ol
o

Birzeit Univers ity

Faculty of Information Technology
Computer Systems Engineering Department
Digital Lab ENCS 211 EXP. No. 9
A Simple Security System Using FPGA

9.1 Objectives:

e To practice building different digital components using Quartus either by building a
Verilog codes & Block diagrams.

e Learning how to put some of the digital components you’ve studied and build in
pervious lab sessions, together to build useful systems.

e To become more familiar with FPGA programming.

9.2 Apparatus:

e A Desk\Lab top with Quartus Il (7.2 +) and USB driver installed.
o Altera DE1 system with its datasheets. (For FPGA pins map).
9.3 Pre Lab: (Bring a soft copy of your pre lab with you to the lab)

Prepare each part of the procedure section where it says (Pre Lab).
NOTE: It’s important that you come prepared, as this will reflect your work time
during the lab plus it will be a critical variable in the evaluation of your lab report.

9.4 Theory:

In this experiment we are going to build a simple security system using Altera Quartus
software, then we will program and download our system to DE1 Board (FPGA board).

Our security system is simply a 4 digit digital lock, User enter a number of 4 digits (digit
range: 0 to 6, so every digit will has a lower limit of 0 and an upper limit of 6) using a keypad
(using the six switch keys build in our FPGAS) . Each digit is represented by a 7-segment
display and if the total number entered on the displays equals to XXXX a green led is on;

CLK

allowing us to pass. Else a red led is always on; blocking us from passing.

The following computer based design will explain the architecture of our system:

AND4

Red Led

v

SW9

2x4 Decoder
En

© ~

= =

2] 2]

FIG 1 : System Design.

Comparator Comparator Comparator Comparator
'S 'S b3
7-Segment 7-Segment
Memory System Memory System Memory System Memory System
CLK CLK CLK CLK
& En(® &) En (¥ &) (¥ &) By
'S 'S 'S b3
J(3

7-Segment Display
Driver

Green Led

L X

8x3 Priorety Encoder

GNDJ

SW6 —
SW5 —
Sw4 —
SW3 —
SW2 —

Swi —

SWO —

As we can see in the above figure (FIG 1) the system consist of the following components:

1) 8x3 Priority Encoder:

The user will use this priority encoder to choose what value to view on a 7-segment display
(values range from 0 to 6 in decimal) , for example if the user switch SW4 to high and keep
SW5 and SW6 low then the output of the encoder will be b’100.

2) 2x4 Decoder:

The purpose of this decoder is to let the user select which memory system is active thus
which 7-segment display to use, for example if SW8 and SW7 are active high then the En pin
of the 4™ memory system is enabled and ready to read user input on the 8x3 priority
encoder.

Note: The enable pin of the decoder must be active low while switching between selection
lines of the decoder.

3) 7-segment display driver:

This driver is used to convert the output of the priority encoder to the proper input for the 7-
segment displays, the output of the driver is first stored in a memory unit before transferring
to a 7- segment (depends on which memory system is enabled using the 2x4 decoder).

4) Memory System:

The purpose of such system is to ensure that the value selected by user to display on a certain
7-segment is kept there when the user switch to select another 7-segment.

Each memory system is consisting of seven D- flip flops and 2x1 MUXs as seen in the
following figure (FIG 2):

Data out to a 7-segment

*
DFF DFF DFF DFF DFF DFF DFF
5 5 X 5 5 5 X
D @) D 0 D [} D 0 D @) D @) D Q
CLK
2x1 MUX 2x1 MUX 2x1 MUX 2x1 MUX 2x1 MUX 2x1 MUX 2x1 MUX
A B Sel A B Sel A B Sel A B Sel A B Sel A B Sel A B Sel
Enable
Data 0 Data 1 Data 2 Data 3 Data 4 Data 5 Data 6

FIG 2 : Memory System.

When the Enable pin =0, the output of each DFF becomes its input at every clock cycle, when
the Enable pin becomes 1 the data coming from the 7-segment driver is then stored in the
each DFF. The output of each DFF is sent as a data bus to a 7-segment display.

Note: For each 7-segment display we need a memory system block.

5) Comparator:

The input of each 7-segment display is connected also to a comparator , every comparator has
a build in value (reference) which is compared with the value of the 7-segment display , if
both are equal then the output of the comparator is 1 else the output will be 0 ; for example if
one of the comparators has a reference value = 5 then its output will be 1 if and only if the
input is equal to=7'00100100 (which is the value of 5 in 7-segment display).

The purpose of the comparator is to lock/unlock our security system.
6) 4-input AND gate:

This AND gate will make sure that all 4 7-segment displays have the correct combination ; if
each comparator output = 1, then the AND gate output will be 1, thus a green light is on,
else a red light will be always on.

9.5 Procedure :

After we understood the architecture of our security system it’s time to start programming
and designing it (get our feet wet ©).

NOTE: Create a Symbol for each component you build.

1) 8x3 priority encoder.
Write down the following code, compile and simulate it (Pre Lab).

modnle MyEncoder(i0,il,i2,i3,i4,i5,1i6,i7,en_out);
4 inpmt i0,il1,i2,i3,i4,i5,i6,1i7;
5 ontput [2:0] en_out;
& reg [2:0] en out;
alway=s @ (i0 or il or i2 or i3 or i4 or 15 or 1i&)
14 if (16==)
11 EN_out <=
12 elzse if (i5==)
L3 En out <=
14 else 1f (14==)
15 En_out <=
1 elze Iif (i3=—=)
1 en_out <=
18 else 1f (12==)

25 endmodnle

2) 2x4 Decoder:

Write down the following code, compile and simulate it (Pre Lab).

L R

1 & Ln

modnle MyDecoder (en,select,out):

inpmt[l:0] select;

input en;

wire[l:0] =elect;

coatpot[3:0] ouat;

reg[3:0] out;

always@ (select)

Hbegin

rout
1:out
2:1out

3:out
rendca

el=ze

—end

=

if (en==_}

endmodnle

3) 7-segement driver:

Flocase (select)

......

Write down the following code, compile and simulate it (Pre Lab).

P

(Y S LT L% |

o B 1 m n

[U N

(I

(=TT I

module MyDriver(in v,out v}:

input[2:0]in_wv;

wire[2:0]in_v;

ontpmt[&:0]out_w:

reg[&:0] out_w;

alway sk (in_v)

Ebegin
—leaze (in_v)

0:out
1:out
2:out
3:out
4:pout
S:out
6:out

rout

—end

K

o=

v =

v

W o=

o=

v =

v =

Fendoase

endmodnle

.........

4) Memory System:
1- Write the code of a D- Flip Flop, compile and simulate it.

2- Write the code of a 2x1 MUX, compile and simulate it (Pre Lab).
Note: It’s important that your MUX behaves as explained in the memory system
section (check back the theory).

3- Use a block diagram to build the following design :

@eq |

]
]
—

§ g My MU X 2 My FlipFlop %
D1 CCo—u— A ouT D Q QLo
B CLK
lect g
selec ¢
) o
inst8 inst6é
My MU X My FlipFlop
D2 ——— A ouT D Q Qlil
B CLK
select
instll inst
My MU X My FlipFlop
D3 | — e A ouT D Q Ql2]
B CLK
select
inst10 instl
My MU X My FlipFlop
D4 —IELT— A ouT o o or3]
B CLK
select
inst9 inst2
My MU X My FlipFlop
BE I TNT=THE A ouT o o or4]
B CLK
select
inst12 inst3
My MU X My FlipFlop
S QI5]
D6, | A ouT D Q
B CLK
select
inst1l3 inst4
My MU X My FlipFlop
QIe]
A ouT D Q
B CLK
select
inst14 inst5

6)

7)

Write down the following code, compile and simulate it (Pre Lab).

modnle MyComp (CData,out) ;
4 inpmt [£:0] CData:;
5 wire [©:0] CDhata;
6 ontpnt out;
reg out;
8 always @ (CData)
begin
10 if (Chata =)
11 out ==
12 else
L3 out <=
14 end
15 endmodnle

Note: For simplifying reasons we will build one comparator based on a reference
value X (in this example X = 5), you can build four different comparator with four
different values to compare with.

Putting everything together:

Build and design the security system using the components you build during the previous
sections.

The final block design should look as the one in FIG 4 (check the next page please).

Assign pins values to the security system design you just build and then download
the system to the FPGA board.

HANDA

red”

insfil

L GUBT T green

inst10

615Ul

T h

£gIsul

no

107791212 QD b

A1 ——

dwoohn

815Ul

&D Dis2[6..0]

zgisul

mno

OUTPUT Dis3[6..0]

107791212 QD oot

1079]0

La
9d

sa

¥a
€a

¢a

1a
alqeusy

A1

dwodAW

WaWAW

LL1sul

Tgisul

mno

Disd6..0]

10779818 00 Lol

107910

L4

9d
sd

va

€a
za

1a

ELEE]
210

dwoohp

WaWAW

og1sul

—1 o

107°9]812 00 feommbmet

107910

ajqeu3

%10

dwoohn

Wa AW

out_v[6..0]

in_v[2.0]

MyDriver
inst6

2.0]

0 en_out|

My Encoder

inst4

7

FIG 4 : The Security System.

Znisul

lenno

lzhno

f

lo"Thosles

loehno us

 S—

Lthno

loJino

XNWAAW

fio
it

i

91
TITaNT

<

Lo-Tlies

99

TN

<

us

dis

