[image:]
DIGITAL ELECTRONICS AND COMPUTER ORGANIZATION LABORATORY

Dr. Anjad Badran

Experiment No. 2 - Comparators, Adders and Subtractors

 Section 11

Islam Jihad Joma 1191375

T. Enas Jawabrah

21-3-2021

Abstract
In this experiment we have to learn how to use Quartus program, how to use HDL on Quartus and build 4- bits adder and 4 bits coparator and 2x1 multiplixer, we have to design them using Quartus by making codes, we have to simulate them by simulation butto.
	

Table of content:
1- Abstract --- 2
2- Theory -- 4
3- Procedure & Discussion ---5
 - Part 1 : 4-Bit Full Adder using Quartus II --- 5
 - Part 2 : 4-Bit Comparator using Quartus II -- 6
 - Part 3 : 2X1 MUX using Quartus II --- 7
 - Part 4 : run all together using Quartus II --- 8
 5- Conclusion --8
6- References ---9

Introduction (Theory)

We have to create this figure [image:]
Figure8.2
As a code using Quartus HDL language that helps us to create and then semulate it
In Quartus there is 3 types in writing the code;
Gate-Level Modeling : using instantiation of primitive gate and user defined modules .
Data-Flow Modeling : using continues assignment statements with keyword assign
Behavioral Modeling : using procedural assignment statements with keyword always .
We need to create 1- bit adder so we can create the 4- bits adder as we need too for 4-bits comparator that compare between 4 digits 2 numbers, and we need a multiplixer as to contain the two blockes to work together. We need to semulate it and save the semulation too, and other coding stuff.

Procedure (Discussion & Results)
Part 1 : 4-Bit Full Adder using HDL and Quartus II
We need first to create 1- bit adder which is made of XOR gates and or gate
[image:]
And it accepts 3 inputs X<Y and the Cin from th previus one, and give us output of sum and the carry (Cout)
Then I called the function 4 times to create 4-bits adder and coonected them with each other(the output Cout from the previus function is a Cin for thenext function and so on..)
And I got this code
[image:]
I mareged the Cout and the sum and make them one number made of 5 bits as the teacher asked.
Then I semulated it and got a true results and I’ll share a picture for a part of the semulation
[image:]

 - Part 2 : 4-Bit Comparator using Quartus II
To create the comparator of 4 bits firsts it’s made of inputs(X,Y) and the output as 3 bits, if the middle number is 1 and the rest is zeros then that’s means the 2 numbers are equals(010) but if the outbut was like (100) that’s means the first number is bigger, and if (001) means the second number is bigger. Here is the code:
[image:]
And here is the semulation:
[image:]
And all the results were true

 - Part 3 : 2X1 MUX using Quartus II
We have to made this part to connect the 2 parts together as it’s needed so I wrote the code as this:
[image:]
And the semulation was like this
[image:] and the results were true for all tries

- Part 4 : run all together using Quartus II
Here I called all the 3 functions and make the outputs for some of them an inputs for others to run the program once using it
Here is the code
[image:]
And the semulation was as following:
[image:]
And all the semulation result were true and correct.

Conclusion
Intthis expirement I became famelier with Quartus and HDL built the 4-bits adder and 4-bits comparator and and the multiplixer and how to connect them to gother. And I have verified the correctness of my work by using the semulation button for every single code. Now I can create more and more codes with this program.

And here is a diagram for all the work made by me shows all the blocks and how they got connected togother:
[image:]

References
In this expirement I didn’t get help from outside the ALL Experimets PDF, only my own work.

Appendix
I didn’t get help from outside the ALL Experimets PDF, only my own work.
2 | Page

image4.png
Sfoaule aadsbic (Cin,X,¥,o0ut) ;
input [3:0] X;
Sapus (a10] ¥
Sopus cin
cucput_[4:0]0uc
wire [2:00w
FA FRO(X[0],Y[0],Cin,out[0],w[0]);
FA FAL(X[1],Y[1],w[0],0ut[1],w[1]
A TR2 (X[2], ¥[2] W (1] out (2], w(2]) 5
A T3 (X(31,¥[3],w(2] 0ut (3] ouc [4]) 7

endmodule

image5.png
£ addthity | 1) semulate for 4 bits adder.ve- |
5 MeTmese| 500w ofpomer| 5B el W] end
A E
ea| || -
g [0 EX B0 Wit 00
. 25 | EY] e T00T 010
o BT| oo i
G (BT Bos | 1000 T T
o N
Z)
(L)E
& 3
G
P
% 84
>

image6.png
Eoovowamswnr

Smodule comptbits (A,B,Z
input [3:0]
input [3:0]
cutput [2:012;

assign Z[2]= (B>B)? 1
assign Z[1]= (3==B)? 1
assign z[0]= (A<B)? 1

endmodule

image7.png
& compaits.v | 10 semulate for comp 4 bits.vwi* |

Moo Tmegar| S00m o[Pomer| 6%02m ek alssem | end
kA Valve at 0
’;@k S || S
o [Ea | enm 0 1171
— [>5 | ®Es | sum i}
@S] mz | s i — T
- e
&
)8
X E
e
e
Gl
8% 8}

<

image8.png
0@ e W e

Emodule mux2byl (X,Y,5,0ut);
input [4:0]%;
input [4:01X;
input
cutput [4:0]out;
assign out = (
endmodule

0)2 X

image9.png
B muyly

| 170 semulate for mux2by1.vwt

Moo TmoBar | 00w fPomter| Bme enak T s end
A Value at El
a Name | 3805ns 0ns
= X 00100 00011 00100
L. (s @Y e000 TO00T 70010
| s | et
S| @ou | B1000 wor 700

mimE e N @] B 3| &
o

& 5

»

image10.png
Emodule run(3,B,Cin, S, out) 7
inpuc (3
input (3
input S,Cin
ocutput [4:0]out:
wire [4:0]ul,w0,

addsbic v1(Cin,A,B,u0);

compebits v2(A,B,wl

mux2byl v3(w0,wl,S,0ut) ;

endmodule

image11.png
£ v | 1) run semulater. vt |
Moo Tmebar | w00ms Dfpomer| 3me menat| 2im st] end
N A oot 09 209n 0gns
LYY P e
‘@ [0 EA [TE00 0000 0001 0010 0011
[E e B0 00 o0
B o0] o e
Gz s | om0
o 1 |22 ot | Bo000T 000 o000 00 00
Z)E
e
Yo B
A
e
8% 8}
<

image12.png
e 2
e [
Ay cn ouso) e es.ol B e DT
EREIEIEERCim b [eo
feE] E — ¥i2.01 °
et ol
i
A0 720
fep.0)
i
et 2
<

image1.png
2 I* v
“- < MB’

BIRZEIT UNIVERSITY

image2.png
o

cn outreg_size.0]
n_slreg_size-1.0]
n_bireg_size-1.0]

outf2.0]

image3.png
aw e

Emodule FA (X,Y,Cin, sum, Cout) ;
input X,Y,Cu
cutput sum, Cout;
assign sum = X"Y"Cin;
assign Cout = Ciné (X°¥) | (X&¥):

endmodule

