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Abstract
In this experiment we have to learn how to use Quartus program, how to use  HDL on Quartus and build 4- bits adder and 4 bits coparator and 2x1 multiplixer, we have to design them using Quartus by making codes, we have to simulate them by simulation butto.
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Introduction (Theory)

We have to create this figure [image: ]
Figure8.2
As a code using Quartus HDL language that helps us to create and then semulate it
In Quartus there is 3 types in writing the code;
Gate-Level Modeling : using instantiation of primitive gate and user defined modules .
Data-Flow Modeling : using continues assignment statements with keyword assign
Behavioral Modeling : using procedural assignment statements with keyword always .
We need to create 1- bit adder so we can create the 4- bits adder as we need too for 4-bits comparator that compare between 4 digits 2 numbers, and we need a multiplixer as to contain the two blockes to work together. We need to semulate it and save the semulation too, and other coding stuff.








Procedure (Discussion & Results)
Part 1 : 4-Bit Full Adder using  HDL and Quartus II
We need first to create 1- bit adder which is made of XOR gates and or gate
[image: ]
And it accepts 3 inputs X<Y and the Cin from th previus one, and give us output of sum and the carry ( Cout )
Then I called the function 4 times to create 4-bits adder and coonected them with each other(the output Cout from the previus function is a Cin for thenext function and so on..) 
And I got this code
[image: ]
I mareged the Cout and the sum and make them one number made of 5 bits as the teacher asked.
Then I semulated it and got a true results and I’ll share a picture for a part of the semulation
[image: ]
















 - Part 2 : 4-Bit Comparator using Quartus II
To create the comparator of 4 bits firsts it’s made of inputs(X,Y) and the output as 3 bits, if the middle number is 1 and the rest is zeros then that’s means the 2 numbers are equals(010) but if the outbut was like (100) that’s means the first number is bigger, and if (001) means the second number is bigger. Here is the code:
[image: ]
And here is the semulation:
[image: ]
And all the results were true



 - Part 3 : 2X1 MUX using Quartus II
We have to made this part to connect the 2 parts together as it’s needed so I wrote the code as this:
[image: ]
And the semulation was like this
[image: ] and the results were true for all tries 








- Part 4 : run all together using Quartus II
Here I called all the 3 functions and make the outputs for some of them an inputs for others to run the program once using it
Here is the code
[image: ]
And the semulation was as following:
[image: ]
And all the semulation result were true and correct.



Conclusion
Intthis expirement I became famelier with Quartus and HDL built the 4-bits adder and 4-bits comparator and and the multiplixer and how to connect them to gother. And I have verified the correctness of my work by using the semulation button for every single code. Now I can create more and more codes with this program.

And here is a diagram for all the work made by me shows all the blocks and how they got connected togother:
[image: ]
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Smodule comptbits (A,B,Z
input [3:0]
input [3:0]
cutput [2:012;

assign Z[2]= (B>B)? 1
assign Z[1]= (3==B)? 1
assign z[0]= (A<B)? 1

endmodule
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Emodule mux2byl (X,Y,5,0ut);
input [4:0]%;
input [4:01X;
input
cutput [4:0]out;
assign out = (
endmodule

0)2 X
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Emodule run(3,B,Cin, S, out) 7
inpuc (3
input (3
input S,Cin
ocutput [4:0]out:
wire [4:0]ul,w0,

addsbic v1(Cin,A,B,u0);

compebits v2(A,B,wl

mux2byl v3(w0,wl,S,0ut) ;

endmodule
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Emodule FA (X,Y,Cin, sum, Cout) ;
input X,Y,Cu
cutput sum, Cout;
assign sum = X"Y"Cin;
assign Cout = Ciné (X°¥) | (X&¥):

endmodule





