
Briefly explain
 In this experiment we a counter using Quartus on known frequency and display the digit on seven segment display . To do that we divided our work as Frequency –divider , 4-bit counter and Seven segment after that we connected them together.
_Frequency-divider:
 Because we face high frequency (27,50)MHz ,the simulation was useless . So we built the frequency-divider that change from high to low frequency .In this experiment we reduced the frequency from 27 MHz to 2 Hz.
_4-bit counter:
 We built our 4-bit counter which work on positive edge and reset on negative edge.
Unsigned multiplication :_
 One of the ways to multiply two positive numbers is using unsigned multiplication that receives two input and multiply them to give the output after. Its algorithm based on shift and add.
Booth multiplication:_
 In booth multiplication we could multiply any two positive or negative numbers . Its algorithm depend on shift , add and subtract .

Procedure :
_4-bit counter:
We wrote the code shown in fig (1) after that we simulate as in fig (2) .finally we created the symbol.
[image:]
Fig (1):code for 4-bit counter

[image:]
Fig(2):simulation for fig 1

Frequency-divider: _
we could change the speed of the counter by changing the frequency rate . for example if we want it to be slow we increase the ratio. the code for our freq_divider shown in fig (3).
[image:]
Fig(3):code for frequency divider

_Seven segment:
The seven segment on FPGA was active low so we replaced the 1's by 0's and 0's by 1's in the code of lab manual as shown in fig (4).
[image:]
Fig(4):code for seven segment
After that we connected them together as shown in fig (5) and put the final result on FPGA .
[image:]
Fig(5):couter system
_ Unsigned multiplier:
We wrote the code shown in fig(6), [image:]
Fig(6):code for unsigned multiplication
[image:]
Fig(7):simulation for unsigned multiplication
Booth multiplication:
The code of the booth is like unsigned multiplication but with small diffrance as in fig(8).[image:]fig(8):code for booth algorithm
[image:]
Fig(9):simulation for booth

Conclusion:
At the end of this experiment, we have used the counter as an input to the design that we have, we also have learned how we can adjust the frequency as we desire it to be using the div_freq code. We have also implemented some algorithms using vhdl language, in this case the unsigned multiplication and booth algorithm, where we have taken an idea about how we can implement different algorithms using VHDL language, which makes it easy to compile and simulate using quartos, so after that the synthesis of this code will be achieved easily.

7

image5.png
i s v

T o et et ek cauneps. o] nB.0] o o) Ut OUTH By
instT insT inst
HESET

image6.png
oo
inp
inp
out)
out)

reg
reg
reg
reg

alus
if(
ey

end
els:
ey

ule wult (product,ready,multiplier,multiplicand, start,clk);

ue [7:0] multiplier,multiplican
ue start,cli;

put [15:0] product;

put ready:

[15:0] produce;
[7:01 o,
[8:0] ACC:

[3:0] counter;
e ready=!counter;

tial counter

ays B (posedge clk)
ready cs starc)
counter
acc=0;
Memuliplicand:
Qemultiplier;

e if (counter)
i£(Q[0] == 1'b1] ACC=RCCHE:
Q=o>>1;

Qr71=acc[o)

acc!

0) product = (ACC[7:0],Q);

image7.png
\olue PP BOPns 1800ns 2400ns 3200ns 4000 4800ns S600ns 6400ms 7200ms G000ns 8800
Name 8.23 [8225ns

P (ML L T P L P L L L LT L

1 Miplicand | A [z 201

10 multiplier | A [1 T

] | A

D2 product A0 J0] 4 T0j200]

07| s | AT [N [yl

image8.png
wodule booth(product,ready,multiplier,multiplicand, start,clk);

input [7:0] mulviplier,multiplicant
input start,clk;

output ready:

output [15:0] product;

reg [15:0] product;
reg [8:0] Q:

reg [7:0] M,4CC:

reg [3:0] counter:
wire ready =!counter;

initial counter

alvays @ (posedge clk]
if (ready ¢s start)

begin
counter
acc=0;

mitiplicand;

Q=(multiplier[7:0],1'b0};

end

else if (counter]

begin
if ([Q[1]==D) £8(Q[D]==1)] ACC=ACC+I;
if ({Q[1]==1) ££(Q[D]==0)] ACC=ACC-

317
ars1=acc(o)
BCC=RCCH>1;
acC[7]=hCCl6] 7
counter =counter-1;

i£ (counter
ena
endmodule |

0) product=(AcC[7:0],0Q[8

11

image9.png
Bps 800ns 1600ns 2000ns 3200ns 4000ns 4800ns 5600ns B400ns 7200ns 8000ns 8800ns

Name | A oo s
N 1 0 g O 0 O g 0 0
1 Mighicand | S -1 1z
10 mulipler H 7
o
50| Hpoet | s i ¥ g}

27| e | a1 1 I

image1.png
woduls counter (clock, reset,

input clock, reset;
output [3:0]count;
req [3:0]count;

wire clock,rese;

alvays @ (posedge clock or
count = (~reset) 2 4'b000D
endnodule

count) 7

negedge reset
count+1'b1;

image2.png
Vae PP 800ns 1600ns 200ns 3200ns 4000ns 4800ns 5600ns B400ns 7200ns 8000ns GBO0ns 9600ns |
Name |5 foooems

Eaanc sy ligigligigipinigigigSpipSpipipipipSpipSpSp RNy p iy By

EI o

2| @ count Al T LA 07 [UBEEREERAUB EEB AR EuURECR SEBIE N IENENGEY (DY SN EUD EF £

image3.png
£ Quartus II - Giflab digital/freq_div/freq_div - freq_div - [freq_div.v]

Ble Edt

Vew Project Processing Toos Window

=]
2]

1
2
3
1
s
6
3
s

Ewodule freq div(freql,rst,freqz);

input fregi,rst:

output fregz;

wire fregi,rst;

reg [23:0]counter;

req freqz:

aluays @ (posedge freqi or negedge rst)
Epegin

if (rst==0)
Epegin

counter=0;

2 begin
counter=counter-1;
freqe=1;
end

end
end
endnodule

image4.png
€ Quartus I - Gi/lab digitalfsevenseg/sevenseg - sevenseg - [sevenseg.v]

Bl Edt Vew Project Processing ook window

G 1 T et o
2 impue (3:011nv:

Y 3 output [6:0]out_v:

V| 3 wie solins

El s res erorous
6 awvays @ (inv)
7 mmegin
. Case in_v)
s o3 Buc_v ~7'0000001;
10 aucly ~7imi00i111;
1 aucTv ~7'0010010;
12 aucTv ~7'0000110;
1 aucTe ~7'm1001100;
1a auclv ~7'h0100100;
is aucCv ~7'h0100000;
16 aucTe ~7'0001111;
17 aucTs =7'w0003000;
1 o} ouelv ~7'w0000100;
1 i v ~7'h0001000;
20 autTv ~7'h1100000;
21 auclv ~7'h0110001;

o auclv ~7'1000010;

o autTv ~7'h0110000;
24 aucTv ~7'h0111000;
25 endcace

~| 2 em

27 endmodule

image10.gif

