

Faculty of Information Technology

Computer Systems Engineering Department

Digital Lab ENCS 211 EXP. No. 11

 Simple Computer

Objective:

In this experiment we are going to design the Verilog HDL control sequence for a simple

computer (SIMCOMP). The SIMCOMP is a very small computer to give you practice in

the ideas of designing a simple CPU with the Verilog HDL notation.

Pre-Lab:

1-read the experiment

2-Do part one and part two of the procedure

Introduction

 MBR <= Memmory[MAR];

To write to memory, you use
 Memory[MA] <= MBR;

The CPU has three registers -- an accumulator (AC), a program counter (PC) and an

instruction register (IR).

SIMCOMP has only three instructions -- Load, Store, and Add. The size of all

instructions is 16 bits; all the instructions are single address instructions and access a

word in memory.

 Instruction Format

SIMCOMP has a two byte-addressable

memory with size of 128byte. The

memory is synchronous to the CPU, and

the CPU can read or write a word in single

clock period. The memory can only be

accessed through the memory address

register (MAR) and the memory buffer

register (MBR). To read from memory,

you use

The opcodes are
0011 LOAD M loads the contents of memory location M into the

accumulator.

1011 STORE M stores the contents of the accumulator in memory

location M.

0111 ADD M adds the contents of memory location M to the contents

of the accumulator.

.

Procedure:

1- Study and simulate the SIMCOMP verilog program.

2- Add extra instruction (JUMP) to SIMCOMP
JUMP M jumps to location M in memory.

Simulate the following program

 Address Contents

 5 Load 9

 6 Add 10

 7 Store 11

 8 Jump 6

 9 Data 3

 10 Data 2

 3-SIMCOMP2: Add register file

Modify the instruction format so that SIMCOMP2 can handle four addressing modes and

four registers,

To this end, SIMCOMP is an accumulator machine which you can think of as a

machine with one general-purpose register. Historically, many old computers were

accumulator machines.

This new SIMCOMP2 has four 16-bit general purpose registers, R[0], R[1], R[2] and

R[3] which replace the AC. In Verilog, you declare R as a bank of registers much like we

do Memory:

 reg [15:0] R[0:3];

And, since registers are usually on the CPU chip, we have no modeling limitations as we

do with Memory - with Memory we have to use the MAR and MBR registers to access

Memory. Therefore, in a load you could use R as follows:

 R[IR[9:8]] <= MBR;

where the 2 bits in the IR specify which R register to set.

Modify the four instructions of the old SIMCOMP2 to the following new form:

LOAD R[i],M loads the contents of memory location M into R[i].

STORE R[i],M stores the contents of R[i] in memory location M.

ADD R[i],R[j],R[k] adds contents of R[j] and R[k] and places result in

R[i].

JUMP M jumps to location M in memory.

To test your SIMCOMP2 design, perform the following program where PC starts at 10.

 3 DATA A

 4 DATA 6

 10 Load R1,3

 11 Load R2,4

 12 Add R1,R1,R2

 13 Store R1,5

4-Add immediate addressing to the SIMCOMP2:

If bit (IR[11])is a one in a Load , the last eight bits are not an address but an operand. The

operand is in the range -128 to 127.

If immediate addressing is used in an LOAD, the operand is loaded into the register.

 LoadI R1,8 R1 <- 8

Simulate the following program

 PC = 10

 Memory [10] LoadI R1,3 // Load immediate

 Memory [11] Store R1,4

 Memory [12] LoadI R2,-4

 Memory [13] Add R2,R2,R1

 Memory [14] Store R2,5

4-Input/output Instructions to the SIMCOMP2:

In order SIMCOMP2 to communicate with the Input and output devices we are going to

add in and out instructions to SIMCOMP2

In N read one byte from input device at address N into lower byte of R0

Out N write the lower byte of R0 to Output device at address N

Add two registers (Address and Data) for I/O devices

Complete the a program below such that it reads port 1 then it adds the value to the

content of memory location 4 and send the results to port 2
 3 DATA A

 4 DATA 6

 10 loadI R0, 0

 11 IN 1

 . .. … …

simulate the program then rout it on the FPGA , use the switches and leds to show the

results.

Note: your final machine should be able to correctly run the three "software"programs of

all last three exercises. Be careful not to destroy the features of previous exercises. You

should test this and include output in your report file to show that your final version of

the SIMPCOMP2 works properly with the two programs.

Extra: write an assembler using c/c++ so that it convert the assembly code to

machine code for SIMCOMP2

example.as is assembly file

example.hex is contains the machine code

