
Functional Dependencies and Normalization

Definition 1 Let R be a relation scheme and let X ⊆ R and Y ⊆ R. We
say that a relation instance r(R) satisfies a functional dependency X → Y if
for every pair of tuples t1 ∈ r and t2 ∈ r, if t1[X] = t2[X] then t1[Y] = t2[Y].

Definition 2 An instance r of relation scheme R is called a legal instance if
it is a true reflection of the mini-world facts it represents (i.e. it satisfies all
constraints imposed on it in the real world).

Definition 3 Let R be a relation scheme and let X ⊆ R and Y ⊆ R. Then
X → Y , a functional dependency on scheme R, is valid if every legal instance
r(R) satisfies X → Y .

Mathematical Properties of Functional Dependencies

Definition 4 Let F be a set of FDs on scheme R and f be another FD on
R. Then, F implies f , denoted by F |= f , if every relation instance r(R)
that satisfies all FDs in F also satisfies f .

Definition 5 Let F be a set of FDs on scheme R. Then, the closure of F ,
denoted by F +, is the set of all FDs implied by F .

Definition 6 Let F and G be sets of FDs on scheme R. Then, F and G are
equivalent, denoted by F ≡ G, if F |= G and G |= F .

Inference rules for FDs (Armstrong’s Axioms)

Reflexivity: If Y ⊆ X then, X → Y . Such FDs are called trivial FDs.

Augmentation: If X → Y , then XZ → Y Z.

Transitivity: If X → Y and Y → Z, then X → Z.

1

Definition 7 Let F be a set of FDs on scheme R and f be another FD on R.
Then, a derivation for f from F is a sequence of FDs with f as the last FD
in the sequence such that any element in the sequence is either an element of
F or is an FD produced by the application of one of the Armstrong’s axioms
to FDs earlier in the sequence.

Definition 8 Let F be a set of FDs on scheme R and f be another FD on
R. Then, F derives f , denoted by F ` f , if there is a derivation for f using
only Armstrong’s axioms.

Theorem 1 Armstrong’s axioms are sound and complete, i.e. F |= f if and

only if F ` f .

Additional Rules of Inference:

Union: if X → Y and X → Z then X → Y Z.
Proof: Using Armstrong’s Axioms:

1. X → Y , Given

2. X → Z, Given

3. X → XZ, Augment 2 by X

4. XZ → Y Z, Augment 1 by Z

5. X → Y Z, Transitivity using 3 and 4.

Decomposition: if X → Y Z then X → Y and X → Z.
Proof: Using Armstrong’s Axioms:

1. X → Y Z, Given

2. Y Z → Y , Reflexivity

3. X → Y , Transitivity on 1 and 2.

Similar proof for X → Z.

2

Definition 9 Let X ⊆ R be a set of attributes and F be a set of FDs that
hold on R. Then

X+

F = {A|F |= X → A}

Algorithm to calculate X+

F :

Xplus := X;

repeat

oldXplus := Xplus;

for each FD Y --> Z in F

if Y is a subset of Xplus then

Xplus := Xplus union Z

until (Xplus = oldXplus)

output Xplus

Testing implication and equivalence of FDs

The X+

F algorithm can be used to check if F implies X → Y . If Y ⊆ X+

F

then F implies X → Y .

The above test can be extended to check if F ` G. For each FD X → Y ∈ G,
if Y ⊆ X+

F , then F ` G.

Equivalence of F and G can also be checked similarly. For each FD X →
Y ∈ G, if Y ⊆ X+

F
and for each FD X → Y ∈ F , if Y ⊆ X+

G
then F and G

are equivalent.

Given R and F , K ⊆ R is a superkey for R if K → R holds.

Given, R and F , one can compute all candidate keys for R by exhaustively
checking for all subsets of R starting from single attribute subsets. As soon
as a candidate key is identifed, all its supersets need not be checked for key
property as they will be superkeys. Note: If some of the attributes of R are
absent from the right hand sides of FDs in F , these must be part of candidate
keys. In this case, the search for candidate keys must start with the missing
attributes from the right hand side of FDs. If the missing set of attributes
forms a candidate key then this must be the only candidate key.

3

Definition 10 Let F be a set of FDs. A Minimal Cover of F is a set of FDs
G that has the following properties:

1. G is equivalent to F .

2. All FDs in G have the form X → A, where A is a single attribute.

3. It is not possible to make G ”smaller” (and still satisfy the above two
properties) by

(a) Deleting a FD. i.e. G − {X → A} 6≡ G, for any FD X → A ∈ G.

(b) Deleting an attribute from the left hand side of a FD. i.e. G −
{XA → B} + {X → B} 6≡ G, for any FD XA → B ∈ G.

Algorithm to find minimal cover for a set of FDs F

Step 1: Let G be the set of FDs obtained from F by decomposing the

right hand sides of each FD to a single attribute.

Step 2: Remove all redundant attributes from the left hand sides of FDs in G.

Step 3: From the resulting set of FDs, remove all redundant FDs.

Output the resulting set of FDs.

Example: Consider R = ABCDEFGH and the following set of FDs, F:
ABH → C

A → D

C → E

BGH → F

F → AD

E → F

BH → E

Converting right hand sides to single attributes, we get:

ABH → C

A → D

4

C → E

BGH → F

F → A

F → D

E → F

BH → E

Perform steps 2 and 3....

Definition 11 A relation scheme R, F is said to be in 3NF (3rd Normal
Form) if for every FD X → A in F + one of the following holds:

1. A ∈ X, i.e. the FD is trivial, or

2. X is a super key for R, or

3. A belongs to some candidate key for R.

Definition 12 A relation scheme R, F is said to be in BCNF (Boyce Codd
Normal Form) if for every FD X → A in F + one of the following holds:

1. A ∈ X, i.e. the FD is trivial, or

2. X is a super key for R.

Definition 13 Let R be a relation scheme. Then, (R1, . . . , Rn) is a decom-

position of R if each Ri is a subset of R and R1 ∪ . . . ∪ Rn = R.

Definition 14 A decomposition ρ = {R1, . . . , Rn} of scheme R with FDs F

is a Lossless Join Decomposition if for every r(R),

r = πR1
(r) ./ · · · ./ πRn

(r).

Definition 15 A decomposition ρ = {R1, . . . , Rn} of scheme R with FDs F

is a FD-Preserving Decomposition if

5

F ≡ F1 ∪ . . . ∪ Fn

where Fi = {X → A|X → A ∈ F + and XA ⊆ Ri}.

3NF synthesis algorithm
Input: R and F

Output: A lossless join and FD-preserving 3NF decomposition of R

Method:

1. Calculate the minimal cover of F ; call it G (Combine all FDs with same
LHS into one FD using ”union” rule of inference). Also compute the
candidate keys for R.

2. For each FD X → Y in G, generate a relation scheme XY in the
decomposition.

3. If there are some attributes, say Z, of R that do not appear in any de-
composed scheme, then create a separate scheme in the decomposition
for Z.

4. If none of the decomposed schemes contain a candidate key, create a
separate scheme in the decomposition for one of the candidate keys K.

BCNF Decomposition algorithm; call the function bcnf
Input: R and F

Output: A lossless join BCNF decomposition of R

Method:

1. Identify a functional dependency X → Y in F that violates the BCNF
condition; return R if none found.

2. return {XY } ∪ bcnf(R - Y, πR−Y (F))

where πR−Y (F) = {X → Y |X → Y ∈ F + and XY ⊆ R − Y }.

6

