

Faculty of Information Technology

Computer Systems Engineering Department
Digital Lab ENCS 211 EXP. No. 10

 Simple Computer

Objective:
In this experiment we are going to design the Verilog HDL control sequence for a simple
computer (SIMCOMP). The SIMCOMP is a very small computer to give you practice in
the ideas of designing a simple CPU with the Verilog HDL notation.
Pre-Lab:
1-read the experiment
2-Do part one and part two of the procedure

Introduction

 MBR <= Memmory[MAR];
To write to memory, you use
 Memory[MA] <= MBR;

The CPU has three registers -- an accumulator (AC), a program counter (PC) and an
instruction register (IR).
SIMCOMP has only three instructions -- Load, Store, and Add. The size of all
instructions is 16 bits; all the instructions are single address instructions and access a
word in memory.

 Instruction Format

SIMCOMP has a two byte-addressable
memory with size of 128byte. The
memory is synchronous to the CPU, and
the CPU can read or write a word in single
clock period. The memory can only be
accessed through the memory address
register (MAR) and the memory buffer
register (MBR). To read from memory,
you use

The opcodes are
0011 LOAD M loads the contents of memory location M into the
accumulator.
1011 STORE M stores the contents of the accumulator in memory
location M.
0111 ADD M adds the contents of memory location M to the contents
of the accumulator.

.

Procedure:

1- Study and simulate the SIMCOMP verilog program.

2- Add extra instruction (JUMP) to SIMCOMP

JUMP M jumps to location M in memory.
Simulate the following program
 Address Contents
 5 Load 9
 6 Add 10
 7 Store 11
 8 Jump 6
 9 Data 3
 10 Data 2

 3-SIMCOMP2: Add register file

Modify the instruction format so that SIMCOMP2 can handle four addressing modes and
four registers,
To this end, SIMCOMP is an accumulator machine which you can think of as a
machine with one general-purpose register. Historically, many old computers were
accumulator machines.

This new SIMCOMP2 has four 16-bit general purpose registers, R[0], R[1], R[2] and
R[3] which replace the AC. In Verilog, you declare R as a bank of registers much like we
do Memory:

 reg [15:0] R[0:3];

And, since registers are usually on the CPU chip, we have no modeling limitations as we
do with Memory - with Memory we have to use the MAR and MBR registers to access
MEM. Therefore, in a load you could use R as follows:

 R[IR[9:8]] <= MBR;
where the 2 bits in the IR specify which R register to set.

Modify the four instructions of the old SIMCOMP2 to the following new form:

LOAD R[i],M loads the contents of memory location M into R[i].

STORE R[i],M stores the contents of R[i] in memory location M.

ADD R[i],R[j],R[k] adds contents of R[j] and R[k] and places result in
R[i].

JUMP M jumps to location M in memory.

To test your SIMCOMP2 design, perform the following program where PC starts at 10.

 3 DATA A
 4 DATA 6
 10 LOAD R1,3
 11 LOAD R2,4
 12 ADD R1,R1,R2
 13 STORE R1,5

4-Add immediate addressing to the SIMCOMP2:

If bit (IR[11])is a one in a Load , the last eight bits are not an address but an operand. The
operand is in the range -128 to 127.

If immediate addressing is used in an LOAD, the operand is loaded into the register.

 LoadI R1,8 R1 <- 8

Simulate the following test with hand written comments explaining what you are doing.

 PC = 10
 Memory [10] LoadI R1,3 // Load immediate
 Memory [11] Store R1,4
 Memory [12] LoadI R2,-4
 Memory [13] Add R2,R2,R1
 Memory [14] Store R2,5

Note: your final machine should be able to correctly run the two "software"programs of
all last two exercises. Be careful not to destroy the features of previous exercises. You
should test this and include output in your handin file to show that your final version of
the SIMPCOMP2 works properly with the two programs.

