
Chapter 3, The Relational
Model

Introduction to Relational Model

• Codd proposed the relational data model
in 1970.
• Prior to that, database systems were

based on older data models (the
hierarchical model and the network
model); the relational model
revolutionized the database field and
largely supplanted these earlier models

• Main idea was to organize data as groups
of relations

• Each relation describes a group of objects
with similar attributes

Student ID Name Major

1161234 Ahmad ENCS

1161455 Noor COMP

Course ID CODE Name

56478 COMP333 Database
management Systems

56479 COMP232 Data Structures

Relational data model example

3

Simplicity

• The relational model is very simple and elegant; a database is a
collection of one or more relations, where each relation is a table
with rows and columns.

• A DBMS permits the use of SQL to query, and manipulate data and
relations in a database.

SQL

•DBMS Supports Structured
Query Language.
•Based on Relational
Algebra

•Composed of
•DDL
•DML

5

Main Constructs

• The main construct in relational model is Relation

• A Relation consist of:
• Schema

• Instance

• There should be no redundant data (rows) inside a database

• Degree: number of fields (attributes)

• Cardinality: number of records (tuples)

Example:

Example Instance of Students Relation

s i d n a m e l o g i n a g e g p a

5 3 6 6 6 J o n e s j o n e s @ c s 1 8 3 . 4

5 3 6 8 8 S m i t h s m i t h @ e e c s 1 8 3 . 2

5 3 6 5 0 S m i t h s m i t h @ m a t h 1 9 3 . 8

 Cardinality = 3, degree = 5, all rows distinct

 Do all columns in a relation instance have to
be distinct?

Example SQL

Example SQL..2

mySql

• We will be using mySql server
• Download from

• https://dev.mysql.com/downloads/mysql/

• Must install a client to connect to server
• Best: mySql WorkBench

https://dev.mysql.com/downloads/mysql/

MySQL Basics – Data Definition

• SHOW DATABASES;

• CREATE DATABASE university;

• SHOW DATABASES;

• USE university;

• DROP DATABASE university;

MySQL Basics

• CREATE TABLE student (

sid INT,

sname VARCHAR(32),

bdate DATE,

gpa REAL,

PRIMARY KEY (sid));

• SHOW TABLES;

• SHOW CREATE TABLE student;

• ALTER TABLE STUDENT ADD major VARCHAR(16);

• ALTER TABLE STUDENT ADD phone VARCHAR(16) AFTER bdate;

• DROP TABLE student;

MySQL Basics – Data Manipulation

• Query:

SELECT *

FROM student;

• INSERT INTO STUDENT VALUES (1051122, 'Ahmad', '1980-01-20', 99);

• SELECT * FROM student;

• INSERT INTO STUDENT (sid, sname) VALUES (1061122, 'Sireen’);

• DELETE FROM student WHERE sid>=1060000 AND sid<=1069999;

• Query:

SELECT sid, sname

FROM student

WHERE sname = ‘Ahmad’;

MySQL Basics – Auto increment

• ALTER TABLE student MODIFY sid int auto_increment;

• SELECT * FROM student;

• INSERT INTO student (sname) VALUES ('Iyad');

• ALTER TABLE student auto_increment=1070000;

• INSERT INTO student (sname) VALUES ('Gabi');

• ALTER TABLE student MODIFY gpa REAL DEFAULT 60;

• SELECT * FROM student;

• ALTER TABLE student MODIFY bdate DATE DEFAULT '1900-01-01';

• INSERT INTO student (sname) VALUES ('Gabi');

MySQL Basics – Data Control

• CREATE USER 'user1'@'localhost' IDENTIFIED BY ‘password';

• GRANT ALL PRIVILEGES ON university.* TO 'user1'@'localhost' WITH
GRANT OPTION;

• CREATE USER 'user1'@'%' IDENTIFIED BY ‘password';

• GRANT ALL PRIVILEGES ON university.* TO 'user1'@'%' WITH GRANT
OPTION;

• CREATE USER 'user2'@'localhost' IDENTIFIED BY ‘password2';

• GRANT SELECT ON university.* TO 'user2'@'localhost' WITH GRANT
OPTION;

• CREATE USER 'user2'@'%' IDENTIFIED BY ‘password2';

• GRANT SELECT ON university.* TO 'user2'@'%' WITH GRANT OPTION;

Integrity Constraints Over Relations

• A database is only as good as the information stored in it, and a
DBMS must therefore help prevent the entry of incorrect
information.

• An integrity constraint (IC) is a condition that is specified on a
database schema, and restricts the data that can be stored in an
instance of the database.

• We already have seen the Domain Constraints

Key Constraints

• A key constraint is a statement that a certain minimal subset of the
fields of a relation is a unique identifier for a tuple.

• Two Important Note:
• Two distinct tuples in a legal instance cannot have identical values in all the

fields of a key.

• No subset of the set of fields in a key is a unique identifier for a tuple.

• Primary Key, Candidate Key, and Super key

40

Keys (continued)

• Composite key
• Composed of more than one attribute

• Key attribute
• Any attribute that is part of a key

• Superkey
• Any key that uniquely identifies each row

• Candidate key
• A superkey without redundancies

41

Keys (continued)
• Nulls:

•No data entry
•Not permitted in primary key
• Should be avoided in other attributes
• Can represent

• An unknown attribute value

• A known, but missing, attribute value

• A “not applicable” condition

• Can create problems when functions such as COUNT,
AVERAGE, and SUM are used
• Can create logical problems when relational tables

are linked

42

SQL for Data Definition: CREATE with
CONSTRAINT

• Creating database tables with PRIMARY KEY constraints
• The SQL CREATE TABLE statement

• The SQL CONSTRAINT keyword

CREATE TABLE Employee(

EmpID Integer Not Null,

EmpName Char(25) Not Null

CONSTRAINT EmpPK PRIMARY KEY (EmpID)

);

43

SQL for Data Definition: CREATE with
CONSTRAINT

•Creating database tables with composite primary keys
using PRIMARY KEY constraints
• The SQL CREATE TABLE statement
• The SQL CONSTRAINT keyword

CREATE TABLE Emp_Skill (

EmpID Integer Not Null,

SkillID Integer Not Null,

SkillLevel Integer,

CONSTRAINT EmpSkillPK PRIMARY KEY (EmpID, SkillID)

);

Keys for Relationship Sets

• The combination of primary keys of the participating entity sets forms a
super key of a relationship set.
• (s_id, i_id) is the super key of advisor

• NOTE: this means a pair of entity sets can have at most one relationship in a particular
relationship set.
• Example: if we wish to track multiple meeting dates between a student and her advisor, we cannot assume a

relationship for each meeting. We can use a multivalued attribute though

• Must consider the mapping cardinality of the relationship set when
deciding what are the candidate keys

• Need to consider semantics of relationship set in selecting the primary key
in case of more than one candidate key

44Database System Concepts

Example in SQL

Foreign Key Constraints

Specifying Foreign Keys

Foreign Key (sid) References Students(sid)
Foreign Key (cid) References Course(cid));

48

Department

DeptID

DeptName

Location

Employee

EmpID

DeptID

EmpName
Foreign Key

Primary Key

Foreign Key Example

49

Referential Integrity

• Referential integrity states that every value of a foreign key must
match a value of an existing primary key

• For example (see previous slide)
• If EmpID = 4 in EMPLOYEE has a DeptID = 7 (a foreign key), a Department

with DeptID = 7 must exist in DEPARTMENT

50

SQL for Data Definition: CREATE with
CONSTRAINT

• Creating database tables using PRIMARY KEY and FOREIGN KEY
constraints
• The SQL CREATE TABLE statement
• The SQL CONSTRAINT keyword

CREATE TABLE Emp_Skill (
EmpID Integer Not Null,
SkillID Integer Not Null,
SkillLevel Integer,
CONSTRAINT EmpSkillPK PRIMARY KEY (EmpID, SkillID),
CONSTRAINT EmpFK FOREIGN KEY

EmpID REFERENCES Employee (EmpID),
CONSTRAINT SkillFK FOREIGN KEY

SkillID REFERENCES Skill (SkillID)
);

51

SQL for Data Definition: CREATE with CONSTRAINT
• Creating database tables using PRIMARY KEY and FOREIGN KEY

constraints
• The SQL CREATE TABLE statement
• The SQL CONSTRAINT keyword
• ON UPDATE CASCADE and ON DELETE CASCADE

CREATE TABLE Emp_Skill (
EmpID Integer Not Null,
SkillID Integer Not Null,
SkillLevel Integer,
CONSTRAINT EmpSkillPK PRIMARY KEY (EmpID, SkillID),
CONSTRAINT EmpFK FOREIGN KEY (EmpID)

REFERENCES Employee (EmpID)
ON DELETE CASCADE,

CONSTRAINT SkillFK FOREIGN KEY (SkillID)
REFERENCES Skill (SkillID)
ON UPDATE CASCADE

);

When the row of EmpID (primary key) in Employee TABLE is deleted, the
EmpFK (foreign key) is deleted also.

52

Deleting Database Objects: DROP

•To remove unwanted database objects from the
database, use the SQL DROP statement

•Warning… The DROP statement will permanently
remove the object and all data

DROP TABLE Employee;

53

Removing a Constraint: ALTER &
DROP

• To change the constraints on existing tables, you may need to remove the
existing constraints before adding new constraints

ALTER TABLE Employee DROP CONSTRAINT EmpFK;

Enforcing Integrity Constraints

• Deletion of Enrolled tuples do not violate referential integrity, but
insertions could.
• Inserting a tuple with an un-exist sid in Students.

• Insertion of Students tuples do not violate referential integrity, but
deletions could.INSERT INTO Enrolled (sid, cid, grade) VALUES (51111, ‘Hindi101’, ‘B’);

Ways to handle foreign key violations

• If an Enrolled row with un-existing sid is inserted, it is
rejected.

• If a Students row is deleted/updated,
• Option 1: Delete/Update all Enrolled rows that refer to the deleted

sid in Students (CASCADE). Both are affected

• Option 2: Reject the deletion/updating of the Students row if an
Enrolled row refers to it (NO ACTION). [The default action for SQL].
None is affected.

• Option 3: Set the sid of Enrolled to some existing (default) sid value
in Students for every involved Enrolled row (SET NULL / SET
DEFAULT). Both are affected.

Referential Integrity in SQL

• When a Students row is deleted,
all Enrolled rows that refer to it are
to be deleted as well.

• When a Students sid is modified,
the update is to be rejected if an
Enrolled row refers to the modified
Students row.

CREATE TABLE Enrolled
(sid CHAR(20),
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid,cid),
FOREIGN KEY (sid)

REFERENCES Students (sid)
ON DELETE CASCADE
ON UPDATE NO ACTION);

SQL Constraints

• NOT NULL constraint
• Ensures that column does not accept nulls

• UNIQUE constraint
• Ensures that all values in column are unique

• DEFAULT constraint
• Assigns value to attribute when a new row is added to table

• CUS_AREACODE CHAR(3) DEFAULT ‘615’ NOT NULL

CHECK (CUS_AREACODE IN (‘615’, ‘713’, 931’))

• CHECK constraint
• Validates data when attribute value is entered

• Minimum order amount must be at least 10

• Date must be after Jan 1, 2013

• CONSTRAINT INV_CHK1 CHECK (INV_DATE>TO_DATE(‘01-JAN-2012’,’DD-MON-
YYYY’))

57

ER to Relational Model - Entities

• Entity sets to tables:
• Attributes to columns

• CREATE TABLE Employees

(ssn CHAR(11),

name CHAR(20),

lot INTEGER,

PRIMARY KEY (ssn))

Employees

ssn
name

lot

ER to Relational Model - Relationships

• Relationship Sets to Tables
• Attributes to columns

• In translating a relationship set to a
relation, attributes of the relation
must include:
• Keys for each participating entity set (as

foreign keys).

• This set of attributes forms a
key for the relation.

ER to Relational Model - Relationships

• EMP (SSN: int primary key, name: varchar(32), etc…)

• PROJ (Number: int primary key, Name: varchar(32), etc..)

• CREATE TABLE EMP2PROJ (SSN int, Proj_num int, Hours int,

PRIMARY KEY (SSN, Proj_num)

Foreign Key (SSN) References EMP(SSN)

Foreign Key (Proj_num) References PROJ(Number));

Relationship Types to Relational Model

•Possible cardinality ratio: 1:1, 1: N, N:1, and N:M

•Easiest is N:M
• Every Entity is a relation
• Every Relationship is a relation

61

Owner Carowns

1 1

Owner Carowns

N 1

Owner Carowns

N M

One-to-Many

• Start with Each Entity as a relation
• EMP(eid: int, name: varchar(32), etc..)

• DEPT(did: int, dname: varchar(32), etc..)

• Relationship needs special care on the 1-1 side
• Especially if total participation

• Relationship must be merged with Emp

• Result:
• EMP(eid: int, name: varchar(32)

did: int not null,

primary key(eid),

foreign key (did) references DEPT(did))

One-to-One

• Start with Each Entity as a relation
• EMP(eid: int, name: varchar(32), etc..)

• DEPT(did: int, dname: varchar(32), etc..)

• Relationship needs special care on the 1-1 side
• Especially if total participation

• Relationship must be merged with DEPT

• Result:
• DEPT(did: int, name: varchar(32)

mgr_ssn: int not null,

primary key(did),

foreign key (mgr_ssn)

references EMP(eid))

Musicians Example

University Example

Relational Model for Weak Entity Sets

• Start with Each Entity as a relation
• EMP(eid: int, name: varchar(32), etc..)

• Dependents(Name: varchar(32), relationship: varchar(32), etc..)

• Weak Relationships needs special care

• Relationship must be merged with Dependents

Dependents(Name: Varchar(32),
Relationship: Varchar(32),

emp_id: int not null,

Primary key (emp_id, Name),

Foreign Key (emp_id)

References EMP(eid))

Relational Model for Recursive Relationships

• EMP (employeeNo int primary key,

employeeName varchar(32),

ManagerSSN int))

EMPLOYEE

employeeNO

employeeNAME

manage

11

Relational Model for Class Hierarchies

• General approach:
• 3 relations: Employees, Hourly_Emps and Contract_Emps.

• Hourly_Emps: Every employee is recorded in Employees.
For hourly emps, extra info recorded in Hourly_Emps
(hourly_wages, hours_worked, ssn); must delete
Hourly_Emps tuple if referenced Employees tuple is
deleted).

• Queries involving all employees easy, those involving just
Hourly_Emps require a join to get some attributes.

Contract_Emps

name

ssn

Employees

lot

hourly_wages

ISA

Hourly_Emps

contractid

hours_worked

Just Hourly_Emps and Contract_Emps.
Hourly_Emps: ssn, name, lot,
hourly_wages, hours_worked.
Each employee must be in one of
these two subclasses.

