

Department of Electrical and Computer Engineering Summer Semester, 2019/2020 Digital Systems - ENCS234 <u>Verilog Assignment</u>

Groups: At most two students can form a group

Problem: Design and Simulation of 8-bit ALU

Design an 8-bit ALU circuit that receives two 8-bit input numbers X[7:0] and Y[7:0], and produces a 8-bit output Z[7:0], an output carry Cout, an overflow flag OV, and Zero flag. The circuit implements the following 12 functions based on a 3-bit control input C[3:0]:

Code	Function
000	Addition: Z=X+Y
001	Subtraction: Z=X-Y
010	Reminder: Z=X%Y
011	Bitwise AND: Z=X&Y
100	Bitwise OR: Z=X Y
101	Concatenate: $Z = \{X[3:0], Y[3:0]\}$
110	Equality: Zero=X==Y
111	Less than: Cout=X <y< td=""></y<>

Notes:

- a) Show the block diagram design of your 8-bit ALU using components like Adder, Multiplexor, etc. as needed.
- b) Model each component separately. You should have different modules for the adder, multiplexer, etc.
- c) Write a Verilog test scenarios to test both the 8-bit ALU. Verify the correctness by simulation.
- d) Show snapshots of all simulation waveforms.
- e) Submit a report (Word or PDF document) should contain Problem description, the block diagram, a copy of the Verilog modules and the waveforms taken directly as snapshots from the simulator.

Deadline: 26\8 Submission of soft copy (code + report)