
[image:]

ENCS2110
DIGITAL ELECTRONICS AND COMPUTER ORGANIZATION LABORATORY

Name: Sara Totah
Student ID: 1181779

Instructor: Khader Mohammed
T.A: Enas Jawabreh

Date: 03/03/2021

Table of Contents
Table of Figures:	3
Pre-Lab:	4
Three-Bit Comparator:	4
Abstract:	5
Theory:	5
First: Comparator Circuit:	5
1-Bit Comparator:	5
4-Bit Comparator:	6
Second: Half- and Full- Adder Circuits:	7
Half-Adder:	7
Full-Adder:	7
Third: Half- and Full- Subtractor Circuits:	8
Half-Subtractor:	8
Full-Subtractor:	9
Procedure:	10
Comparator Circuits:	10
A.	Constructing Comparator with Basic Logic Gates:	10
B.	Constructing Comparator with an IC:	10
Half- and Full-Adder Circuits:	11
A.	Constructing Half- and Full-Adders with Basic logic Gates:	11
B.	Full-Adder with Basic logic Gates:	11
C.	Constructing BCD Adder:	12
Half- and Full-Subtractor Circuits:	12
A.	Half-Subtractor	12
B.	Full-Subtractor	13
Conclusion:	14
References:	14

[bookmark: _Toc66028837]Table of Figures:
Figure 1: Three-Bit comparator	4
Figure 2: N - bit Comparator	5
Figure 3: 1-bit comparator circuit	5
Figure 4: 4-bit Comparator Circuit diagram	6
Figure 5: 4-bit comparator constructed with1-bit comparator	7
Figure 6: Half Adder Logic circuit	7
Figure 7: Full-Adder circuit diagram	7
Figure 8:Full-Adder logic diagram	8
Figure 9:Half-Subtractor Logic Circuit	8
Figure 10:Full-Subtraction Circuit Diagram	9
Figure 11: Full-Subtractor Logic Diagram	9
Figure 12: Implemented 1-bit Comparator	10
Figure 13: Comparator constructed with an IC	10
Figure 14: Implemented Half-Adder	11
Figure 15: Implemented Full-Adder	11
Figure 16: 4-bit Full Adder constructed with IC	12
Figure 17: Half-Subtractor	12
Figure 18: Full-Subtractor	13

[bookmark: _Toc66028838]Pre-Lab:
[bookmark: _Toc66028839]Three-Bit Comparator:
[image:]
[bookmark: _Toc66028777]Figure 1: Three-Bit comparator
	A2
	A1
	A0
	B2
	B1
	B0
	A>B
	A<B
	A=B

	0
	0
	0
	0
	0
	0
	0
	0
	1

	0
	0
	0
	0
	0
	1
	0
	1
	0

	0
	0
	0
	0
	1
	0
	0
	1
	0

	0
	0
	0
	0
	1
	1
	0
	1
	0

	0
	0
	0
	1
	0
	0
	0
	1
	0

	0
	0
	0
	1
	0
	1
	0
	1
	0

	.
	.
	.
	.
	.
	.
	.
	.
	.

	.
	.
	.
	.
	.
	.
	.
	.
	.

	1
	1
	1
	0
	1
	1
	1
	0
	0

	1
	1
	1
	0
	0
	0
	1
	0
	0

	1
	1
	1
	1
	0
	1
	1
	0
	0

	1
	1
	1
	1
	1
	0
	1
	0
	0

	1
	1
	1
	1
	1
	1
	0
	0
	1

[bookmark: _Toc66028840]Abstract:
The Aim of the experiment: To understand the principle of the digital comparators, half-adders, full-adders, half-subtractor and full- subtractor, and how to implement each one of them.
Equipment Used in the experiment:
*Since the experiment was implemented online, we used a simulator called Proteus.

[bookmark: _Toc66028841]Theory:
[bookmark: _Toc66028842]First: Comparator Circuit:
Comparator Circuits are made of basic gates such as AND, NOR & NOT, these circuit should be able to determine whether the value of the input A is greater than, equal or smaller than the value of the input B.
The magnitude comparator has three output: One for equality A = B, another for greater than A > B, and the last one for less than A < B.
[image:]
[bookmark: _Toc65872378][bookmark: _Toc66028778]Figure 2: N - bit Comparator
[bookmark: _Toc66028843]1-Bit Comparator:
[image:]
[bookmark: _Toc65872379][bookmark: _Toc66028779]Figure 3: 1-bit comparator circuit
	Inputs
	Outputs

	B
	A
	A>B
	A=B
	A<B

	0
	0
	0
	1
	0

	0
	1
	1
	0
	0

	1
	0
	0
	0
	1

	1
	1
	0
	1
	0

Table 1: 1-bit comparator Truth table
K-map for 1-bit comparator:
 A > B
	A B
	0
	1
	
 A > B equation = A.B’

	0
	0
	0
	

	1
	1
	0
	

 A = B
	A B
	0
	1
	

	0
	1
	0
	A = B equation = A’B’ + AB

	1
	0
	1
	

 A < B
	A B
	0
	1
	

	0
	0
	1
	A < B equation = A’B

	1
	0
	0
	

[bookmark: _Toc66028844]4-Bit Comparator:
In order to design a 4 – bit comparator, each bit of the 4 – bit numbers should be compared on it’s own, and based on this comparison we can explain how to design the 4-bit comparator.
[image:]
[bookmark: _Toc65872380][bookmark: _Toc66028780]Figure 4: 4-bit Comparator Circuit diagram

A = B:
In order to equal the two inputs, each bit of the first number A should be equal to same bit of the second number B such as;
A0 = B0, A1 = B1, A2 = B2, A3 = B3
A > B:
There are multiple occasions where this output is true:
1. When A3 > B3
2. When A3 = B3 AND A2 > B2
3. When A3 = B3 AND A3 = B3 AND A2 > B2
4. When A3 = B3 AND A3 = B3 AND A2 = B2 AND A1 > B1
5. When A3 = B3 AND A3 = B3 AND A2 = B2 AND A1 = B1 AND A0 > B0
 A > B:
There are multiple occasions where this output is true:
1. When A3 < B3
2. When A3 = B3 AND A2 < B2
3. When A3 = B3 AND A3 = B3 AND A2 < B2
4. When A3 = B3 AND A3 = B3 AND A2 = B2 AND A1 < B1
5. When A3 = B3 AND A3 = B3 AND A2 = B2 AND A1 = B1 AND A0 < B0
[image:]
[bookmark: _Toc65872381][bookmark: _Toc66028781]Figure 5: 4-bit comparator constructed with1-bit comparator

[bookmark: _Toc66028845]Second: Half- and Full- Adder Circuits:
[bookmark: _Toc66028846]Half-Adder:
The addition of two bits is done using a combinational circuit called Half-Adder:
[image:]
[bookmark: _Toc65872382][bookmark: _Toc66028782]Figure 6: Half Adder Logic circuit
	Inputs
	Outputs

	B
	A
	S
	C

	0
	0
	0
	0

	0
	1
	1
	0

	1
	0
	1
	0

	1
	1
	0
	1

Table 2: Half-Adder Truth Table
[bookmark: _Toc66028847]Full-Adder:
The full-adder can perform addition or subtraction, it adds together two binary digits and carry in digit, which means it has three inputs and comes up with two outputs.
[image:]
[bookmark: _Toc65872383][bookmark: _Toc66028783]Figure 7: Full-Adder circuit diagram
[image:]
[bookmark: _Toc65872384][bookmark: _Toc66028784]Figure 8:Full-Adder logic diagram
	Inputs
	Outputs

	A
	B
	Cin
	Sum
	Carry Out

	0
	0
	0
	0
	0

	0
	0
	1
	1
	0

	0
	1
	0
	1
	0

	0
	1
	1
	0
	1

	1
	0
	0
	1
	0

	1
	0
	1
	0
	1

	1
	1
	0
	0
	1

	1
	1
	1
	1
	1

Table 3: Full-Adder Truth Table
[bookmark: _Toc66028848]Third: Half- and Full- Subtractor Circuits:
[bookmark: _Toc66028849]Half-Subtractor:
The circuit of half-subtractor can be built with NAND and XOR gates
[image:]
[bookmark: _Toc65872385][bookmark: _Toc66028785]Figure 9:Half-Subtractor Logic Circuit
	Inputs
	Outputs

	B
	A
	Difference
	Borrow

	0
	0
	0
	0

	0
	1
	1
	1

	1
	0
	1
	0

	1
	1
	0
	0

[bookmark: _Toc66028850]Full-Subtractor:
[image:]
[bookmark: _Toc65872386][bookmark: _Toc66028786]Figure 10:Full-Subtraction Circuit Diagram
[image: Full Subtractor Circuit Analysis By Using Logic Gates]
[bookmark: _Toc65872387][bookmark: _Toc66028787]Figure 11: Full-Subtractor Logic Diagram
	Inputs
	Outputs

	A
	B
	Bin
	D
	BOUT

	0
	0
	0
	0
	0

	0
	0
	1
	1
	1

	0
	1
	0
	1
	1

	0
	1
	1
	0
	1

	1
	0
	0
	1
	0

	1
	0
	1
	0
	0

	1
	1
	0
	0
	0

	1
	1
	1
	1
	1

Table 4: Full-Subtractor Truth Table

[bookmark: _Toc66028851]Procedure:
[bookmark: _Toc66028852]Comparator Circuits:
A. [bookmark: _Toc66028853]Constructing Comparator with Basic Logic Gates:
[image:]
[bookmark: _Toc65872388][bookmark: _Toc66028788]Figure 12: Implemented 1-bit Comparator
The circuit above was implemented using Proteus, and the output was recorded.
	Inputs
	
	Outputs

	B
	A
	
	F1
	F2
	F5

	(SW2)
	(SW1)
	
	(L1)
	(L2)
	(L3)

	0
	0
	A = B
	1
	1
	0

	0
	1
	A > B
	0
	1
	1

	1
	0
	A < B
	1
	0
	1

	1
	1
	A = B
	1
	1
	0

Table 5: 1-bit comparator Truth Table
After comparing the truth table in the theory with this one, it’s clear that the are exactly the opposite since we used NAND and XOR gates instead of NOT, AND & NOR.
B. [bookmark: _Toc66028854]Constructing Comparator with an IC:
[image:]
[bookmark: _Toc65872389][bookmark: _Toc66028789]Figure 13: Comparator constructed with an IC
The circuit above was connected and A was set to equal B and the output was recorded
	INPUTS
	OUTPUTS

	A > B
	A = B
	A < B
	A > B
	A = B
	A < B

	0
	0
	1
	0
	0
	1

	0
	1
	0
	0
	1
	0

	0
	1
	1
	0
	1
	0

	1
	0
	0
	1
	0
	0

	1
	0
	1
	0
	0
	0

	1
	1
	1
	0
	1
	0

[bookmark: _Toc66028855]Half- and Full-Adder Circuits:
A. [bookmark: _Toc66028856]Constructing Half- and Full-Adders with Basic logic Gates:
[image:]
[bookmark: _Toc65872390][bookmark: _Toc66028790]Figure 14: Implemented Half-Adder
	INPUTS
	OUTPUTS

	SW1 (B)
	SW0 (A)
	CARRY (F1)
	SUM (F2)

	0
	0
	0
	0

	0
	1
	0
	1

	1
	0
	0
	1

	1
	1
	1
	0

Table 6: Half-Adder Truth table
	A B
	0
	1
	
	A B
	0
	1

	0
	
	1
	
	0
	0
	0

	1
	1
	
	
	1
	0
	1

Sum Carry
After implementing the k-map on this truth table the functions of the sum and the carry were:
Carry = AB = A AND B
Sum = AB’ + A’B = AXOR B
B. [bookmark: _Toc66028857]Full-Adder with Basic logic Gates:
[image:]
[bookmark: _Toc65872391][bookmark: _Toc66028791]Figure 15: Implemented Full-Adder
	INPUTS
	OUTPUTS

	SW3 (C)
	SW2 (B)
	SW1 (A)
	CARRY
	SUM

	0
	0
	0
	0
	0

	0
	0
	1
	0
	1

	0
	1
	0
	0
	1

	0
	1
	1
	1
	0

	1
	0
	0
	0
	1

	1
	0
	1
	1
	0

	1
	1
	0
	1
	0

	1
	1
	1
	1
	1

Table 7: Full-Adder Truth Table
	Cin AB
	00
	01
	11
	10
	
	 CIN AB
	00
	01
	11
	10

	0
	0
	1
	0
	1
	
	0
	0
	0
	1
	0

	1
	1
	0
	1
	0
	
	1
	0
	1
	1
	1

Sum Carry
After implementing the k-map on this truth table the functions of the sum and the carry were:
Carry = AC + BC + AB
Sum = CA’B’ + C’AB’ + CBA + C’BA’

C. [bookmark: _Toc66028858]Constructing BCD Adder:
[image:]
[bookmark: _Toc65872392][bookmark: _Toc66028792]Figure 16: 4-bit Full Adder constructed with IC
[bookmark: _Toc66028859]Half- and Full-Subtractor Circuits:
A. [bookmark: _Toc66028860]Half-Subtractor
[image:]
[bookmark: _Toc65872393][bookmark: _Toc66028793]Figure 17: Half-Subtractor

	Inputs
	Outputs

	A
	B
	Diff
	Borrow

	0
	0
	0
	0

	0
	1
	1
	1

	1
	0
	1
	0

	1
	1
	0
	0

	A B
	0
	1
	
	A B
	0
	1

	0
	
	1
	
	0
	0
	0

	1
	1
	
	
	1
	1
	0

Diff Carry
After implementing the k-map on this truth table the functions of the sum and the carry were:
Carry = AB = A AND B
Diff = AB’ + A’B = AXOR B
B. [bookmark: _Toc66028861]Full-Subtractor
[image:]
[bookmark: _Toc65872394][bookmark: _Toc66028794]Figure 18: Full-Subtractor
	Inputs
	Outputs

	A
	B
	Cin
	Diff
	Borrow

	0
	0
	0
	0
	0

	0
	0
	1
	1
	1

	0
	1
	0
	1
	1

	0
	1
	1
	0
	1

	1
	0
	0
	1
	0

	1
	0
	1
	0
	0

	1
	1
	0
	0
	0

	1
	1
	1
	1
	1

	A BCin
	00
	01
	11
	10
	
	 A BCin
	00
	01
	11
	10

	0
	0
	1
	0
	1
	
	0
	0
	1
	1
	1

	1
	1
	0
	1
	0
	
	1
	0
	0
	1
	0

Sum Carry
After implementing the k-map on this truth table the functions of the sum and the carry were:
Borrow = A’Cin + A’B + BCin
Diff= A’B’Cin + AB’Cin’ + A’BCin + A’BCin
[bookmark: _Toc66028862]Conclusion:
The experiment went smoothly with no complications, it took me about hour and a half to finish it, and the results satisfied the theory part of the report, the experiment helped with understanding more about comparators and adders and subtractors, but I couldn’t solve the post lab on my own I was able to write the truth table and the k-maps but I couldn’t build a proper design.
Text size: 12

[bookmark: _Toc66028863]References:
https://www.geeksforgeeks.org/full-adder-in-digital-logic/
https://www.electronics-tutorials.ws/combination/comb_8.html
Digital Lab manual
2

image3.png

image4.gif

image5.gif

image6.emf

image7.png

image8.jpg

image9.png

image10.jpg

image11.jpeg

image12.jpeg

image13.emf
U18

NAND

U19

NAND

U20

XOR

U21

NOT

U22

NOT

1

0

0

1

1

image14.emf
A0

A2

B0

B2

0

0

1

C

4

SW1

THUMBSWITCH-BCD

C

3

SW2

THUMBSWITCH-BCD

0

1

0

A0

10

A1

12

A2

13

A3

15

B0

9

B1

11

B2

14

B3

1

A<B

2

QA<B

7

A=B

3

QA=B

6

A>B

4

QA>B

5

U45

74LS85

image15.emf
Sum

Carry

1

U2

XOR

0

U1

AND

1

0

image16.emf
Carry

Sum

U3

OR

U4

AND

1

U6

XOR

U7

AND

0

0

0

1

U5

XOR

image17.emf
A

1

1

0

S

1

9

A

2

8

S

2

6

A

3

3

S

3

2

A

4

1

S

4

1

5

B

1

1

1

B

2

7

B

3

4

B

4

1

6

C

0

1

3

C

4

1

4

U46

74LS83

U48

XOR

U49

XOR

U50

XOR

U47

XOR

0011

1

0000

0

U52

AND

U53

AND

U54

OR

U55

OR

A

1

1

0

S

1

9

A

2

8

S

2

6

A

3

3

S

3

2

A

4

1

S

4

1

5

B

1

1

1

B

2

7

B

3

4

B

4

1

6

C

0

1

3

C

4

1

4

U51

74LS83

00101

image18.emf
Diff

Borrow

U8

AND

U9

NOT

U10

XOR

0

1

1

0

image19.emf
Diff

Borrow

U12

AND

U13

XOR

U14

NOT

U15

XOR

U16

AND

U17

NOT

1

0

0

0

1

U11

OR

image1.png

image2.emf
U23

NAND

U24

NAND

U25

XOR

U26

NOT

U27

NOT

0

1

U28

NAND

U29

NAND

U30

XOR

U31

NOT

U32

NOT

0

0

U33

NAND

U34

NAND

U35

XOR

U36

NOT

U37

NOT

0

0

U38

AND_3

U39

AND

U40

AND_3

U42

AND

U43

AND_3

U44

OR_3

U41

OR_3

0

1

1

