بسم الله الرحمن الرحيم
[image: شعار جامعة بيرزيت]
[image: pic7]
Computer Systems Engineering Department
ENCS 212
Digital Electronics And Computer Organization Lab
Report For Experiment NO.10
Introduction to DEBUG Program
[bookmark: _GoBack]Student Name: Mutaz Abu-Awad ID#: 1091838

In this lab we will be use some commands in order to be familiarized with DOS DEGUG program.

At first we will open the DOS DEGUG program from start run --type “cmd”Enter.
And then we will activate the DEBUG program by typing DEBUG at the DOS prompt.

After that we will make some activites :

PART I : Immediate Operands

 Activity 1.1:
we will use the command A 100 at the DEBUG program to
enter the following program instructions in assembly code at the offset memory location 100h .

MOV AX, 2864
ADD AX, 3749
MOV BX, AX
SUB BX, 2805
NOP

When we entered them we get :

[image:]

Activity 1.2:
We will use DEBUG command U to unassembled the instructions(get the machine code of the instructions) in activity 1.1.

[image:]

We get the following code after using command u :

	Assembly code
	Machine code

	MOV AX, 2864
	B86428

	ADD AX, 3749
	054937

	MOV BX, AX
	89C3

	SUB BX, 2805
	81EB0528

	NOP
	90

Activity 1.3:
We want to know how many bytes does it need to represent each instruction in binary .

	Assembly code
	Machine code

	MOV AX, 2864
	3

	ADD AX, 3749
	3

	MOV BX, AX
	2

	SUB BX, 2805
	4

	NOP
	1

We know the previous information from the address of each instruction
MOV AX, 2864 stored in 178E:100 , and the next stored in 178E:103 , so the first one needed 3 bytes ,, and so on ,, as the following :
[image:]

Activity 1.4:
 We can store the (immediate) data 2864 at memory offset 101h using little Indian , so :

64 is stored at memory location 101h
28 is stored at memory location 102h
Activity 1.5:
We can use DEBUG command R to display the contents of CS, IP, AX, and BX.

[image:]

	Register
	Content

	CS
	178E

	IP
	0100

	AX
	0000

	BX
	0000

Activity 1.6:
 The contents of CS, IP, AX, and BX after execution of each instruction:

	Register
	MOV AX, 2864
	ADD AX, 3749
	MOV BX, AX
	SUB BX, 2805

	CS
	178E
	178E
	178E
	178E

	IP
	0103
	0106
	0108
	010C

	AX
	2864
	5FAD
	5FAD
	5FAD

	BX
	0000
	0000
	5FAD
	37A8

Activity 1.7:
We will use the T command to execute the program. Then we will determine the content of the above registers after executing each instruction.
[image:]

[image:]

[image:]

[image:]

We can summarize the previous in the following table :

	Register
	MOV AX, 2864
	ADD AX, 3749
	MOV BX, AX
	SUB BX, 2805

	CS
	178E
	178E
	178E
	178E

	IP
	0103
	0106
	0108
	010C

	AX
	2864
	5FAD
	5FAD
	5FAD

	BX
	0000
	0000
	5FAD
	37A8

Activity 1.8:
The content of IP changes after each instruction is executed because IP holds the address of the next instruction ,, and it is changes according to the size of the instruction in bytes , words ,, etc ,,,,,

Activity 1.9:
The offset address of the second MOV instruction is 0106h.
It’s physical address can be obtained by multiplying the DS with 10h and then add the IP to it ,, so :
physical address = DS*10h + IP
 = 178E *10h + 0106
 = 179E6

PART II : Memory Addressing

Activity 2.1:
We use DEBUG command E to enter the following data at the offset memory location 200h.
E DS: 200 1B 9F
E DS: 202 36 4A 00 00
E DS: 206 2A 2A 2A

[image:]

Activity 2.2:
 We will use DEBUG command E to enter the following program instructions in machine code at the offset memory location 100h.
E CS: 100 A1 00 02
E CS: 103 8B 1E 02 02
E CS: 107 01 C3
E CS: 109 89 1E 04 02
E CS: 10D 90

[image:]

Activity 2.3:
The assembly code corresponding to each machine code Instructions is :
[image:]

We can summarize that in the following table :

	Assembly code
	Machine code

	MOV AX, [0200]
	A10002

	MOV BX, [0202]
	8B1E0202

	ADD BX, AX
	01C3

	MOV [0204], BX
	891E0402

	NOP
	90

Activity 2.4:
 The 8-bit data value stored at DS: 0200 after the data in Activity 2.1has been entered is : 1B (1 byte).
Activity 2.5:
The 16-bit data value stored at DS: 0200 after the data in Activity 2.1 has been entered is : 9F 1B (stored in reverse order “ little Indian”).
Activity 2.6:
The data value stored at DS: 0204 AFTER the code in Activity 2.2 is executed is : 1E (1 byte).

Activity 2.7:
Execute the program, and then determine the content of AX after the instruction A10002 is executed is 9F 1B (little Indian).

Activity 2.8:
 The content (data value) of memory at offset address 0204 after each instruction is :

	
	A10002
	8B1E0202
	01C3
	891E0402

	DS:204
	0000
	0000
	0000
	51E9

PART II : Entering assembly code in DEBUG

Activity 3.1:
We will use the DEBUG command A to enter the following assembly code at CS offset address 100h:
MOV CL, 42
MOV DL, 2A
ADD CL, DL
NOP

[image:]

Activity 3.2:
We will execute the program using the T command. and then we will determine the content of CL, DL, and IP after execution of each instruction

	
	MOV CL, 42
	MOV DL, 2A
	ADD CL, DL

	CL
	42
	42
	6C

	DL
	00
	2A
	2A

	IP
	0102
	0104
	0106

[image:]

Conclusion :

In this experiment we learned :

1. how to use the debug program , also we learned the job of some commands in it ,, such that :
A : to enter some assembly instructions in a specific offset in the memory.
R : to view the content of the registers after execution of a program.
T : to execute some instructions and then view the content of registers after it.
U : to get the machine code of an assembly instruction.
E : to enter the data at the offset memory location .

2. the difference between the assembly code and the machine code :
 The machine code is the lowest-level representation of a compiled and/or assembled computer program. And it is understood by the human ,, but the assembly code can be understood by the human.
Also A machine code instruction set may have all instructions of the same length, or it may have variable-length instructions. Most instructions have one or more opcode fields which specifies the basic instruction type (such as arithmetic, logical, jump, etc) and the actual operation (such as add or compare).
A utility program called an assembler is used to translate assembly language statements into the target computer's machine code.

Attached a machine code list in a picture :
[image: C:\Users\Toshiba\Desktop\spspz81c.gif]

References :
http://en.wikipedia.org/wiki/Assembly_language
http://en.wikipedia.org/wiki/Machine_code#Machine_code_instructions
http://werdav.tripod.com/spspz81c.gif
http://www.wisegeek.com/what-is-machine-code.htm

3

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.gif

image1.png

image2.jpeg

