

[image: http://alumni.birzeit.edu/sites/default/files/upload/styles/large/public/newsimage/BZU%20Logo.png?itok=2gE3Z9T0]

	
ENCS 211
Section #2
Instructor: Dr. Hanna Bullata
Report for experiment 8
Verilog part 2
Sara Sameeh #1130501

· Abstract :
The aim of this experiment is using quartus to implement project (counter count at 2Hz & the result appear at seven segment) by gathering many models (using counter , seven segment & frequency division as models), & to implement any algorithm using Verilog language.

· Contents :
Cover page _______________________________1
Abstract__________________________________2
Theary____________________________________3
Procedure__________________________________5
Conclusion_________________________________8
References__________________________________8

· Theory :
In FBGA design, sometimes we need to change frequency, for example in our case (in this experiment) if we didn’t change it then we will not be able to see the output, to solve this problem we should take the high frequency & convert it to low frequency.
One of components that reduce the frequency is the frequency divider which can be implemented using counter & ratio for input & output frequencies.

[image: http://osp.mans.edu.eg/cs212/FF_Applications_files/divider.jpg]
Reducing the frequency

To multiply any two numbers, there is many algorithms to do this such as booth algorithm, this algorithm multiplies two signed binary numbers in two’s complement notation, it’s examines adjacent pairs of bits of the N-bit multiplier Y in signed two's complement representation, including an implicit bit below the least significant bit, y-1 = 0. For each bit yi, for i running from 0 to N-1, the bits yi and yi-1 are considered. Where these two bits are equal, the product accumulator P is left unchanged. Where yi = 0 and yi-1 = 1, the multiplicand times 2i is added to P; and where yi = 1 and yi-1 = 0, the multiplicand times 2i is subtracted from P. The final value of P is the signed product. The multiplicand and product are not specified; typically, these are both also in two's complement representation, like the multiplier, but any number system that supports addition and subtraction will work as well. As stated here, the order of the steps is not determined. The algorithm is shown below:
[image:]

· Procedure :
First of all we built 4 bit counter using this Verilog code:
[image:]
Then we create symbol file (Filecreate/updatecreate symbol file for current file).
[image:]
We also create symbol files for frequency division & seven segment as following:

[image:] [image:]
Then we connect all of the previous models together as required:
[image:]
We compile & simulate it to make sure there is no error in our work then we assign the pins (clock, reset & output) using the manual of FBGA, also we change some of line in code of frequency division, we change counter to 13000000 to change the frequency, then we use FBGA & notice the output.
Unsigned multiplier: to implement it we use shift & add as the following chart:
[image:]
Then we compile & simulate it, & the result was the following:
[image:]
To implement the booth algorithm we use the following Verilog code:
[image:]
After compile & simulate it to make sure that there is no error, & we got the following result:
[image:]

· Conclusion :
In this experiment we become more familiar with quartus programming, we implements many modules like counter , frequency division & booth multiplier , also we realize the importance of FBGA which gives to user high level of flexibility to rapidly construct and test any hardware , in addition to that we learn how to change frequency to satisfy the aims of difference implementations.

· References :
http://vlsicoding.blogspot.com/2013/11/verilog-code-for-4-bit-multiplier-using.html
https://www.google.ps/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0ahUKEwjfqf3p45_JAhUCwxoKHanIBSQQFggrMAI&url=http%3A%2F%2Fhighered.mheducation.com%2Fsites%2Fdl%2Ffree%2F0070601755%2F366087%2FMB_MultiplierHDL_FPGA.pdf&usg=AFQjCNFj5cu4WnYvibdcsn4UWX5vQQUHg&sig2=EBW_9JLSbzmDCpFE2IZxOg&bvm=bv.108194040,d.d2s

[bookmark: _GoBack]

8 | Page

image3.png
A 00Q, 0
M Muitiplicand
Q Multiplier
Count

Arithmetic Shift

Right: A, Q,
Count__ Count -

image4.png
Emodule counter (clk, reset,

input clk, reset;
wire clk, reses
output [3:0] count;
reg [3:0] count;

zeg [3:0]c;//counter
initial c=4'b0000;

Salvays @(posedge clk) begin

count=4'b0000;
c=4"50001
end
Belse if(c<=4'b1111) begin
count= count+
e=c+1;
end
Eif (c==2'D0000) begin
count=4'b0000;
c=4"50000;
end

end
endmodule

image5.png
@

iy

B

¥
!
1

F

S

image6.png
»

P
¥
T
11

N —

»

image7.png
@

B A R Ay

B

L
2
8
g
1

S

image8.png
e

e rEE
[ame - SEELS N Y [E—— B0 ouve 0] e
yaes SN B st nsZ

e]

image9.png
START

CA 0

M Multiplicand
Q Multiplier
Count 0

Yes

A+M

Produdt
inA,Q

image10.png
Moo TmeBar | 1647m ([[Porer| s menak| dsdme S end
N ps aqns 8qns 20ns 160ns 2ns Z4gns
Name. Tokens T6475ms
>0 ake A0 gigigigiyugiyigigiyupiyigigigigigigigigigigigigiyigiy|
1 mutiplicand Al 10}
10 | [mutpier Apl el
D15 | B procuct ADI U0] 0F]
3% ready A0 ! 1 1 1
Ea At

image11.png
module booths (p,a,b, clock) ;
output [15:0] p:
input [7:0] a,b:
input clock;
reg [15:0] p,ans;
integer ir
integer operate;
inicial

begin

end
always @(negedge clock)
begin
b = 16D
for (1m1;1<=7;17142)
begin
1f(1==1)
operate
else
operate
: case (operate)
1
: begin

bL0]1-b[1]-b[1];

bli-1] + b[i-2]

2:
begin
ans = a<<1;
ans = ans<< (s
p = prans;
end
-1:
begin

ac<i;
~ans +1;
ans= ans<< (i-
peptans;
end

endcase

end

end

endmodule

1)

- BIil-bli]:

image12.png
40 8qns 120ns 160ns 20pns 240ns 280pd
T6375ms
[0 B 2]
9 3)
18| cock LA AR AU AN A A
D | Ee A

image1.png
X s
BIRZEIT UNIVERSITY

image2.jpeg
cLk

CLk

HIGH

HIGH

e

©

@

=Y

