
© Dr. Adel Taweel 2016 COMP433: Software Engineering

Software Engineering

Requirements
Engineering (/elicitations!)

(chapter 4: Sommerville;
Chapter 4: Bruegge)

Dr Adel Taweel

© Dr. Adel Taweel 2016 COMP433: Software Engineering

– Software Requirements Specifications–
Descriptions and specifications of a system

2

Objectives:
●  To introduce the concepts of user, domain and system

requirements
●  To describe functional / non-functional requirements
●  To explain techniques for describing system requirements
●  To explain how software requirements may be organised

in a requirements document
●  To introduce some methods for requirements discovery

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Requirements engineering

3

Requirements engineering is the process of
establishing
●  the services (or functionalities) that the customer
requires from a system
●  the constraints under which it operates and is
developed

Requirements

The descriptions of the
system services and
constraints

that are generated during the
requirements engineering
process

© Dr. Adel Taweel 2016 COMP433: Software Engineering

What is a requirement?

It may range from a high-level abstract statement
of a service or of a system constraint to a
detailed mathematical functional specification

This is inevitable as requirements may serve a
dual function
May be the basis for a bid for a contract - therefore must be

open to interpretation
May be the basis for the contract itself - therefore must be

defined in detail
Both these statements may be called requirements

4

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Types of requirement

User requirements
Statements in natural language plus

diagrams of the services the system
provides and its operational constraints.
Written for customers

System requirements
A structured document setting out detailed

descriptions of the system services.
Written as a contract between client (or
customer) and contractor

Software specification
A detailed software description which can

serve as a basis for a design or
implementation. Written for developers

5

R1.0 …. …. ……
R2.0 …. ….. ……

R1.1 …. …. …… ….. …..
R1.2 …. …… …. …. …..
R1.13 …. …… …. ……..

R1.1.0 …. …. …… ….. ….. …. ……
R1.1.2 …. …… …. …… ….. …. ….
R1.1.12 …. …… …. …. … … …… ..
R1.1.16 …. …… …. …. … … …… ..
R1.1.21 …. …… …. …. … … …… ..

User Requirements

System Requirements

Software Specifications

© Dr. Adel Taweel 2016 COMP433: Software Engineering

User and system requirements

6

1. The MHC-PMS shall generate monthly management reports showing
the cost of drugs prescribed by each clinic during that month.

1.1 On the last working day of each month, a summary of the drugs
prescribed, their cost and the prescribing clinics shall be generated.
1.2 The system shall automatically generate the report for printing after
17.30 on the last working day of the month.
1.3 A report shall be created for each clinic and shall list the individual
drug names, the total number of prescriptions, the number of doses
prescribed and the total cost of the prescribed drugs.
1.4 If drugs are available in different dose units (e.g. 10mg, 20 mg, etc.)
separate reports shall be created for each dose unit.
1.5 Access to all cost reports shall be restricted to authorized users listed
on a management access control list.

User requirement definition

System requirements specification

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Requirements readers

7

Client managers
System end-users
Client engineers
Contractor managers
System architects

System end-users
Client engineers
System architects
Software developers

Client engineers (perhaps)
System architects
Software developers

User requirements

System requirements

Software design
specification

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Functional and non-functional
requirements

Functional requirements
Statements of services the system should provide,

how the system should react to particular inputs
and how the system should behave in particular
situations.

Non-functional requirements
constraints on the services or functions offered by

the system such as timing constraints, constraints
on the development process, standards, etc.

Domain requirements
Requirements that come from the application

domain of the system and that reflect
characteristics of that domain

 8

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Functional Requirements

 Describe functionality or system services

Depend on the type of software, expected

users and the type of system where the
software is used

Functional user requirements may be high-

level statements of what the system should do
BUT functional system requirements should
describe the system services in detail

9

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Functional requirements: Examples

10

2.3: A user shall be able to search the appointments lists
for all clinics.
…
5.2: The PMS system shall generate each day, for each
clinic, a list of patients who are expected to attend
appointments that day.
…
6.1: Each staff member using the system shall be uniquely
identified by his or her 8-digit employee number.

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Non-functional requirements

Define system properties and constraints
 e.g. reliability, response time and storage
requirements. Constraints are I/O device
capability, system representations, etc.

Process requirements may also be specified
mandating a particular development environment
(IDE), programming language or development
method

Non-functional requirements may be more
critical than functional requirements. If these are
not met, the system may be useless to the
customer!

11

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Non-functional classifications

Product requirements
Requirements which specify that the delivered product

must behave in a particular way e.g. execution speed,
reliability, etc.

Organisational requirements

Requirements which are a consequence of organisational
policies and procedures e.g. process standards used,
implementation requirements, etc.

External requirements

Requirements which arise from factors which are external to
the system and its development process e.g.
interoperability requirements, legislative requirements, etc.

12

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Non-functional requirement types

13

Performance
requirements

Space
requirements

Usability
requirements

Efficiency
requirements

Reliability
requirements

Portability
requirements

Interoperability
requirements

Ethical
requirements

Legislative
requirements

Implementation
requirements

Standards
requirements

Delivery
requirements

Safety
requirements

Privacy
requirements

Product
requirements

Organizational
requirements

External
requirements

Non-functional
requirements

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Non-functional requirements:
Examples

14

•  Product requirement
3.C.8.The MHC-PMS shall be available to all clinics during
normal working hours (Mon–Fri, 0830–17.30). Downtime
within normal working hours shall not exceed five seconds in
any one day.

•  Organizational requirement

5.4.3 Users of the MHC-PMS system shall authenticate
themselves using their health authority identity card.

•  External requirement

7.2.3 The system shall implement patient privacy provisions
as set out in the regulation HStan-03-2006-priv.

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Goals and requirements

Non-functional requirements may be very
difficult to state precisely and imprecise
requirements may be difficult to verify.

Goal
A general intention of the user such as ease of use

Verifiable non-functional requirement
A statement using some measure that can be

objectively tested
Goals are helpful to developers as they

convey the intentions of the system users

15

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Example: Usability requirements

16

•  A system goal
G.8.1 The PMS system should be easy to use by medical staff
and should be organized in such a way that user errors are
minimized. (Goal – non verifiable!)

•  A verifiable non-functional requirement
8.4.3 Medical staff shall be able to use all the PMS system
functions after four hours of training. After this training, the
average number of errors made by experienced users shall
not exceed two per hour of system use. (Testable non-
functional requirement)

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Non-functional requirements
Metrics

17

Property Measure
Speed Processed transactions/second

User/event response time
Screen refresh time

Size Mbytes
Number of ROM chips

Ease of use Training time
Number of help frames

Reliability Mean time to failure
Probability of unavailability
Rate of failure occurrence
Availability

Robustness Time to restart after failure
Percentage of events causing failure
Probability of data corruption on failure

Portability Percentage of target dependent statements
Number of target systems

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Domain requirements

Derived from the application domain and describe system
characteristics and features that reflect the domain

May generate new functional requirements, (non-functional)
constraints on existing requirements or define specific
computations

If domain requirements are not satisfied, the system may be
unworkable

18

•  Example 1:
R.7.1 a train control system has to take into account the
braking characteristics in different weather conditions.

•  Example 2:
8.4.3 a PMS has to enforce all confidentiality rules in
accordance with national medical domain practices

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Domain requirements problems

Understandability
Requirements are expressed in the language of the

application domain
This is often not understood by software engineers

developing the system

Implicitness
Domain specialists understand the area so well that they

do not think of making the domain requirements explicit

19

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Requirements
Characteristics

20

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Requirements Correctness

A requirement is correct when it is part of the actual
needs of the system.

Problems arise when requirements are implied or

derived and become beyond the scope of the actual
needs of system

Consider the term ‘search’ in requirement 2.3

User requirement– search for a patient name across all
appointments in all clinics;

Implied requirements– search for a patient name, Date of
Birth, Address in a clinic.

22

2.3: A user shall be able to search the appointments lists for all clinics.
…

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Requirements precision/
unambiguous

Problems arise when requirements are not
precisely stated

Ambiguous requirements may be interpreted in
different ways by developers and users

Consider the term ‘search’ in requirement 2.3

User intention – search for a patient name across all
appointments in all clinics;

Developer interpretation – search for a patient name in an
individual clinic. User chooses a clinic at a time then
search? OR

 - search for a patient name in all clinics at once. User
enters patient details and search in all available clinics?

23

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Requirements completeness and
consistency

In principle requirements should be both
complete and consistent
 Complete

They should include descriptions of all services required
including explicitly stated or externally imposed/implied
requirements.

 Consistent

There should be no conflicts or contradictions in the
descriptions of the system services

In practice, it is very difficult or, in fact, impossible

to produce a complete and consistent
requirements document

24

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Requirements Consistency:
Example

Conflicts between different non-functional
requirements are common in complex
systems

Spacecraft system
To minimise weight, the number of separate chips in the

system should be minimised
To minimise power consumption,

 lower power chips should be used

However, using low power chips

 may mean that more chips have
 to be used.

Which is the most critical requirement?

25

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Requirement Traceability

Each requirement must be traceable
Traceability is critical for requirement

verification, validation and user acceptance.

Requirements are often uniquely identified by a

unique number to be traced/referenced in
validation and testing phases.

Example: requirement has its own unique ID/Number

26

R2.3: A user shall be able to search the appointments lists for all
clinics.

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Documentation of

Requirements

27

© Dr. Adel Taweel 2016 COMP433: Software Engineering

User requirements

Should describe functional and non-functional
requirements so that they are understandable
by system users who don’t have detailed
technical knowledge

User requirements are defined using natural

language, tables and diagrams (latter ones will be
discussed later)

28

© Dr. Adel Taweel 2016 COMP433: Software Engineering

System requirements

– More detailed specifications of user
requirements

Serve as a basis for designing the system

May be used as part of the system contract

System requirements may be expressed using,

natural language and system models (latter ones
will be discussed in later lectures)

29

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Requirements document requirements

Specify external system behaviour
Specify implementation constraints
Easy to change
Serve as reference tool for maintenance
Record forethought about the life cycle of the

system i.e. predict changes
Characterise responses to unexpected events

30

© Dr. Adel Taweel 2016 COMP433: Software Engineering

IEEE requirements standard

Introduction
General description
Specific requirements
Appendices
Index

This is a generic structure that must be

instantiated for specific systems

31

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Requirements document structure

Introduction
Glossary
User requirements definition
System architecture
System requirements specification
System models
System evolution
Appendices
Index

32

© Dr. Adel Taweel 2016 COMP433: Software Engineering

The structure of a requirements
document-1

33

Chapter Description
Preface This should define the expected readership of the document and describe

its version history, including a rationale for the creation of a new version
and a summary of the changes made in each version.

Introduction This should describe the need for the system. It should briefly describe the
system’s functions and explain how it will work with other systems. It
should also describe how the system fits into the overall business or
strategic objectives of the organization commissioning the software.

Glossary This should define the technical terms used in the document. You should
not make assumptions about the experience or expertise of the reader.

User requirements
definition

Here, you describe the services provided for the user. The nonfunctional
system requirements should also be described in this section. This
description may use natural language, diagrams, or other notations that
are understandable to customers. Product and process standards that
must be followed should be specified.

System architecture This chapter should present a high-level overview of the anticipated
system architecture, showing the distribution of functions across system
modules. Architectural components that are reused should be highlighted.

© Dr. Adel Taweel 2016 COMP433: Software Engineering

The structure of a requirements document-2

Chapter Description
System
requirements
specification

This should describe the functional and nonfunctional requirements in more
detail. If necessary, further detail may also be added to the nonfunctional
requirements. Interfaces to other systems may be defined.

System models This might include graphical system models showing the relationships between
the system components and the system and its environment. Examples of
possible models are object models, data-flow models, or semantic data models.

System evolution This should describe the fundamental assumptions on which the system is
based, and any anticipated changes due to hardware evolution, changing user
needs, and so on. This section is useful for system designers as it may help them
avoid design decisions that would constrain likely future changes to the system.

Appendices These should provide detailed, specific information that is related to the
application being developed; for example, hardware and database descriptions.
Hardware requirements define the minimal and optimal configurations for the
system. Database requirements define the logical organization of the data used
by the system and the relationships between data.

Index Several indexes to the document may be included. As well as a normal
alphabetic index, there may be an index of diagrams, an index of functions, and
so on.

34

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Users of a requirements document

35

Use the requirements to
develop validation tests for
the system

Use the requirements
document to plan a bid for
the system and to plan the
system development process

Use the requirements to
understand what system is to
be developed

System test
engineers

Managers

System engineers

Specify the requirements and
read them to check that they
meet their needs. They
specify changes to the
requirements

System customers

Use the requirements to help
understand the system and
the relationships between its
parts

System
maintenance

engineers

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Guidelines for writing requirements

Invent a standard format and use it for all
requirements

Use language in a consistent way. Use
 shall for mandatory (or forceful) requirements,

 should for desirable requirements
Use text highlighting to identify key parts of the

requirement
Include an explanation (rationale) of why a

requirement is necessary
Avoid the use of computer jargon !!!

36

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Requirements and design

In principle, requirements should state what
the system should do and the design should
describe how the system does it

In practice, requirements and design are

inseparable
A system architecture may be designed to structure

the requirements
The system may inter-operate with other systems

that generate design requirements
The use of a specific design may be a domain

requirement
37

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Ways of writing system requirements
specification

38

Notation Description

Natural
language

The requirements are written using numbered sentences in natural
language. Each sentence should express one requirement.

Structured
natural
language

The requirements are written in natural language on a standard form or
template. Each field provides information about an aspect of the
requirement.

Design
description
languages

This approach uses a language like a programming language, but with more
abstract features to specify the requirements by defining an operational
model of the system. This approach is now rarely used although it can be
useful for interface specifications.

Graphical
notations

Graphical models, supplemented by text annotations, are used to define the
functional requirements for the system; UML use case and activity diagrams
are commonly used.

Mathematical
specifications

These notations are based on mathematical concepts such as finite-state
machines or sets. Although these unambiguous specifications can reduce
the ambiguity in a requirements document, most customers don’t
understand a formal specification. They cannot check that it represents what
they want and are reluctant to accept it as a system contract

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Problems with natural language

Lack of clarity
Precision is difficult without making the document difficult

to read

Requirements confusion
Functional and non-functional requirements tend to be

mixed-up or confused

Requirements amalgamation
Several different requirements may be expressed together

39

© Dr. Adel Taweel 2016 COMP433: Software Engineering

A requirement in Natural Language:
Example

40

R3.2 The system shall measure the blood sugar and deliver
insulin, if required, every 10 minutes. (Changes in blood sugar
are relatively slow so more frequent measurement is
unnecessary; less frequent measurement could lead to
unnecessarily high sugar levels.)

R3.6 The system shall run a self-test routine every minute with
the conditions to be tested and the associated actions defined in
Table 1. (A self-test routine can discover hardware and software
problems and alert the user to the fact the normal operation may
be impossible.)

© Dr. Adel Taweel 2016 COMP433: Software Engineering

A structured specification of a requirement:
Example 1

41

© Dr. Adel Taweel 2016 COMP433: Software Engineering

A structured specification of a requirement:
Example 2

42

Action
CompDose is zero if the sugar level is stable or falling or if the
level is increasing but the rate of increase is decreasing. If the
level is increasing and the rate of increase is increasing, then
CompDose is computed by dividing the difference between the
current sugar level and the previous level by 4 and rounding the
result. If the result, is rounded to zero then CompDose is set to
the minimum dose that can be delivered.
Requirements
Two previous readings so that the rate of change of sugar level
can be computed.
Pre-condition
The insulin reservoir contains at least the maximum allowed

single dose of insulin.
Post-condition r0 is replaced by r1 then r1 is replaced by r2.
Side effects None.
!

© Dr. Adel Taweel 2016 COMP433: Software Engineering

A structured specification of a requirement:
Example 3

43

Title Compute Insulin Dose (CompDose)

Purpose To compute insulin dose based on the measured sugar level.

Description Computes the dose of insulin to be delivered when the current measured
level of sugar is in the safe zone between 3 and 7 units.

Actors SystemTimer (actors that interact with this requirement)

Trigger Automatic (triggered automatically every 10 minutes by SystemTimer)

Pre-condition The insulin reservoir contains at least the maximum allowed single dose of
insulin

Workflow 1.  obtain current sugar level reading r2
2.  read stored previous two sugar level readings, r0 and r1
3.  compute increasing/decreasing level of sugar within safe zone
4.  compute a single dose of insulin based on sugar level
5.  if dose of insulin is within allowed limits (5-15 mg), deliver insulin dose
6.  else generate beep sound
7.  replace previous readings with current readings r0=r1 and r1=r2.

Post-condition Previous readings replaced and stored.

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Tabular specification: Example

45

Condition Action

Sugar level falling (r2 < r1) CompDose = 0

Sugar level stable (r2 = r1) CompDose = 0

Sugar level increasing and rate of increase
decreasing
((r2 – r1) < (r1 – r0))

CompDose = 0

Sugar level increasing and rate of increase
stable or increasing
((r2 – r1) ≥ (r1 – r0))

CompDose =
 round ((r2 – r1)/4)
If rounded result = 0 then
CompDose = MinimumDose

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Requirements

Engineering Processes
and Discovery

46

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Requirements engineering
processes

Generic activities common to all processes
Requirements elicitation;
Requirements analysis;
Requirements validation;
Requirements management.

In practice, RE is an iterative activity in which
these processes are interleaved.

47

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Requirements elicitation and
analysis

Sometimes called requirements elicitation or
requirements discovery.

Involves technical staff working with customers to find

out about the application domain, the services that the
system should provide and the system’s operational
constraints.

May involve end-users, managers, engineers involved in

maintenance, domain experts, trade unions, etc. These
are called stakeholders.

48

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Requirement Analysis

The process of understanding customer requirements and
their implications. It comes after requirements discovery

It involves technical staff working on the discovered
requirements, iteratively with customers, to understand
their technical implication and importance.

It includes the processes of classifying and organising
requirements, negotiating (with customers) and
prioritizing them in the order of their importance to the
customers.

The output of this process is the requirement specification
document (SRS) negotiated and accepted with
customers.

49

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Problems of requirements analysis

Stakeholders don’t know what they really want.
Stakeholders express requirements in their own terms.
Different stakeholders may have conflicting requirements.
The requirements change during
the analysis process

Stages include:
Requirements discovery,
Requirements classification

and organization,
Requirements prioritization

and negotiation,
Requirements specification.

50

1. Requirements
discovery

2. Requirements
classification and

organization

3. Requirements
prioritization and

negotiation

4. Requirements
specification

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Stakeholders in the MHC-PMS

Patients whose information is recorded in the
system.

Doctors who are responsible for assessing and
treating patients.

Nurses who coordinate the consultations with
doctors and administer some treatments.

Medical receptionists who manage patients’
appointments.

IT staff who are responsible for installing and
maintaining the system.

etc

51

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Techniques

There are many requirement engineering
techniques for requirement elicitation and
analysis, some of the often used ones:

Interviewing
Scenario generation
Use case analysis
Ethnography

52

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Interviewing

Formal or informal interviews with stakeholders are
part of most RE processes.

Types of interview
Closed interviews based on pre-determined list of questions
Open interviews where various issues are explored with

stakeholders.
Focused interviews, with clusters of stakeholders

Effective interviewing
Be open-minded, avoid pre-conceived ideas about the

requirements and are willing to listen to stakeholders.
Prompt the interviewee to get discussions going using a

springboard question, a requirements proposal, or by working
together on a prototype system.

53

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Interviews

Meeting introductory protocol
Ensure cultural introduction protocols are followed

First meeting
Aim: to understand the business and its context with a clear aim to

understand business processes and services.
Effective meetings:

Ensure a chair is assigned at the beginning, to keep time-controlled
progress

Ensure an agenda is defined with clear objectives of the target
outcome of the meeting

Ensure a timescale is set for each agenda item and is kept/
controlled by the chair

Ensure clear actions and decisions (and who is responsible for and
by when) are identified and reached by the end of the meeting

Ensure the actions and decisions are summarised at the end of the
meeting

54

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Interviews in practice

Normally a mix of closed and open-ended interviewing.
Interviews are good for getting an overall understanding of

what stakeholders do and how they might interact with
the system.

Interviews are not good for understanding domain

requirements
Requirements engineers cannot understand specific domain

terminology;
Some domain knowledge is so familiar that people find it hard to

articulate or think that it isn’t worth articulating.

55

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Scenarios

Scenarios are real-life examples of how a system
can be used.

They should include

A description of the starting situation;
A description of the normal flow of events;
A description of what can go wrong;
Information about other concurrent activities;
A description of the state when the scenario

finishes.

56

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Scenario for collecting medical
history: Example

57

Initial assumption: The patient has seen a medical receptionist
who has created a record in the system and collected the
patient’s personal information (name, address, age, etc.). A nurse
is logged on to the system and is collecting medical history.

Normal: The nurse searches for the patient by family name. If
there is more than one patient with the same surname, the given
name (first name in English) and date of birth are used to identify
the patient.
The nurse chooses the menu option to add medical history.

The nurse then follows a series of prompts from the system to
enter information about consultations elsewhere on mental health
problems (free text input), existing medical conditions (nurse
selects conditions from menu), medication currently taken
(selected from menu), allergies (free text), and home life (form).

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Scenario for collecting medical
history: Example

58

What can go wrong?

Alternative: The patient’s record does not exist or cannot be found. The
nurse should create a new record and record personal information.

Alternative: Patient conditions or medication are not entered in the menu.
The nurse should choose the ‘other’ option and enter free text describing
the condition/medication.

Error: Patient cannot/will not provide information on medical history. The
nurse should enter free text recording the patient’s inability/unwillingness to
provide information. The system should print the standard exclusion form
stating that the lack of information may mean that treatment will be limited
or delayed. This should be signed and handed to the patient.

Other activities: Record may be consulted but not edited by other staff
while information is being entered.

System state on completion: User (nurse) is logged on. The patient
record including medical history is entered in the database, a record is
added to the system log showing the start and end time of the session and
the nurse involved.

Successful
output?

Yes

Yes

No?

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Use cases

Use-cases are a scenario based technique, in the
UML, which identifies the actors in an
interaction and describes the interaction itself.

A set of use cases should describe all possible
interactions with the system.

High-level graphical model supplemented by more
detailed structured or tabular description.

Sequence diagrams may be used to add detail to
use-cases by showing the sequence of event
processing in the system.

59

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Use cases for the MHC-PMS

60

Nurse

Medical receptionist
Manager

Register
patient

View
personal info.

View record

Generate
report

Export
statistics

Doctor
Edit record

Setup
consultation

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Ethnography

A social scientist spends a considerable time observing
and analysing how people actually work.

People do not have to explain or articulate their work.
Social and organisational factors of importance may be

observed.
Ethnographic studies have shown that work is usually

richer and more complex than suggested by simple
system models.

61

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Requirements validation

Concerned with demonstrating that the
requirements define the system the customer
really wants.

Requirements error costs are high so validation
is very important
Fixing a requirements error after delivery may

cost up to 100 times the cost of fixing an
implementation error.

62

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Requirements checking

Correctness/Validity. Does the system provide the
functions which best support the actual customer’s
needs?

Consistency. Are there any requirements conflicts?
Completeness. Are all functions required by the customer

included?
Traceability/Verifiability. Can the requirements be

verified/validated?

Realism/Feasibility. Can the requirements be
implemented within specified time given available
budget and technology

63

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Requirements validation techniques

Requirements reviews
Systematic manual analysis of the requirements.

Prototyping
Using an “executable model” of the system to check

requirements.

Test-case generation
Developing tests for requirements to check

testability.
 64

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Teams-T2-2017

73

(G1): LI
(G2): MA
(G3): MA
(G4): IB
(G5): AS
(G6): OS
(G7): SK
(G8): SH
(G9): YI
(G10): MM

Customer

Developer

G9 G10

G1 G2

G4 G3

G5 G6

G8 G7

10 min

G9 G8

G1 G10

G2 G3

G5 G4

G6 G7

10 min

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Key points

Requirements for a software system set out what the
system should do and define constraints on its operation
and implementation.

Functional requirements are statements of the services that
the system must provide or are descriptions of how some
computations must be carried out. They describe WHAT
the system should undertake.

Non-functional requirements often constrain the system
being developed and the development process being
used. They often describe HOW WELL the system
should undertake its functional requirements

Requirements often relate to the emergent properties of
the system and therefore apply to the system as a whole.

76

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Key points

The software requirements document is an agreed statement
of the system requirements. It should be organized so that
both system customers and software developers can use it.

The requirements engineering process is an iterative process
including requirements elicitation, specification and
validation.

Requirements elicitation and analysis is an iterative process
that can be represented as a spiral of activities –
requirements discovery, requirements classification and
organization, requirements negotiation and requirements
documentation.

77

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Key points

You can use a range of techniques for requirements
Engineering or elicitation including interviews,
scenarios, use-cases and ethnography.

Requirements validation is the process of checking the
requirements for validity, consistency, completeness,
correctness and realism, unambiguity and verifiability.

Business, organizational and technical changes inevitably
lead to changes to the requirements for a software
system. Requirements management is the process of
managing and controlling these changes.

78

© Dr. Adel Taweel 2016 COMP433: Software Engineering

MidTerm (T2-2016/2017)

COMP433 SOFTWARE ENGINEERING

Venue: Bamieh202, Masri404

Date: Tuesday , 18/04/2017 14:00 - 15:30

82

© Dr. Adel Taweel 2016 COMP433: Software Engineering

Effort+Cost Estimation: Very
simplified method

Simple developer-driven estimation method
pw= person week; pm= person month; w= week; m= month
effort= the effort required for a person employed all month/week long
Schedule time = time needed to complete including based on working days only (including holidays etc)

83

UR Estimated Effort Estimated No of
Developers

Total Effort

UR1 2 pw 2 = 2 * 2 = 4pw

UR2 3 pw 1 = 3 * 1 = 3pw

UR3 2 pw 3 = 2 * 3 = 6pw

UR4 … 1 pw 4 = 1 * 4 = 4pw

Total effort/avg 8 pw (2+1+3+4)/4=2.5
dev on avg needed

17 pw

Schedule time 30%

8 * 1.30=11 w (min
time to complete)

17 *1.30=22w (max
time to complete)

Cost Avg salary= $250 250 * 22 w = $5500

Profit margin
(min=10%;
max=30%)

Min cost !
Max cost !

5500 * 1.10= 6050
5500 * 1.30= 7150

