cleanroom’ approach
(which was originally developed by IBM) to

software development

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Formal systems development

Integration and
system testing

Formal
transformatio

Requirements Formal
definition specification

© Dr. Adel Taweel 2017 15 COMPA433: Software Engineering

Formal transformations

Formal transformations
T1 |V T3 T4

A A A A
Y Y Y A

R.)I:malo R1 RO R3 Executable
‘spemflcatlon I ‘ I ‘ I ‘ I ‘ program I

Proofs of transformation correctness

© Dr. Adel Taweel 2017 16 COMPA433: Software Engineering

Formal systems development

¢ Problems
* Need for specialised skills and training to apply the
technique
« Difficult to formally specify some aspects of the system
(mathematically) such as the user interface

e Applicability
 Critical systems, especially for those where a safety or
security case must be made before the system is put
Into operation
« Small systems or parts of a large system

.

© Dr. Adel Taweel 2017 COMP433: Software Engineering

© Dr. Adel Taweel 2017

4. Reuse-oriented development

e Based on systematic reuse where systems are
integrated from existing components or COTS
(Commercial-off-the-shelf) or (Component-off-the-
shelf) systems

®* Process stages
o Component analysis
o Requirements modification
o System design with reuse
o Development and integration

This approach is becoming more important and
popular but we still have limited experience with
its wide use across different domains.

COMP433: Software Engineering

Reuse-oriented development

System design
with reuse

Requirements Component Requirements
specification analysis _mo dification
Development System
and itegration validation

© Dr. Adel Taweel 2017 19 COMPA433: Software Engineering

Reuse-oriented development

e Problems

* Need for specialised (component) analysis and
integration skills to ensure appropriate selection of
components, for both functionality and quality aspects.

« Some aspects (or parts) of the system may not be easily
reused, such as the user interface

« Concerns over maintainability and support of reused
components

« Concerns over system evolution that development is
controlled by reused component suppliers.

9,
e Applicability

* Not critical systems, that may include common
functionality (reusable) components

« Large systems! (components analysis and integration
may be too expensive for small and mid-size systems)

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Process iteration

e Modern development processes take iteration
as fundamental, and try to provide ways of
managing, rather than ignoring, the risk

e System requirements ALWAYS evolve in the
course of a project so process iteration where
earlier stages are reworked is always part of the
process for large systems

e [teration can be applied to any of the generic
process models

e Two (related) approaches

o Incremental development
o Spiral development

© Dr. Adel Taweel 2017 21 COMP433: Software Engineering

Incremental development

e Rather than deliver the system as a single
delivery, the development and delivery is
broken down into increments with each
increment delivering part of the required
functionality

e User requirements are prioritised and the
highest priority requirements are included in early
Increments

¢ Once the development of an increment is
started, the requirements are frozen though
requirements for later increments can continue to
evolve

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Incremental development

Design system
architecture

Define outline Assign requirements

requirements to increments
Validate Integrate
increment jcremel

Develop system
System incomplete

1ncrement

© Dr. Adel Taweel 2017 23 COMPA433: Software Engineering

Incremental development advantages

Customer value can be delivered with each
increment so system functionality is available
earlier (earlier return on investment)

Early increments act as a prototype to help elicit
requirements for later increments

Lower risk of overall project failure

The highest priority system services tend to
receive the most testing

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Extreme programming-XP (Agile)

¢ Incremental approach to development based
on the development and delivery of very smalli
increments of functionality (often no longer
than two weeks)

® Relies on constant code improvement, user
iInvolvement in the development team and
pairwise programming

® Design of the test plan/suites first !
Then you perform testing of the system after
each small increment

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Extreme Programming-XP

A, : : spike solutions
5 e A simple design P
. CRC cards prototypes
Developed by Ken user 7'°ries
. values
Beck (pu blished acceptance fest criteria
1999) iteration plan

-in Pairs: a Coder
and a Reviewer
- XP practices:
Simple design, tesi
driven
development,
refactoring, code
convention, strict

Release

releases. software increment
project velocity computed

acceptance testing

refactoring

pair programming

unit test
continuous integration

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Scrum (Agile)

-Development work is partitioned into “packets”

-Testing and documentation are on-going as the
product is constructed

-Increments are made into “sprints” and is derived
from a “backlog” of prioritised requirements

-(Often daily 15-min) meetings, often casual- may
get conducted without chairs

-“Demos” are delivered to the customer within the
allocated time-frame

BriALYetadeel 2017 COMP433: Software Engineering

Jeft
Sutherland : L. -3 Ken

Schwaber
Stakeholder liaison
- Product
Backlo .
.L Refiner?\ent v Daily Scrum

Product Owner

[

: Development Team

’ Team forecasts

- N achieve. H”

: Q;(o Sprint Goal Potentially

. Q Releasable

- Sprint Sprint - Increment 1

: Planning Backlog &:L & .i

1 Topic 1: forecast PBI's _ . % _ & ;
1 Topic 2: plan work (e.g. tasks) Sprint &‘g&z Sprint a2

. Review Retrospective

Product

Backlog Source: I Mitchell

© Dr. Adel Taweel 2017 28

COMP433: Software Engineering

Scrum Process Flow

Scrum: 15 minute daily meeting.

Team members respond to basics:

1) What did you do since last Scrum
meeling?

2) Do you have any obstacles?

3) What will you do before next

Sprint Backlog: Backlog .
meeling?

Feature(s) items 30 days

assigned expanded

:: New functionality
is demonstrated
~— at end of sprint

Product Backlog:
Prioritized product features desired by the customer

© Dr. Adel Taweel 2017 COMPA433: Software Engineering

Spiral development

Process is represented as a spiral rather than
as a sequence of activities with backtracking
Each loop in the spiral represents a phase in

the process.

No fixed phases such as specification or
design - loops in the spiral are chosen
depending on what is required

Risks are explicitly assessed and resolved
throughout the process

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Spiral model of the software process

Determine objectives

alternatives and
constraints

Evaluate altematives
identify, resol ve risks

Risk

analysis

Risk
analysis

REVIEW

Risk
analysis

Requirements plan
Life-cycle plan

Development
plan

Simulations, models, benchmarks
Concept of

Operation S/W

i t Product
requirements dosign Detailed

design
Code

Requirement
validation

Integration

Plan next phase and test plan

Unit test
Integr ation

Design
V&V

© Dr. Adel Taweel 2017 31

Acceptance test

test

Service Develop, verify

next-level product

COMP433: Software Engineering

Spiral model sectors

Objective setting
Specific objectives for the phase are identified
Risk assessment and reduction
Risks are assessed and activities put in place to
reduce the key risks
Development and validation
A development model for the system is chosen
which can be any of the generic models
Planning

The project is reviewed and the next phase of the
spiral is planned

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Software Process

Fundamental /Core
Activities

© Dr. Adel Taweel 2017 33 COMPA433: Software Engineering

l. Software specification

The process of establishing what functions
are required and the constraints on the
system’ s operation and development

Requirements engineering process
Feasibility study
Requirements elicitation and analysis
Requirements specification
Requirements validation

© Dr. Adel Taweel 2017 34 COMPA433: Software Engineering

The requirements engineering

process

Requirements
elicitation and

analysis

System
models

Feasibility
study

Feasibility
report

Requirements
specification

Requirements
validation

User and system

requirements
Requirements
— document

© Dr. Adel Taweel 2017 35 COMPA433: Software Engineering

Il. Software design and

implementation

The process of converting the system
specification into an executable system

Software design
Design a software structure that realises the
specification
Implementation
Translate this structure into an executable program

The activities of design and implementation are
closely related and may be inter-leaved

© Dr. Adel Taweel 2017 36 COMP433: Software Engineering

Design process activities

* Architectural design

* Abstract specification
* Interface design

« Component design
 Data structure design
* Algorithm design

© Dr. Adel Taweel 2017

COMP433: Software Engineering

The software design process

Requiements

specificion
Design actvities

Architec tual '\ Abstact Interface Component
design / specificaion / 1 design / design
System Softvare Interface Component

architec tue specificaion specifiction specificaion

Dessign poducts

Data
structue
specificaion

Algorithm
specifiction

© Dr. Adel Taweel 2017 38 COMPA433: Software Engineering

Design methods

Systematic approaches to developing a
software design

The design is usually documented as a set of
graphical models

Possible models
Data-flow model
Entity-relation-attribute model
Structural model
Object models

© Dr. Adel Taweel 2017 COMPA433: Software Engineering

Implementation: Programming and

debugging

Translating a design into an executable
program and removing errors from that
program

Programming is a personal skill-based
activity - there is no generic programming
process

Programmers carry out some program
testing to discover faults in the program and
remove these faults in the debugging process

© Dr. Adel Taweel 2017 40 COMP433: Software Engineering

The debugging process

Locate Design Repair Re-test
error erior repair error program

© Dr. Adel Taweel 2017 41 COMPA433: Software Engineering

Il Software validation

¢ Verification and validation is intended to
show that a system conforms to its
specifications and meets the requirements of
the system’s customer

¢ |nvolves checking and review-processes and
system testing

e System testing involves executing the
system with test cases that are derived from
the specification of the real data to be
processed by the system

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Testing stages

e Unit testing
o Individual components are tested
e Module testing
o Related collections of dependent components are
tested
e Sub-system testing
o Modules are integrated into sub-systems and tested.
The focus here would be on interface testing
e System testing
o Testing of the system as a whole. Testing of
emergent properties
e Acceptance testing
o Testing with customer data to check that it is
acceptable

© Dr. Adel Taweel 2017 43 COMP433: Software Engineering

The testing process

Unit
testing
Module
testing
Sub-system
testing
System
testing
Acceptance
testing
Component Integration testing User
testing testing

© Dr. Adel Taweel 2017 44 COMPA433: Software Engineering

Testing phases

Detailed
design

System
desgn

System
specification

Requirements
specification

System Sub-system Module and
Acceptance : . ! : :
e integration integration unit code
test plan test plan and tess

e

Acceptance System Sub-system
test integration test integration test

© Dr. Adel Taweel 2017 45 COMPA433: Software Engineering

IV Software evolution

Software is inherently flexible and can change.

¢ As requirements change through changing
business circumstances, the software that
supports the business must also evolve and
change

¢ Although there has been a demarcation between
development and evolution (maintenance) this is
increasingly irrelevant as fewer and fewer
systems are completely new

© Dr. Adel Taweel 2017 46 COMP433: Software Engineering

System evolution

Assess existing
systems

Define system Propose system Modity
requirements changes systems
Existing

systems system

© Dr. Adel Taweel 2017 COMPA433: Software Engineering

Summary: Key points

Software processes are the activities involved in
producing and evolving a software system.
They are represented in a software process
model

General activities are specification, development
(design and implementation), validation and
evolution

Generic process models describe the
organisation of software processes

lterative process models describe the software
process as a cycle of activities

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Summary: Key points

Requirements engineering is the process of
developing a software specification

Design and implementation processes transform
the specification to an executable program

Validation involves checking that the system
meets to its specification and user needs

Evolution is concerned with modifying the
system after it is in use

© Dr. Adel Taweel 2017 COMP433: Software Engineering

