
© Dr. Adel Taweel 2017 COMP433: Software Engineering

UML Diagrams

82

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Class diagrams

Class diagrams are used when developing an object-oriented
system model to show the classes in a system and the
associations between these classes.

An object class can be thought of as a general definition of one

kind of system object.

An association is a link between classes that indicates that

there is some relationship between these classes.

When you are developing models during the early stages of the

software engineering process, objects represent something
in the real world, such as a patient, a prescription, doctor,
etc.

83

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Simple Class Diagram

84

These relate to
the use cases
provided by
this object

These relate to the
data that system

must store for this
object

This represents a
system object, which
may refer to an Actor

or entity of the
system

© Dr. Adel Taweel 2017 COMP433: Software Engineering

UML Class Icons

85

© Dr. Adel Taweel 2017 COMP433: Software Engineering

+, #, -

+ means public: public members can be accessed
by any client of the class

means protected: protected members can be
accessed by members of the class or any
subclass

- means private: private members can only be
accessed by members of the same class

86

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Analysis Class

An analysis class abstracts one or more classes
and/or

subsystems in the system’s design
Focuses on handling functional requirements
Defines responsibilities (cohesive subsets of

behaviour defined by the class, e.g. use cases or
services it provides to other classes)

Defines attributes
Expresses relationships the class is involved in

87

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Approach: Data-Driven Design

Identify all the data in the system
Divide into classes before considering

responsibilities
Common approach: noun identification

Identify candidate classes by selecting all the nouns and
nouns phrases in the requirements document

Discard inappropriate candidates
 Redundant or omnipotent entities
 Vague entities
 Events or operations
 Meta-language
 Entities outside system scope
 Attributes

Verbs and verb phrases highlight candidate operations!
 88

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Data-Driven Design Approach

Some heuristics/hints of what kind of things are
classes [Shlaer and Mellor; Booch]:

Tangible or “real-world” things – e.g. book, copy,

course;

Roles- e.g. library member, student, director of studies,

Events- e.g. arrival, leaving, request;

Interactions- e.g. meeting, intersection

89

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Exercise

Perform noun-verb analysis of a requirements
document (example text from next slide);
Underline all the noun and noun phrases,
Create a list of candidate classes (in examining the

discard criteria, you may also identify some
candidate attributes)

Identify all verb and verb phrases
Create a list of candidate operations and assign

them to classes

90

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Noun/Verb Analysis

Books and journals:
The library contains books and journals. It may have several copies of a given book.
Some of the books are for short term loans only. All other books may be borrowed by
any library member for three weeks. Members of the library can normally borrow up to
six items at a time, but members of staff may borrow up to 12 items at one time. Only
members of staff may borrow journals.

Borrowing:
The system must keep track of when books and journals are borrowed and
returned, enforcing the rules described above.

91

© Dr. Adel Taweel 2017 COMP433: Software Engineering

1. Noun Analysis

Books and journals:
The library contains books and journals. It may have several copies of a given book.
Some of the books are for short term loans only. All other books may be borrowed by
any library member for three weeks. Members of the library can normally borrow up to
six items at a time, but members of staff may borrow up to 12 items at one time. Only
members of staff may borrow journals.

Borrowing:
The system must keep track of when books and journals are borrowed and
returned, enforcing the rules described above.

92

© Dr. Adel Taweel 2017 COMP433: Software Engineering

First-Cut Class Diagram: Class
Model (Analysis Classes)

94

LibraryMember BookCopy

Book

Journal StaffMember

© Dr. Adel Taweel 2017 COMP433: Software Engineering

2. Verb Analysis

Books and journals:
The library contains books and journals. It may have several copies of a given book.
Some of the books are for short term loans only. All other books may be borrowed by
any library member for three weeks. Members of the library can normally borrow up to
six items at a time, but members of staff may borrow up to 12 items at one time. Only
members of staff may borrow journals.

Borrowing:
The system must keep track of when books and journals are borrowed and
returned, enforcing the rules described above.

95

© Dr. Adel Taweel 2017 COMP433: Software Engineering

First-Cut Class Diagram: Class
Model

96

LibraryMember BookCopy

Book

Journal StaffMember

is a copy of

borrows/returns

borrows/returns

borrows/returns

0..*

0..*

1

0..1

0..*0..1

0..1

1..*

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Relationships/Associations

Relationships are connections between modelling elements
Improve understanding of the domain, describing how

objects work together
Act as a sanity check for good modelling

Associations are relationships between classes
Examples

Object of class A sends a message to object of class B
Object of class A creates an object of class B
Object of class A has attribute whose values are objects of class B
Object of class A receives a message with argument of class B

Links are relationships between objects

Links can be instances of associations (as in UML 1.4)
Allow one object to invoke operations on another object

97

© Dr. Adel Taweel 2017 COMP433: Software Engineering

UML Relationships Notations

98

© Dr. Adel Taweel 2017 COMP433: Software Engineering

UML classes and association

99

Patient Patient
record

1 1

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Links Instantiate Associations

100

LibraryMember

Adel:LibraryMember

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Multiplicity of an Association

101

LibraryMember

StaffMember

LibraryMember

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Class diagram/Model of the
MHC-PMS

102

Patient General
practitioner

Consultation

Consultant

Medication

Treatment

Hospital
Doctor

Condition
referred-by

referred-to

diagnosed-
with

attends

prescribes

prescribesruns

1..*

1

1..* 11..*

1..*

1..*

1..*

1..4

1..*

1..*
1..*

1..*

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Generalisation (Inheritance)

103

LibraryMember

StaffMember

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Complete class Description

104

Consultation

Doctors
Date
Time
Clinic
Reason
Medication prescribed
Treatment prescribed
Voice notes
Transcript
...

New ()
Prescribe ()
RecordNotes ()
Transcribe ()
...

Use case or
services an actor
can perform or

provide to others

Data an actor
needs to perform it

services

Other Actors (or
objects) that may
use this Actor or
specialise from it

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Another Generalisation Example

105

<is-a> association

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Part/Whole Associations
(Aggregation)

 a Course is part of a Programme
In fact,

5 or more courses are part of one or more
programmes

106

<made-up-of> association
<consist-of> association

Course Programme

© Dr. Adel Taweel 2017 COMP433: Software Engineering

aggregation association:
Example

107

Patient record

Patient Consultation

11

1 1..*

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Part/Whole Associations: Example

108

[CheckBoard] is <made-up-of> 64 [Square]

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Association Classes

Used to attach attributes to an association itself
rather than the classes themselves

Class association line must have the same name!

109

Course

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Exercise: Class Model

Students take courses as part of their degree. Some
lecturers can teach as many courses as they wish, other
can choose not to teach any course. Director of studies is
one of the lecturers, who directs students’ studies and
help them in their course selection. Students can be
graduates or non-graduates. Graduate student can
graduate with an honours degree, or a non-honour
degree for their graduation year. Students with honours
should pass at least 6 courses, in their final graduating
year in their speciality, with a mark of “very good (or first
class)” and above to gain an honour degree.

110

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Exercise: Class Model

Students take courses as part of their degree. Some
lecturers can teach as many courses as they wish, other
can choose not to teach any course. Director of studies is
one of the lecturers, who directs students’ studies and
help them in their course selection. Students can be
graduates or non-graduates. Graduate student can
graduate with an honours degree, or a non-honour
degree for their graduation year. Students with honours
should pass at least 6 courses, in their final graduating
year in their speciality, with a mark of “very good (or first
class)” and above to gain an honour degree.

111

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Example: (Analysis) Class Model

112

Course

Honours

© Dr. Adel Taweel 2017 COMP433: Software Engineering

What Makes a ‘Good’ Analysis
Class..

Its name reflects its intent

It is a crisp abstraction that models one specific

element of the problem domain

It has a small but defined set of responsibilities

It has high cohesion

It has low coupling with other classes

113

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Complete class Description

114

Consultation

Doctors
Date
Time
Clinic
Reason
Medication prescribed
Treatment prescribed
Voice notes
Transcript
...

New ()
Prescribe ()
RecordNotes ()
Transcribe ()
...

Use case or
services an actor
can perform or

provide to others

Data an actor
needs to perform it

services

Other Actors (or
objects) that may
use this Actor or
specialise from it

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Example: Detailed Class Diagram

115

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Another Example

Corporate Customer and
Personal Customer classes
may have some common
attributes/operations such
as name and address, but
each class has its own
attributes and operations.
The class Customer is a
general form of both the
Corporate Customer and
Personal Customer classes.

116

© Dr. Adel Taweel 2017 COMP433: Software Engineering

UML Diagrams

117

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Object Diagram

Objects are instances of Classes
Object Diagram captures objects and

relationships between them, in other words, it
captures instances of Classes and links
between them.

Built during analysis & design

Illustrate data/object structures
Specify snapshots

Developed by analysts, designers and
implementers

118

© Dr. Adel Taweel 2017 COMP433: Software Engineering

UML Object Icons

119

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Object Diagram

Capture class instances and links between objects

120

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Example: Object Diagram

121

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Example: Object Model/Diagram

122

Course

Honours

For the
following class
model draw:
-  a detailed

Class Model
(or Diagram)

-  an Object
Model (or
Diagram)

© Dr. Adel Taweel 2017 COMP433: Software Engineering

UML Diagrams

123

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Sequence diagrams

Sequence diagrams are used to model the interactions
between the actors and the objects within a system, with
a time-oriented view.

A sequence diagram shows the sequence of interactions
that take place during a particular use case or use case
instance.

The objects and actors involved are listed along the top of
the diagram, with a dotted line drawn vertically from
these.

Interactions between objects are indicated by annotated
arrows.

124

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Sequence diagrams

Sequence diagrams demonstrate the behaviour of
objects in a use case by describing the objects
and the messages they pass. the diagrams are
read left to right and descending.

Object interactions are arranged in a time
sequence (i.e. time-oriented)

125

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Sequence diagrams

126

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Sequence diagrams

The example shows an object of class 1 start the
behaviour by sending a message to an object of
class 2. Messages pass between the different
objects until the object of class 1 receives the
final message

127

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Example

In a self-service, e.g. money (e.g. ATM), machine,
three objects do the work we're concerned with:
the front: the interface the self-service machine

presents to the customer
the money register: part of the machine where

money is collected
the dispenser: which delivers the selected product to

the customer

128

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Example

The instance sequence diagram may be sketched
by using this sequences:

1.  The customer inserts money in the money slot in
front money collector.

2.  The customer makes a selection on the front UI
3.  The money travels to the register
4.  The register checks to see whether the correct

money is in the money collector/dispenser
5.  The register updates its cash reserve
6.  The register notifies the dispenser which delivers

the product (e.g. receipt) to the front of the
machine

129

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Example

130

© Dr. Adel Taweel 2017 COMP433: Software Engineering

However, note…

We have seen an instance of an interaction
diagram- i.e. one possible sequence of messages

Since a use case can include many scenarios

There is a need to show conditional behaviour
There is a need to show possible iterations

A generic interaction diagram shows all possible

sequences of messages that can occur

131

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Showing conditional behaviour

A message may be guarded by a condition
Messages are only sent if the guard evaluates to

true at the time when the system reaches that
point in the interaction

132

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Opt(ional) in UML 2.0

Opt: Optional; the fragment executes only if the supplied
condition is true. This is equivalent to an alt with one trace

133

© Dr. Adel Taweel 2017 COMP433: Software Engineering

alt(ernative): Operators in interactions
frames – UML 2.0

134

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Iterations (i.e., loop) – UML 1.0

* Indicates looping or iterations
i:=1..2 means 2 iterations….

135

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Loop in UML 2.0

Loop: the fragment may execute multiple times, and the guard
indicates basis for iterations

136

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Sequence diagram for View patient
information use case

137

P: PatientInfo

ViewInfo (PID)
report (Info, PID,
UID)

authorize (Info,
UID)

Patient info

D: MHCPMS-DB AS: Authorization

authorization

Error (no access)

[authorization OK]

[authorization fail]

Medical Receptionist

alt

Use case: View Patient Information – through authorization

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Sequence diagram for Transfer
Data

138

P: PatientInfo

login ()

D: MHCPMS-DB AS: Authorization

authorization

[sendInfo]

[sendSummary]

Medical Receptionist PRS

ok

updateInfo() updatePRS (UID)

update (PID)

update OKMessage (OK)

summarize (UID)

authorize (TF, UID)

authorization

authorize (TF, UID)

:summary

update (PID)

UpdateSummary()

logout ()

alt

update OK
Message (OK)

Use case: Transfer
Data-
demonstrates
interactions

between Actors

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Example/Exercise

Library system, three objects do the work we're
concerned with
BookBorrower: that will borrow the book
Copy: copy of a book
Librarian/LibraryStaff: which authorizes and

register the borrowing of the borrowed copy.

139

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Sequence Diagram of a Library
System

140

TheLibrarian: Librarian TheCopy: Copy TheBook: Book

aMember: BookBorrower

borrow()
setBorrowed()

oktoBorrow()

borrow(theCopy)

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Sequence Diagram of a Library
System

141

TheLibrarian: Librarian TheCopy: Copy TheBook: Book

aMember: BookBorrower

borrow()
setBorrowed()

oktoBorrow()

borrow(theCopy)
P: PatientInfo

login ()

D: MHCPMS-DB AS: Authorization

authorization

[sendInfo]

[sendSummary]

Medical Receptionist PRS

ok

updateInfo() updatePRS (UID)

update (PID)

update OKMessage (OK)

summarize (UID)

authorize (TF, UID)

authorization

authorize (TF, UID)

:summary

update (PID)

UpdateSummary()

logout ()

alt

update OK
Message (OK)

[OK]

[NOT OK]

P: PatientInfo

ViewInfo (PID)
report (Info, PID,
UID)

authorize (Info,
UID)

Patient info

D: MHCPMS-DB AS: Authorization

authorization

Error (no access)

[authorization OK]

[authorization fail]

Medical Receptionist

alt

© Dr. Adel Taweel 2017 COMP433: Software Engineering

UML Diagrams

143

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Collaboration diagrams

Describe a specific scenario by showing the
movement of messages between the objects

Show a spatial organization of objects and their
interactions, rather than the sequence of the
interactions

Unlike a Sequence diagram, a collaboration diagram shows
the relationships among the objects. A collaboration
diagram does not show time (i.e., sequence)

Keep in mind:- Both are referred to as interaction diagrams
but with different focus!
Sequence diagrams – models message flows between objects based

on time (i.e., sequence)
Collaboration diagrams– models message flows between objects

with no reference to timing

144

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Example- 1st:connect objects

148

TheCopy: Copy

TheBook: Book

TheLibrarian: Librarian

aMember: BookBorrower

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Second: Draw interactions

149

TheCopy: Copy

TheBook: Book

TheLibrarian: Librarian

aMember: BookBorrower
1:
borrow(theCopy)

2: okToBorrow()

3: borrow()

3.1: setBorrowed()

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Exercise

Sketch a collaboration diagram for self-service
machine, three objects do the work we're
concerned with
the front: the interface the self-service machine

presents to the customer
the money register: part of the machine where

money is collected
the dispenser: which delivers the selected product to

the customer
Compare your collaboration diagram with that of a

sequence diagram

150

© Dr. Adel Taweel 2017 COMP433: Software Engineering

UML Diagrams

151

© Dr. Adel Taweel 2017 COMP433: Software Engineering

State Diagrams

Also known as statecharts (invented by David
Harel)

Used primarily to model state of an object
A class has at most one state machine diagram

Models how an object’s reaction to a message
depends on its state

Objects of the same class may therefore receive the same
message, but respond differently!

152

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Use of State diagrams

Often used for modelling the behaviour of
components (subsystems) of real time and
critical systems….

153

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Modelling states and events

154

The related “use cases” or
events could be

The states of the Book could be

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Realising state diagrams

155

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Conditional notions

Conditional notation is used if the value of an object’s
attributes determines the change of state(i.e.,
change the state under this condition….)

156

Important hint: For some guards/conditions use keywords like
After (followed by expression)
When (followed by expression)

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Conditional Notions

Means…… when the withdraw()/deposit()
use cases (or their corresponding
methods) are invoked, then

If balance<0, then change the state to
overdrawn

If balance>=0, then change the state to
in-credit

157

Important hint:
For expressing some events use

keywords like
After (followed by expression)
When (followed by expression)

In credit overdrawn
withdraw()

deposit()

:BankAccount

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Conditional Notions

158

Important hint:
For expressing some events use keywords like

After (followed by expression)
When (followed by expression)

:BankAccount

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Modelling states and substates

States of ATM machine itself…

159

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Modelling substates
States of ATM machine itself… are rather trivial!

But useful to model the composed state busy to create its sub

states to understand more fully the ATM states for a
developer to implement.

160

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Modelling substates of ATM
machine

161

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Modelling substates of ATM
machine

162

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Modelling concurrent states

163

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Exercise: a State diagram of a video
player

164

© Dr. Adel Taweel 2017 COMP433: Software Engineering 165

© Dr. Adel Taweel 2017 COMP433: Software Engineering 166

© Dr. Adel Taweel 2017 COMP433: Software Engineering

UML Diagrams

167

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Component Diagrams

The component diagram's main purpose is to show the
structural relationships between the components of a
system

Component diagrams offer architects a natural format to
begin modelling a solution

Component diagrams allow an architect to verify that a
system's required functionality is being implemented by
components

Developers find the component diagram useful because it
provides them with a high-level, architectural view of the
system that they will be building

168

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Component Diagrams

169

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Required/Provide Interface

170

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Component Diagrams

showing a component's relationship with other components, the
lollipop and socket notation must also include a dependency arrow (as
used in the class diagram). On a component diagram with lollipops
and sockets, note that the dependency arrow comes out of the
consuming (requiring) socket and its arrow head connects with the
provider's lollipop

171

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Component Diagrams

Architectural connection in UML 2.0 is expressed
primarily in terms of interfaces

Interfaces are classifiers with operations but no attributes
Components have provided and required interfaces

Component implementations are said to realize their provided
interfaces

A provided and required interface can be connected if the
operations in the latter are a subset of those in the former, and
the signatures of the associated operations are ‘compatible’

Ports provide access between external interfaces and
internal structure of components

UML components can be used to model complex
architectural connectors (like a CORBA ORB)

172

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Component Diagrams

173

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Composite Structure in Component
Diagrams

A composite structure depicts the internal
realisation of component functionality

174

Ref: David Rosenblum, UCL

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Ports

The ports and connectors specify how component interfaces are mapped to
internal functionality

Note that these ‘connectors’ are rather limited, special cases of the ones in
software architectures

175

Ref: David Rosenblum, UCL

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Ports

Connectors and ports also can be used to specify
structure of component instantiations

176

Ref: David Rosenblum, UCL

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Example

177

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Componentization Guidelines

“Keep components cohesive”. i.e a component should
implement a single, related set of functionality.
This may be the user interface logic for a single user application,

business classes comprising a large-scale domain concept, or
technical classes representing a common infrastructure concept.

User interface classes assigned as application components.

User interface classes, those that implement screens, pages, or
reports, as well as those that implement “glue logic”.

Assign common technical classes to infrastructure

components.
Technical classes, e.g. that implement system-level services such as

security, persistence, or middleware should be assigned to
components which have the infrastructure stereotype.

178

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Example

179

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Componentization Guidelines

Assign hierarchies to the same component.
99.9% of the time it makes sense to assign all of the classes of a

hierarchy, either an inheritance hierarchy or a composition
hierarchy, to the same component.

Identify business domain components.

Because you want to minimize network traffic to reduce the response
time of your application, you want to design your business domain
components in such a way that most of the information flow
occurs within the components and not between them.

Business domain components = business services

Identify the “collaboration type” of business classes.
Once you have identified the collaboration type of each class (e.g.

server/client or both), you can start identifying potential business
domain components.

180

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Example

181

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Componentization Guidelines

Highly coupled classes grouped in the same component.
When two classes collaborate frequently, this is an indication they

should be in the same domain business component to reduce the
network traffic between the two classes.

Minimize the size of the message flow between components.

If you have domain components, one as a server to only the other as a
client, you may decide to combine or merge the two components.

Define component contracts, as interfaces.

Each component will offer services to its client components, each
such service is a component contract.

182

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Example

183

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Exercise

Draw a component diagram of an ATM machine

184

© Dr. Adel Taweel 2017 COMP433: Software Engineering

UML Diagrams

185

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Deployment Diagram

Models the run-time configuration in a static view
and visualizes the distribution of components in
an application

It helps map between software components and
hardware

A component is deployed part of the software

system architecture

In most cases, it involves modelling the hardware

configurations together with the software
components that lived on

186

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Deployment Diagram

Deployment diagram depicts a static view of the run-time
configuration of processing nodes and the components
that run on those nodes
Node: server, client etc.

Deployment diagrams show the hardware for your system,
the software that is installed on that hardware, and the
middleware used to connect the disparate machines to
one another!

Visualizes the distribution of components in an

application, it shows the configuration of the hardware
elements (nodes) and shows how software elements and
artifacts are mapped onto those nodes.

187

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Node

A Node is either a hardware or software element.
It is shown as a three-dimensional box shape, as
shown below.

188

PC Client

server

Unix
server

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Node Instance

An instance can be distinguished from a node by the fact that its name is
underlined and has a colon before its base node type. An instance may
or may not have a name before the colon.

The following diagram shows a named instance of a computer

189

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Node Sterotypes

In UML, a number of standard stereotypes are provided for nodes,
namely «cdrom», «cd-rom», «computer», «disk array», «pc», «pc
client», «pc server», «secure», «server», «storage», «unix server»,
«user pc».

These will display an appropriate icon in the top right corner of the node

symbol

190

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Artifact

An artifact is a product of the software development process. That may
include process models (e.g. use case models, design models etc),
source files, executable files, design documents, test reports,
prototypes, user manuals, etc.

An artifact is denoted by a rectangle showing the artifact name, the
«artifact» keyword and a document icon, as shown.

191

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Association

In deployment diagram, an
association represents a
communication path
between nodes. The
following diagram shows a
deployment diagram for a
network, depicting network
protocols as stereotypes,
and multiplicities at the
association ends.

192

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Node as Container

A node can contain other elements, such as components or
artifacts.

The following diagram shows a deployment diagram for
part of an embedded system, depicting an executable
artifact as being contained by the motherboard node.

193

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Architectural Style vs Architecture

Architectural Style:

A pattern for a system layout

Software Architecture:
Instance of an architectural style.

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Examples of Architectural Styles

!  Layered Architectural style
!  Service-Oriented Architecture (SOA)

!  Client/Server
!  Peer-To-Peer
!  Three-tier, Four-tier Architecture
!  Repository
!  Model-View-Controller
!  Pipes and Filters

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Example of three-tiers
architectures

Many of real life web applications have three tier architectures

196

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Example: Client server
architectures

197

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Deployment diagram for three tiers

198

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Example: Deployment Diagram for
client server architectures

199

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Exercise.

Depict a deployment diagram for an ATM
machine.

200

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Covered!?

201

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Key points

A model is an abstract view of a system that ignores system details.
Complementary system models can be developed to show the
system’s context, interactions, structure and behaviour.

Context models show how a system that is being modeled is positioned
in an environment with other systems and processes.

Structural models show the organization and architecture of a system.
Use cases describe interactions between a system and external
actors. Class diagrams are used to define the static structure of
classes in a system and their associations using both data-driven
and executable view points.

Behavioural models show how how system elements interactions. Use
case diagrams, activity diagrams and sequence diagrams are used to
describe the interactions between users and systems in the system
being designed taking the business view points or needs. Activity
diagrams show how a business achieve its business process through
interactions between use cases. Sequence diagrams show how a
system achieve use cases through interactions between system
objects.

202

