UML Diagrams

Covered :

&= You are Here!
Class

Diagrams

Use “ase ,

Diagra.ns Object

Diagrams

Collaboration Component
Diagrams Diagrams

Deployment
Diagrams

Covered

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Class diagrams

Class diagrams are used when developing an object-oriented
system model to show the classes in a system and the
associations between these classes.

An object class can be thought of as a general definition of one
kind of system object.

An association is a link between classes that indicates that
there is some relationship between these classes.

When you are developing models during the early stages of the
software engineering process, objects represent something
in the real world, such as a patient, a prescription, doctor,

etc.

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Simple Class Diagram

This represents a
system object, which
may refer to an Actor

or entity of the

Class Name = Customer

................................... - @nams - Sting
e __.;.::..‘_.,..‘:.Attrlbutes =" |Raddnss - Sting

These relate to the
data that system
must store for this

chject o Operations | $credtRatingg

These relate to
the use cases
provided by

© Dr. Adel Taweel 2017 COMP433: Software Engineering

UML Class Icons

, S Class name
Optional Visibility Adornments
(+public, private, fprotacted, -pac / (in ftalics If abstract)
| .
Name & Attribute name
compartment Book
—= Attribute type
Optional Ftitle : String4+— -
attribute } | #available : Boolean = trueja—"""al value
compartment
Operation with
, <<constructorz>> - cl::;'a scope and
Optional +create()
operation } <<stereotype>>
compartment
+copiesOnShelf() : Int Operation
+borrow(c:Copy) signatures

Reference: . Rosenblum, UCL

© Dr. Adel Taweel 2017 85 COMP433: Software Engineering

+! #!'

+ means public: public members can be accessed
by any client of the class

means protected: protected members can be
accessed by members of the class or any
subclass

- means private: private members can only be
accessed by members of the same class

© Dr. Adel Taweel 2017 86 COMP433: Software Engineering

Analysis Class

An analysis class abstracts one or more classes
and/or

subsystems in the system’s design
Focuses on handling functional requirements
Defines responsibilities (cohesive subsets of
behaviour defined by the class, e.g. use cases or
services it provides to other classes)
Defines attributes
Expresses relationships the class is involved in

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Approach: Data-Driven Design

Identify all the data in the system

Divide into classes before considering
responsibilities

Common approach: noun identification
Identify candidate classes by selecting all the nouns and

nouns phrases in the requirements document

Discard inappropriate candidates
Redundant or omnipotent entities
Vague entities
Events or operations
Meta-language
Entities outside system scope
Attributes

Verbs and verb phrases highlight candidate operations!

© Dr. Adel Taweel 2017 88 COMP433: Software Engineering

Data-Driven Design Approach

Some heuristics/hints of what kind of things are
classes [Shlaer and Mellor; Booch]:

Tangible or “real-world” things — e.g. book, copy,
course;

Roles- e.g. library member, student, director of studies,
Events- e.g. arrival, leaving, request;

Interactions- e.g. meeting, intersection

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Perform noun-verb analysis of a requirements

document (example text from next slide);
Underline all the noun and noun phrases,
Create a list of candidate classes (in examining the
discard criteria, you may also identify some
candidate attributes)

Identify all verb and verb phrases
Create a list of candidate operations and assign
them to classes

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Noun/Verb Analysis

Books and journals:

The library contains books and journals. It may have several copies of a given book.
Some of the books are for short term loans only. All other books may be borrowed by
any library member for three weeks. Members of the library can normally borrow up to
six items at a time, but members of staff may borrow up to 12 items at one time. Only
members of staff may borrow journals.

Borrowing:

The system must keep track of when books and journals are borrowed and
returned, enforcing the rules described above.

© Dr. Adel Taweel 2017 91 COMP433: Software Engineering

1. Noun Analysis

Books and journals:

The library contains books and journals. It may have several copies of a given book.
Some of the books are for short term loans only. All other books may be borrowed by
any library member for three weeks. Members of the library can normally borrow up to
six items at a time, but members of staff may borrow up to 12 items at one time. Only
members of staff may borrow journals.

Borrowing:

The system must keep track of when books and journals are borrowed and
returned, enforcing the rules described above.

© Dr. Adel Taweel 2017 2 COMP433: Software Engineering

First-Cut Class Diagram: Class

Model (Analysis Classes)

Book
LibraryMember BookCopy
StaffMember Journal

© Dr. Adel Taweel 2017 COMP433: Software Engineering

2. Verb Analysis

Books and journals:

The library contains books and journals. It may have several copies of a given book.
Some of the books are for short term loans only. All other books may be borrowed by
any library member for three weeks. Members of the library can normally borrow up to
six items at a time, but members of staff may borrow up to 12 items at one time. Only
members of staff may borrow journals.

Borrowing:

The system must keep track of when books and journals are borrowed and
returned, enforcing the rules described above.

© Dr. Adel Taweel 2017 95 COMP433: Software Engineering

LibraryMember

borrows/returns

Book

is a copy of

1

1.*%

0..1

0..1

StaffMember

borrows/returns

0.*

BookCopy

borrows/returns

0..1

© Dr. Adel Taweel 2017

0..*

Journal

COMP433: Software Engineering

Relationships/Associations

Relationships are connections between modelling elements

Improve understanding of the domain, describing how
objects work together

Act as a sanity check for good modelling

Associations are relationships between classes

Examples
Object of class A sends a message to object of class B
Object of class A creates an object of class B
Object of class A has attribute whose values are objects of class B
Object of class A receives a message with argument of class B

Links are relationships between objects
Links can be instances of associations (as in UML 1.4)
Allow one object to invoke operations on another object

© Dr. Adel Taweel 2017 COMP433: Software Engineering

UML Relationships Notations

bidirectional / binary
— unidirectional
O aggregation
’ composition
+ association name p
[+ single directional arrow] supplemmtary
role name role name characteristics
multiplicity multiplicity

Reference: . Rosenblum, UCL

© Dr. Adel Taweel 2017 COMP433: Software Engineering

UML classes and association

1 1 Patient
record

Patient

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Links Instantiate Associations

| borrows p Class and Association
LibraryMember A Book Level
3 3
; <<instantiate»» :
< -:1nst;§ntiate:-:- - <<instarftiates>
' Object and Link
Adel:LibraryMember * usingUML: Book J
Level

Reference: . Rosenblum, UCL

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Multiplicity of an Association

* Indicates the number of objects
that can participate in a Book

relationship at any point in time

1
is copy of
1__‘
borrows/returns
LibraryMember 0. 1 0~ Copy
n__l
o borrows/returns
borrows/returns
StaffMember - o - Journal

Reference: [Rosenhlum UL

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Class diagram/Model of the

MHC-PMS

Consultant

1
referred-to

1.X

1. 1 1.7 ! General
Condition Patient r
diagnosed- referred-by practitioner
with 1.X
attends
1.*
_ prescribes T
Consultation Medication
1.* 1.*
1.*
runs prescribes
1.4 Treatment
= 1.*
Hospital
Doctor

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Generalisation (Inheritance)

e A special kind of association
* Subclass inherits attributes and Book
operations of superclass 1
» And possibly extends superclass is copy of
1--i
borrows/returns
LibraryMember [~ 0..* Copy
Superclass d___ﬂ__d__—-f“” 0..*
___— borrows/returns
Subclass ja—lff
borrows/returns
StaffMember . - Journal

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Consultation

Doctors
Date
Time
Clinic
Reason
Medication prescribed
Treatment prescribed
Voice notes -l
Transcript

.:

.

New (
Prescribe ()
RecordNotes ()
Transcribe ()

.z

© Dr. Adel Taweel 2017

Complete class Description

Other Actors (or
objects) that may
use this Actor or

Data an actor
needs to perform it
services

Use case or
services an actor
can perform or

COMP433: Software Engineering

Another Generalisation Example

Staff Member
salary: Int

increasaSalary(Int)

<1s-a> association

salary: Int

increasaSalary(Int) Librarian Tutor Researcher

assign5Subject(5tring) assignCourse(5tring) beginProject(5tring)

Multiple inheritance
salary: Int
increaseSalary(int)
assignCourse(5tring)
beginProject(5tring)

Professor

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Part/Whole Associations

(Aggregation)

e Aggregation: Weak Ownership

> The part objects can feature simultaneously in any number of
other whole objects

Programme |<>1 - - Course

<made-up-of> association
<consist-of> association

a Course is part of a Programme
In fact,
5 or more courses are part of one or more
programmes

© Dr. Adel Taweel 2017 COMP433: Software Engineering

aggregation association:
Example

Patient record

1 1
1 1.*

Consultation

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Part/Whole Associations: Example

Composed of 64 squares

e Composition: Strong Ownership

#» The whole strongly owns its parts, so the parts cannot feature
elsewhere

CheckerBoard)’
1 64
[CheckBoard] is <made-up-of> 64 [Square]

Square

e NOTE: Not all 1-to-" relationships imply ownership

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Association Classes

Used to attach attributes to an association itself
rather than the classes themselves
Class association line must have the same name!

is taking
Student |- i X Course
s takin
¢ Association class
mark : int

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Exercise: Class Model

Students take courses as part of their degree. Some
lecturers can teach as many courses as they wish, other
can choose not to teach any course. Director of studies is
one of the lecturers, who directs students’ studies and
help them in their course selection. Students can be
graduates or non-graduates. Graduate student can
graduate with an honours degree, or a non-honour
degree for their graduation year. Students with honours
should pass at least 6 courses, in their final graduating
year in their speciality, with a mark of “very good (or first
class)” and above to gain an honour degree.

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Exercise: Class Model

Students take courses as part of their degree. Some
lecturers can teach as many courses as they wish, other
can choose not to teach any course. Director of studies is
one of the lecturers, who directs students’ studies and
help them in their course selection. Students can be
graduates or non-graduates. Graduate student can
graduate with an honours degree, or a non-honour
degree for their graduation year. Students with honours
should pass at least 6 courses, in their final graduating
year in their speciality, with a mark of “very good (or first
class)” and above to gain an honour degree.

© Dr. Adel Taweel 2017 1 COMP433: Software Engineering

Example: (Analysis) Class Model

1

Lecturer teaches
u N F
Course

'E‘ ﬁ“‘
takes
DirectorOfStudies directs
\ 1.+ o L7

0 =1 Student Honours
¢ 1
15 0N
ﬂ.__t
NonGraduatingStudent GraduatingStudent

© Dr. Adel Taweel 2017 COMP433: Software Engineering

What Makes a ‘Good’ Analysis

Class..

Its name retlects its intent

It is a crisp abstraction that models one specific
element of the problem domain

It has a small but defined set of responsibilities
It has high cohesion

It has low coupling with other classes

© Dr. Adel Taweel 2017 13 COMP433: Software Engineering

Complete class Description

© Dr. Adel Taweel 2017

Consultation —
. Other Actors (or
Doctors ... objects) that may
Date e use this Actor or
Time ~..,.....§P.ecia|ise fron'\‘j.t‘_'_,m
Clinic
Reason | e

Medication prescribed

Data an actor

'\I‘/rqatment prescrlbeq _____________ needs to perform it
oice notes S services
Transcript
NeW (......................................
Prescribe () . Use case or
RecordNotes () |- " services an actor
Transcribe () B R can perform or

114

COMP433: Software Engineering

Example: Detailed Class Diagram

L] -1“i E— l'l‘lUIHIﬂﬁty' 1”1.
‘ Department Lscatien Office |

name ; Name [1 address ; Sting
o1 voice | Nurmber
; coarestraind
“:' -
C. {_ié_l-lﬁﬂ_'t} assodciation i gamﬁra]:tallnn
mamber [1.7 1| manangar | Headoquarters

name : Name attributes
employves|D - Integer #FH_._

title - String /_,_. oparations
g -) Contactinformation

getSoundBital) »
getContactinformation(} - - > address : String
getPersonalRecords() -
[5‘3 Fe R intarface

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Another Example

Corporate Customer and Order
Personal Customer classes Y e Customer
may have some common & Grame Siina
attributes/operations such |®prce :money 1 |
as name and address, but | suicpatcng $ereditRating(
each class has its own M B

attributes and operations.
The class Customer is a

general form of both the

Corporate CUStomer and Corprate Customer Fersonal Customer

PeI‘SOIlal Customer ClaSSGS. &hcontactMarme : String GhcreditCard# : Long Integer
&ycreditRating ; String

®ycreditlimit : Ucuble

Frermind()
hillF arMonthi)

© Dr. Adel Taweel 2017 116 COMP433: Software Engineering

UML Diagrams

Covered

Lsa " a5a

Diagra.as

Collaboration
Diagrams

© Dr. Adel Taweel 2017

'._I..'I".."..

De=rams

You are Herel

Object
Diagrams

Component
Hagrams

Deployment
Diagrams

Covered

COMP433: Software Engineering

Object Diagram

Objects are instances of Classes

Object Diagram captures objects and
relationships between them, in other words, it
captures instances of Classes and links
between them.

Built during analysis & design
Illustrate data/object structures
Specify snapshots

Developed by analysts, designers and
implementers

© Dr. Adel Taweel 2017 COMP433: Software Engineering

UML Object Icons

Object name Class name

Name 3 — —

compartment DSRsUMLBook : Book

Optional
attribute } | title = “Using UML”
compartment

Attribute name
Attribute value

Operations and attribute types
are not shown on object diagrams!

Reference: D. Rosenblum, UCL

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Object Diagram

Capture class instances and links between objects
c: Company

4 91 Depariment d2 : Department
name = “Sales” name = “R&D"
link

attribute valua

L
manager

p : Person
—= d : Contactinformation

employeelD = 4362 addrass = “1472 Miller 5t.°
fitle = “VP of Sales”

anonymaols object

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Example: Object Diagram

[John's 1st: SavingsAccount E |

o balance = 10,000.00

. accounts |id= 1234567390

interestRate = 1,2
minimumBalance =

bankname = AgencyBank | [John's2nd: CheckingAccount = |
IPadress = 1010127128 s L
username = John Doe "- - Palance= 1o ii6
password = johnny . accounts lid = 987654321
accounts =

I?III;ZZIIIIZZIIIIZW___«.__;_____W
B hh :a;:cc:uunisfbalance= —_—

id= 4445556667
crediLimit = 5,000.00
interestRateOnBalance =

interestRateOnCashidvance =

© Dr. Adel Taweel 2017 121 COMP433: Software Engineering

Example: Object Model/Diagram

1

For the Lecturer “
following class 0 ——
model draw: / |
- adetailed .

Class Model /

(or Diagram)| "erontde & e &1
- an Object (57 Student Honours

Model (or A i

Diagram) o

NonGraduating Student GraduatingStudent

© Dr. Adel Taweel 2017 COMP433: Software Engineering

UML Diagrams

You are
Herel

Class
Die=rams
Usa " asa
Diagra.s

Covered

Covered

Collaboration Component
Diagrams Diagrams

Deployment
Diagrams

Activity
Diayrams

Covered

© Dr. Adel Taweel 2017 123 COMP433: Software Engineering

Sequence diagrams

Sequence diagrams are used to model the interactions
between the actors and the objects within a system, with
a time-oriented view.

A sequence diagram shows the sequence of interactions
that take place during a particular use case or use case
instance.

The objects and actors involved are listed along the top of
the diagram, with a dotted line drawn vertically from
these.

Interactions between objects are indicated by annotated
arrows.

© Dr. Adel Taweel 2017 124 COMP433: Software Engineering

Sequence diagrams

Sequence diagrams demonstrate the behaviour of
gbi_ec_ts in a use case by describing the objects
and the messages they pass. the diagrams are
read left to right and descending.

Object interactions are arranged in a time
sequence (i.e. time-oriented)

obhjects | % |
o
o
.E : /\ <
E Activation: <
5 i.e., object in active | T |

© Dr. Adel Taweel 2017 125 COMP433: Software Engineering

Sequence diagrams

Object : Clags] Obiect : Class? Object : Clags3
objects | }l |
',/\ }l (O

Activation: ﬂ £55age -H_;;E,ﬂ}
I.e., object in active /—
e~

de‘éﬁ?%\—/_. 5 /\

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Sequence diagrams

Ohbject : Clase’] Obpect : Clags? Chject - Clase3
| —a i I
=
e
-
i .

The exalnple shows an object of class 1 start ’éhe
behaviour by sending a message to an object of
class 2. Messages pass between the different
objects until the object of class 1 receives the
final message

© Dr. Adel Taweel 2017 COMP433: Software Engineering

In a self-service, e.g. money (e.g. ATM), machine,
three objects do the work we're concerned with:

the front: the interface the self-service machine
presents to the customer

the money register: part of the machine where
money is collected

the dispenser: which delivers the selected product to
the customer

© Dr. Adel Taweel 2017 COMP433: Software Engineering

The instance sequence diagram may be sketched
by using this sequences:

1.

2.

The customer inserts money in the money slot in
front money collector.
The customer makes a selection on the front Ul

3. The money travels to the register
4.

The reglster checks to see whether the correct
money is in the money collector/dispenser

The register updates its cash reserve

The register notifies the dispenser which delivers
the product (e.g. receipt) to the front of the
machine

© Dr. Adel Taweel 2017 129 COMP433: Software Engineering

‘ Fro \ :Reqister

Insert(input) | |

select(Selection Send[lnputj'i

. NLLELINE INLIE] INZ)] INLCN]

Customer Notify()

Deliu-'er[!Selectiunj

]]]
n n L
[] [] "

The "Buy a product” scenario.
Because this is the best-case scenario, it's an instance sequence diagram

© Dr. Adel Taweel 2017 130 COMP433: Software Engineering

However, note...

We have seen an instance of an interaction
diagram- i.e. one possible sequence of messages

Since a use case can include many scenarios
There is a need to show conditional behaviour
There is a need to show possible iterations

A generic interaction diagram shows all possible
sequences of messages that can occur

© Dr. Adel Taweel 2017 131 COMP433: Software Engineering

Showing conditional behaviour

A message may be guarded by a condition
Messages are only sent if the guard evaluates to
true at the time when the system reaches that

point in the interaction

Obj:class Obj:class

Else bar()

[i = 0] foo() 3 [i = 0] fool) -
./- T
- [i = 1] bar()
Sl If i=0 then foo()
If i= 1 then bar()

! If i=0 then foo()

© Dr. Adel Taweel 2017 132 COMP433: Software Engineering

Opt(ional) in UML 2.0

il (ecaper] -1

If concion s met

Mes$age par emeters) btk messages are sert

| |
I I
| |
lp; Message] (par emeters) ' :
i .
| |

|

|

|

I

I

I

|
|
|
. |
| |
Opt: Optional; the fraﬁment executes only if the supplied

condition is true. This is equivalent to an alt with one trace

© Dr. Adel Taweel 2017 133 COMP433: Software Engineering

alt(ernative): Operators in interactions

frames — UML 2.0

Operator ﬁiﬂlﬂﬁ’- LE.EEJIH.EU. tﬁ'ﬂlmi
i | |
i i
: }
“‘tzj message (parameers), | '
[concition] '
I : rteraction oceurs
MEESSE0E(Parameers) - i condtion? 15 met
I [
i T
- B U S
[condton] messageJiparamsiers) : : r — -
, : occurs if concition2 is met
_______ e AT
[sle] mesezsged{paramsaiars) ! : .
J I otivervise this inderaction nm::j
i | —
i [.-
/‘ [[
| |
i i

Guard |

Alternative multiple fragment: only the one whose condition is true will execute

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Iterations (i.e., loop) — UML 1.0

* Indicates looping or iterations
1:=1..2 means 2 iterations....

| EEETEN

3.51%*h = 1.2] n0d

2.1.1:M00)

'T-""-'"D""-""T' = =

If yeu have seen it? Result: ab ab ‘
Earlier UML versions: UML 1.0

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Loop in UML 2.0

|
| |
- '
[
loop message(parameters),
[condition]
' Both messeges are sent
message2(parameters), as long as condition is met
|
[
[
—_— l
[

Loop: the fragment may execute multiple times, and the guard
indicates basis for iterations

© Dr. Adel Taweel 2017 136 COMP433: Software Engineering

Sequence diagram for View patient

information use case

Use case: View Patient Information — through authorization

Medical Receptionist

% P: PatientIinfo D: MHCPMS-DB AS: Authorization
_ | ! |
ViewlInfo (PID
(PID) ;J- report (Info, PID, | |
uID) | |
" | | authorize (Info, |
uiD) |
authorization]:J
4_ _______
alt |
[authorization OK] Patient info |
- - - - - |
I [I [[+ —
[authorization fall] Error (no access) |
<_ ________
o |
|

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Sequence diagram for Transfer

Medical Receptionist PRS
% P: PatientInfo D: MHCPMS-DB AS: Authorization %
. I | I n
I I | login ()
30— — |
- — — — — — — — — --=--=-=----“---““ - - - -4 - - - - - - -
Use case: Transfer | ; i
Data- [sendInfo] : I :
lntel'acthIlS ™| | authorize (TF, UIDZ I
between Actors authorization
Tttt) update (PID) R
| >
Message (OK) « - - - - 4--- _update OK ______
R |
sendsummayy || || T __________ il
UpdateSummary() |
>| | summarize (UID) |
" | |authorize (TF, UIDZ |
authorizationﬁ I
Tt T L
I > :summary
I update (PID)
Message (OK) -:- - _ul)d_at_e 9K_]

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Example/Exercise

Library system, three objects do the work we're
concerned with

BookBorrower: that will borrow the book
Copy: copy of a book

Librarian/LibraryStaff: which authorizes and
register the borrowing of the borrowed copy.

© Dr. Adel Taweel 2017 139 COMP433: Software Engineering

Sequence Diagram of a Library

System

aMember: BookBorrower
[] borrow(theCopy) _

TheLibrarian: Librarian TheCopy: Copy

TheBook: Book

]
1
]
]
1
—-—

© Dr. Adel Taweel 2017

oktoBorrow()

—
—it:

1
I
[
1
I
[
[
I
[
I
[
I
I

L

borrow()

1
|
1
1
|
1
1
|
1
|
:
:
setBorrowed() :

P

m————
——mmmeed

|

COMP433: Software Engineering

Sequence Diagram of a Library

System

aMember: BookBorrower

TheLibrarian: Librarian

TheCopy: Copy

TheBook: Book

]
1
]
]
1
—-—

1
I
[
1
I
[
[
I
[
I
[
I
L

© Dr. Adel Taweel 2017

== ==

141

|

I

borrow(theCopy)_F :

|

oktoBorrow() :

I

= |

It

2 borrow() - o . |

[OK] setBorrowed() :
moTok] 0000 117 Ll_"

Error (no access) H |

+- - — - — — — = 1 i

: !

! |

I |

I |

COMP433: Software Engineering

UML Diagrams

Covered Covered

Covered Class
Dic=rams
Use "ase _
Diagra. s bject

Diaymams

Collaboration Component
Diagrams Diagrams

Deployment

Diagrams
Activi‘y
Diarams
Taken from [Booch 1999) RATIONAL

Covered

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Collaboration diagrams

Describe a specific scenario by showing the
movement of messages between the objects

Show a spatial organization of objects and their
interactions, rather than the sequence of the
interactions

Unlike a Sequence diagram, a collaboration diagram shows
the relationships among the objects. A collaboration
diagram does not show time (i.e., sequence)

Keep 1n mind:- Both are referred to as interaction diagrams

but with different focus!

Sequence diagrams — models message flows between objects based
on time (i.e., sequence)

Collaboration diagrams— models message flows between objects
with no reference to timing

© Dr. Adel Taweel 2017 144 COMP433: Software Engineering

Example- 1st:connect objects

TheBook: Book

aMember: BookBorrower

Thelibrarian: Librarian TheCopy: Copy

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Second: Draw interactions

TheBook: Book

aMember: BookBorrower
1.

bbrrow(theCopy) * t 3.1: setBorrowed()

Thelibrarian: Librarian TheCopy: Copy
C o
3: borrow()
—_——

2: okToBorrow()

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Sketch a collaboration diagram for self-service
machine, three objects do the work we're

concerned with
the front: the interface the self-service machine
presents to the customer
the money register: part of the machine where
money is collected
the dispenser: which delivers the selected product to
the customer

Compare your collaboration diagram with that of a
sequence diagram

© Dr. Adel Taweel 2017 COMP433: Software Engineering

UML Diagrams

Covered
Class

e =rams

Lsa “asa i
Diagra.as ‘bject

} Dagrams

Collabor="_ion Component
Dia<.,ams HETET

You are

I
Herel Deployment

Diagrams

Covered

© Dr. Adel Taweel 2017 COMP433: Software Engineering

State Diagrams

Also known as statecharts (invented by David
Harel)
Used primarily to model state of an object

A class has at most one state machine diagram
Models how an object’s reaction to a message

depends on its state
Objects of the same class may therefore receive the same
message, but respond differently!

© Dr. Adel Taweel 2017 152 COMP433: Software Engineering

Use of State diagrams

Often used for modelling the behaviour of
components (subsystems) of real time and
critical systems....

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Modelling states and events

The states of the Book could be The related “use cases” or
events could be

maybe lost return

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Realising state diagrams

Return() .
On loan borrow() Copy of

On shelf book

event :Book

state
='///_ returlﬁ’rf‘f

[onlLoan) ’ onShelf
’ borrow() |)

lost() Eransition initial state

© Dr. Adel Taweel 2017 155 COMP433: Software Engineering

Conditional notions

Conditional notation is used if the value of an object’s
attributes determines the change of state(i.e.,
change the state under this condition....)

return()

:Book
return() m

A1 I
[not borrowable borrowable]

borrow()[last copy] u

burr'nw{}[nut last copy]

guards

Important hint: For some guards/conditions use keywords like
After (followed by expression)

When (followed by expression)

© Dr. Adel Taweel 2017 156 COMP433: Software Engineering

Conditional Notions

:BankAccount
~ withdraw()
H[In credit J({ overdrawn j
deposit() \
I/" In credit Y 4 overdrawn ™
bal <
[balance<0] - When
. : (balance<overdraft limit)
/motify manager
[balance>=01]
o . e vy
Means...... when the withdraw()/deposit()
use }clasaes) (or their 1gocll‘re}slpondmg Important hint:
methods) are invoked, then :
If bg\lg}((l:le}; V(\;I,lthen change the state to Forlféc}ll)vrve;srs&g%ﬂigme events use
If balance>=0, then change the state to After (followed by expression)
in-credit When (followed by expression)

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Conditional Notions

:BankAccount

f’r overdrawn I I’ff_ N

After (3months)
When *
(balance<overdraft frozen
limit)
/motify manager

_ Y. . A

Important hint:
For expressing some events use keywords like

After (followed by expression)
When (followed by expression)

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Modelling states and substates

States of ATM machine itself...

®

b Serving l:ustnmer:
Idle

busy

/ Customer served |

éut of order

© Dr. Adel Taweel 2017 159 COMP433: Software Engineering

Modelling substates

States of ATM machine itself... are rather trivial!

But useful to model the composed state busy to create its sub
states to understand more fully the ATM states for a
developer to implement.

\I Serving customer
Idle

J- Customer served

6}l}ut of order

© Dr. Adel Taweel 2017 160 COMP433: Software Engineering

Modelling substates of ATM
machine

Succesaral

Acknowledged by user

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Modelling substates of ATM

machine

! Serving

I customer
Idle i

J Customer

served
Out of order

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Modelling concurrent states

("_ Taking class

r‘ﬂ- Incomplcte H\I

L=k

lak Concuarrent steta
- weth tbres siate

lak done CIONE —
) ® | oo

rogon 2
.- o an
Project =i

regon®

feas:

g

~®
. A
: e

- T
[y
W

o

States that occur in parallel

© Dr. Adel Taweel 2017

COMP433: Software Engineering

Exercise: a State diagram of a video

player

I—! l

« What are the states of the player?

e What are the events that cause state changes?
e What are the outputs that occur?

« What are the guards for the transitions?

Reference: David Rozenblum, UCL

 What would we model differently in an activity diagram
for the player?

© Dr. Adel Taweel 2017 COMP433: Software Engineering

© Dr. Adel Taweel 2017 165 COMP433: Software Engineering

© Dr. Adel Taweel 2017 166 COMP433: Software Engineering

UML Diagrams

Covered Covered

Covered Mo
Die=rams
Lsa “asa o
Diagra.as bject

Dayams

Collabor=_i1on Component
Dia<,ams Diagrams

Deployment
Diagrams We are

here

Covered Covered

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Component Diagrams

The component diagram's main purpose is to show the
structural relationships between the components of a
system

Component diagrams ofter architects a natural format to
begin modelling a solution

Component diagrams allow an architect to verify that a
system's required functionality is being implemented by
components

Developers find the component diagram useful because it
provides them with a high-level, architectural view of the
system that they will be building

© Dr. Adel Taweel 2017 168 COMP433: Software Engineering

Component Diagrams

ACOMpOnants a seomponents

Orcler Order Order

All they mean the same: a component Order
UML version 2.0

© Dr. Adel Taweel 2017 169 COMP433: Software Engineering

Required/Provide Interface

scomponents
Order

aprovided intlerMmaceass
OrderEntry
AcCountFayable

arfaquirad Intarmacaess

Person
Circler Enlry
: scermponents gl Person ::
AccountPay able Qrder
07.

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Component Diagrams

Couy=tom erl ook L

T [S (e | I:u'l-l:!!"lHE

% P roductAccessor

Inwcrktory i
S yetedTy

showing a component's relationship with other components, the
lollipop and socket notation must arl)so include a dependency arrow (as
used in the class diagram). On a component diagram with lollipops
and sockets, note that the dependency arrow comes out of the
consuming (requiring) socket and its arrow head connects with the

provider's lollipop

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Component Diagrams

Architectural connection in UML 2.0 is expressed
primarily in terms of interfaces

Interfaces are classifiers with operations but no attributes

Components have provided and required interfaces

Component implementations are said to realize their provided
interfaces

A provided and required interface can be connected if the
operations in the latter are a subset of those in the former, and
the signatures of the associated operations are ‘compatible’

Ports provide access between external interfaces and
internal structure of components

UML components can be used to model complex
architectural connectors (like a CORBA ORB)

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Component Diagrams

provided interface required interface

Assembl
<<component>> O} <<component>> y
PictureEditor MouseListener Mousclistenar GUI connectors
i zzinterfaces=
interface realisation oeinte, interface dependency
wobd MouseClicked(MowuseE
7| void Hnmu[ntnﬂnﬂMmmEf:t‘ﬂl .
r..--*" woid MouseExited(MouseEvent 2} .
" void MousePressed{MowseEvent) .,
= void MouseReleassd{MouseEvent) -
E 5 Interface
dependencies
<<Com D{H}Eﬂtﬁ'ﬁ' ﬂﬂﬂﬂﬂ'ﬁﬂ-l‘lﬂl’lt?}
Picturekditor GUI

Real- David Rosenblurm, UCL

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Composite Structure in Component

Diagrams

<<component>> <<components>
PicturcEditor GUI
Mousalistener
DrawingSt O} GUIComponent
A A

g
~ composite structires l |

DrawineEnsine Window 0——2-"| Button

Ref: David Rosenblum, UCL

A composite structure depicts the internal
realisation of component functionality

© Dr. Adel Taweel 2017 COMP433: Software Engineering

<<componant>> peris <<component>>
PictureEditor GUI
Mouseli
Drawings] @ [GUIComponent classes

o e
T~ \m/ Window {@——"| Button

Ref: David Rosenblum, UCL

The ports and connectors specify how component interfaces are mapped to
internal functionality

Note that these ‘connectors’ are rather limited, special cases of the ones in
software architectures

© Dr. Adel Taweel 2017 COMP433: Software Engineering

port nome -:{cmnpnnnntnE
\ : GUI

Dmitlﬁml.-ﬁ_l Palette : _L!.’ﬁ_
1 Wind <&ﬂm
L~ Circle:
/
Preferences:
connectors .Eﬂ!ﬁ.
Window |~{ S0

Ref: David Rosenblum, UCL

Connectors and ports also can be used to specity
structure of component instantiations

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Stereotype

DataAccess
O Facilities /
Faciliies
50— Encryplion
=5 o
~ e
o urity
Seminar a >) DataAccess a Accass Cantrol | <<infrastructdre>
Management o O Studem __=—O—
L —~
) TSR
b G
TN
t X Caa 2 2
a Dalaﬁc&go_ Seminar . Persistence
Stindent \ Semt Persislence | <<infrastructare>>
Admisktration — — — =S¢ T S0— _I — \
<< |>>
N\ |
CLsamponpals |(Y \
oauw»%_ cqoqliien>
Schedule
Schedule r \
O— =] \
University DB
=<dalabasc> JDBC

© Dr. Adel Taweel 2017

COMP433: Software Engineering

Componentization Guidelines

“Keep components cohesive”. i.e a component should
implement a single, related set of functionality.
This may be the user interface logic for a single user application,
business classes comprising a large-scale domain concept, or
technical classes representing a common infrastructure concept.

User interface classes assigned as application components.
User interface classes, those that implement screens, pages, or
reports, as well as those that implement “glue logic”.

Assign common technical classes to infrastructure

components.
Technical classes, e.g. that implement system-level services such as
security, persistence, or middleware should be assigned to
components which have the infrastructure stereotype.

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Infrastructure components

/

Encryplion
G_

Acuass f:mg_

/h-ﬁh@

TN (T g 1 Ty e

=]
Datadccess
O Facifities
FWHIEEED
-
- -~
i =:||§ Datafcoess 2]
I'I.lrll.;u:lu:rl '::'— Sl
]| fruis '\.‘H —--__E-BWE[
T
"n._ 2.
L 2]
E Dﬂw Seminar
Student \\ Sam
Adminktration f— — — = T
e Il B
R
S pon fals
Dumﬂ.::n%_
Schedude
Schadule
|:|.—.-.

Persislenca

&

Persistence
=<infrasirneinre==

User interfaces assigned to application components

© Dr. Adel Taweel 2017

|

\

=<rgquires>>

=1
University DB
=<l labises

COMP433: Software Engineering

Componentization Guidelines

Assign hierarchies to the same component.
99.9% of the time it makes sense to assign all of the classes of a
hierarchy, either an inheritance hierarchy or a composition
hierarchy, to the same component.

Identify business domain components.

Because you want to minimize network traffic to reduce the response
time of your application, you want to design your business domain
components in such a way that most of the information flow
occurs within the components and not betiween them.

Business domain components = business services

Identify the “collaboration type” of business classes.
Once you have identified the collaboration type of each class (e.g.
server/client or both), you can start identifying potential business
domain components.

© Dr. Adel Taweel 2017 COMP433: Software Engineering

=] "\ Infrastructure components
Encryption
O / - 3]
writy
Seminar ﬂ E Amumg wcinfrastrnetario
I'I.lrll.gmtn'l Srmdicm
| P
2 z
Seminar . Fersistence
Stndent &) Persislenca | <<jnfrasiruclare
Administratioa — — \
<<= | '.
-t-m-ﬁp-:-'-ms-rl.: A
==requiress>
N A 2l |
_— l.ini'r:r.-,'I]-I}E

Students, Facilities, Seminar, Schedule are s JDBC

Business Domain Components

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Componentization Guidelines

Highly coupled classes grouped in the same component.
When two classes collaborate frequently, this is an indication they
should be in the same domain business component to reduce the
network traffic between the two classes.

Minimize the size of the message flow between components.
If you have domain components, one as a server to only the other as a
client, you may decide to combine or merge the two components.

Define component contracts, as interfaces.
Each component will offer services to its client components, each
such service is a component contract.

© Dr. Adel Taweel 2017 COMP433: Software Engineering

<<compongnt>> o <<companent>>
PicturoEditor Lefining contacts GUI

{_‘j} ﬂﬂfw:w}\
Mouselistener

L A
Y structores < !
DrawingEngine vkndm lo——2-"f Buttan

Highly coupled
clazzes

Highly coupled classes belong in the same
component

DrawingStorage

Ref: David Rosanblum. UCL

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Draw a component diagram of an ATM machine

© Dr. Adel Taweel 2017 COMP433: Software Engineering

UML Diagrams

Covered Covered

Covered Class

Die=rams

LUsa " asa
Diagra. s bject

Diagyrams

Covered

Collabor=_ion Component
Dia<r ams DMagrains

Covered
Deplayment

Diagrams We are
here

L

Covered Covered

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Deployment Diagram

Models the run-time configuration in a static view
and visualizes the distribution of components in
an application

It helps map between software components and
hardware

A component is deployed part of the software
system architecture

In most cases, it involves modelling the hardware
configurations together with the software
components that lived on

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Deployment Diagram

Deployment diagram depicts a static view of the run-time
configuration of processing nodes and the components

that run on those nodes
Node: server, client etc.

Deployment diagrams show the hardware for your system,
t}l)le software that is installed on that hardware, and the
middleware used to connect the disparate machines to
one another!

Visualizes the distribution of components in an
application, it shows the configuration of the hardware
elements (nodes) and shows how software elements and
artifacts are mapped onto those nodes.

© Dr. Adel Taweel 2017 COMP433: Software Engineering

A Node i1s either a hardware or software element.

It is shown as a three-dimensional box shape, as

shown below. ST
4
dd Node /} PC Client
SCTvVEer
Unix
server

© Dr. Adel Taweel 2017 188 COMP433: Software Engineering

Node Instance

An instance can be distinguished from a node by the fact that its name is
underlined and has a colon before its base node type. An instance may
or may not have a name before the colon.

The following diagram shows a named instance of a computer

dd Node Instance /

HP Pawvillion :
Computer

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Node Sterotypes

In UML, a number of standard stereotypes are provided for nodes,
namely «cdrom», «ed-rom», «computer», «disk array», «pc», «pc
client», «pc server», «secure», «server», «storage», «unix server»,
«user pe».

These \f)nlll display an appropriate icon in the top right corner of the node
symbo

dd Mode Sterectype /

PLC Client CO-ROM Storape Urix Serwer H Security

Dowvica Dowvioa

© Dr. Adel Taweel 2017 190 COMP433: Software Engineering

Artifact

An artifact is a product of the software development process. That may
include process models (e.g. use case models, design models etc),
source files, executable files, design documents test reports,

prototypes, user manuals, ete.

An artlfact is denoted by a rectangle showing the artifact name, the
«artifact» keyword and a document icon, as shown.

dd Artifact /

adrtifacts |=

main.c

© Dr. Adel Taweel 2017 191 COMP433: Software Engineering

Association

dd Network Model /'

In deployment diagram, an
association represents a frewal
communication path
between nodes. The
following diagram shows a o

deployment diagram for a :

network, depicting network TR
prOtOCOIS as StereOtypeSa «ethe:net» «ethe:net»

and multiplicities at the 1 1.2
association ends.

primary
server

workstation

© Dr. Adel Taweel 2017 192 COMP433: Software Engineering

Node as Container

A node can contain other elements, such as components or
artifacts.

The following diagram shows a deployment diagram for
part of an embedded system, depicting an executable
artifact as being contained by the motherboard node.

dd Embedded Model /
Keyboard
Motherboard
1 wconnectors 4
-xe:{cecutahleig
dpp.exe
LCODisplay
i wconnectors 4

© Dr. Adel Taweel 2017 193 COMP433: Software Engineering

Architectural Style vs Architecture

Architectural Style:
A pattern for a system layout

Software Architecture:
Instance of an architectural style.

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Examples of Architectural Styles

> Layered Architectural style
> Service-Oriented Architecture (SOA)

> Client/Server

> Peer-To-Peer

> Ihree-tier, Four-tier Architecture
> Repository

> Model-View-Controller

> Pipes and Filters

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Example of three-tiers

architectures

'Ell'ﬁ-(l.f
Exiating Enterprise
Information Systems
/ |
I
3.
<=9
]
]
—— I
g d--:-l-.-A.N- [l - - -
I
\
e
1
v . .
— T = |
‘Datadase-tior P i
i
Pocn - . e Resource Resources
[mecsa waeran = Manager (for example;
Jlg:'\gbuw ,-:,: : dﬂtﬁbﬂm,
>

Many of real life web applications have three tier architectures

© Dr. Adel Taweel 2017 196 COMP433: Software Engineering

Example: Client server

architectures

£

SourccSafe Databascs

SourncefnyWwhenre Client

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Deployment diagram for three tiers

E EEEEE R —
i
8 @ O
'JE/% -l"'T'"h Transosction Feouest
« E
E i Ay feat] on Sar v
E :
UML 1.4 E- /N % _______ Order Roques

Cnmppgenu depl
ZI
5
:

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Example: Deployment Diagram for

client server architectures

© Dr. Adel Taweel 2017

199

S
App S v OESerwer
24 TCPAP:>
-1
; I
n-rh:-!_'uln'!,rn «dnph?:‘:,l’:o wdeploys
| . :
sartitacts xartifacts wartifacts
orderProcesser, exe netwotkScanner e [BSEnEmE
’ amanifests «manifest
b :~l

adeslovment speos E E
netwateS canner ReposCustomer Repos rternal Record

COMP433: Software Engineering

Depict a deployment diagram for an ATM
machine.

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Covered!?

Covered Covered

Class
Die=rams
Lsa "asa
Diagrais _ _“:']E':t
J]Eih_"il'l"i-

Collabor=_1o0n
Diac.ams

Deployicent
Diagram.

Covered Covered

© Dr. Adel Taweel 2017 COMP433: Software Engineering

Key points

A model is an abstract view of a system that ignores system details.
Complementary system models can be developed to show the
system’s context, interactions, structure and behaviour.

Context models show how a system that is being modeled is positioned
in an environment with other systems and processes.

Structural models show the organization and architecture of a system.
Use cases describe interactions between a system and external
actors. Class diagrams are used to define the static structure of
classes in a system and their associations using both data-driven
and executable view points.

Behavioural models show how how system elements interactions. Use
case diagrams, activity diagrams and sequence diagrams are used to
describe the interactions between users and systems in the system
being designed taking the business view points or needs. Activity
diagrams show how a business achieve its business process through
interactions between use cases. Sequence diagrams show how a
system achieve use cases through interactions between system
objects.

© Dr. Adel Taweel 2017 COMP433: Software Engineering

