2.9 2 35 WY o
(25§ 2T\
oy M R

BIRZEIT UNIVERSITY

Faculty of Engineering and Technology
Electrical and Computer Engineering Department
Digital Systems ENCS2340
Supervisor:Dr. Bilal Karaki

Verilog Project Report

Ahmed Hamdan
1210241

February, 1%, 2023

Contents

[N e Yo [UTox o [o] o R 3
AN 0 Y 0 0] T | SRS 4
=T A A RPN 4
=T A = TP 5
2= Y o A PRI 6
oY w0 ST 9
oY o TSP 10
oY TSP 11
Part G

What are Digital Systems

Digital systems are designed to store, process, and communicate information in digital form.
They are found in a wide range of applications, including process control, communication
systems, digital instruments, and consumer products. The digital computer, more commonly
called the computer, is an example of a typical digital system.

A computer manipulates information in digital, or more precisely, binary form. A binary number
has only two discrete values — zero or one. Each of these discrete values is represented by the
OFF and ON status of an electronic switch called a transistor. All computers, therefore, only
understand binary numbers.

What is an arithmetic- logic-unit (ALU)

An arithmetic-logic unit is the part of a central processing unit that carries out arithmetic and
logic operations on the operands in computer instruction words.

In some processors, the ALU is divided into two units: an arithmetic unit (AU) and a logic unit
(LU). Some processors contain more than one AU (e.g. one for fixed-point operations and
another for floating-point operations).

Talking about the given ALU in this project

As illustrated, our ALU is divided into two units. When C [3] is O, the logic unit operates and
when C [3] is 1, the arithmetic unit operates. Our main problem which is the number of bits in
the output, since it differs from one operation to another, but this problem can be solved by
extending the number based on the most significant bit.

P.S. Every .V file can be found in this folder along with the report.

3|Page

The ALU symbol and supported functions are represented as follow:

ALU Function Code (C) ALU Output (O) ALU Symbol
000 (X1Y)/2 X[n-1:0] Y[n-1:0]
001 2*¥(X+Y)
010 X/2)+Y
011 X-(Y/2)
100 XNAND Y
101 NOT(X)
110 XNORY
111 XXORY

Part A - Specify the size of the output (0) in bits so the overflow can
never occur.

7
0‘0

K/

L ¥4

7
0‘0

7
%

7
%

Y/
%

The maximum value of O is when X and Y have the maximum positive value (2" —1)
and the minimum value of O is when X and Y have the minimum negative value (-2"1).
The logical operations which function when C; = 1 do not affect the number of bits.
An n-bits input requires an n-bits to represent the value.

Division in binary is equivalent to shifting the number to the right.

An n-bits requires n-1 bits to represent the value.

Multiplication in binary is equivalent to shifting the number to the left.

An n-bits input requires n+1 bits to represent the value.

When C =001, the maximum value of Ois 2 * ((2"1-1) + (2" - 1)) = 2" — 4 which
requires n+2 bits to represent this value, and the minimum value of O is

2 * ((-2™1) + (-2™1)) = -2"*1 which requires n+2 bits to represent this value.

Answer: To avoid overflow, O must have at least n+2 bits.

4|Page

Part B - Show the ALU implementation using medium-scale integration

components and minimum number of gates.

n-1-0

n-1:0 Gwvioer n-1:0

n:0

n0 10 1

Additional explanation:

n-1:0
n-1:0

n-1:0

n-10

n-1:0

n-1:0

SISO

S1 S0

n+1:0

<+ Since we are handling signed numbers the extensions are added automatically

when assigning an n-1 bit number to an n bit output.

< The division and multiplication have been done in modules.

5|Page

Part C - Write behavioral Verilog modules for your elements you defined
in part (b).

Multiplexers implementation

2-to-1 Multiplexer

imodule mux2tol_ 1210241 # (parameter n=4) (input signed [n+1:0] I0,input signed jn-L:Dj Il, input Selection, output reg signed [n+l1:0] C):
always@(*)
begin
if(Selection)
0= 1I1;

else

end
endmodule

4-to-1 Multiplexer

module mux4tol 1210241 # (parameter n=4) (input signed [n:0] I0,input signed [n+1:0] Il,input signed [n:0] I2,I3,input [1:0] Selection, output reg signed [n+l:0] 0);
always €(*)

6|Page

Logical gates implementation

NAND gate

hcdule nand 1210241 #(parameter n=4) (input [n-1:0] X, ¥, output reg [n-1:0] 0Q):
always@ (%)
begin
O =~(X & Y):
end
endmodule

NOT gate

module not_ 1210241 #(parameter n=4) (input [n-1:0] X, output reg [n-1:0] 0):
always@(*)
begin
o= 1X;
end
endmodule

NOR gate

module nor 1210241 #(parameter n=4) (input [n-1:0] X,¥, output reg [n-1:0] 0):
always@(*)
begin
O=~(X] ¥):
end
endmodule]

XOR gate

module xor 1210241 #(parameter n=4) (input [n-1:0] X,¥, output reg [n-1:0] O):
always@(*)
begin
=X " ¥;
end
endmodule

7|Page

Athematic operators’ implementation

Multiplier

module Multiplication 1210241 #(parameter n = 4) (input signed [n:0] X, output reg [n+l:0] 0);
always@ (*)
begin
O=X* 2;
end
endmodule

Divider for n bits

module Diwvision 1210241 #(parameter n = 4) (input signed [n-1:0] X, output reg signed [n-1:0] Q);
always@ (~)
begin
o=X/ 2;
end
endmaduld

Divider for n+1 bits

module DivisionHigher 1210241 # (parameter n = 4) (input signed [n:0] X, output reg signed [n:0] 0);
always@(*)

begin
o=X/ 2;
end
endmodule
Adder

module Adder 1210241 # (parameter n=4) (input signed [n-1:0] X,¥, output reg signed [n:0] S5);
always @(*)
begin
Ss=X+Y;
end
endmodule

Subtractor

module Subtractor 1210241 #(parameter n=4) (input signed [n-1:0] X,Y, output reg signed [n-1:0] S):;
always @(*)

begin
S=X-1Y;
end
endmodule

8|Page

Part D - Write a structural Verilog model for your ALU designed in Part
(b) using the elements you defined in Part (c).

What is Structural Model in Verilog

The structural model describes a system using basic components such as digital gates and
adders. In structural modeling, the programmer or the designer thinks bout the circuit as a box
or a module. It is encapsulated from the outer environment. In other words, it communicates
with the outer environment through inputs and outputs.

Moreover, it is possible to describe the structure inside a module using gates and submodules.
Also, it defines how these modules are connected to each other and to the module ports.
Furthermore, the structural model helps to draw a schematic diagram for the circuit

Emodule ALU 1210241 #(parameter n

=4) (input [2:0] C, input signed [n-1:0] X,Y, output signed [n+l1l:0] O):;
4 for the test cases

wire signed [n-1:0] XHalf, YHalf;

wire signed [n:0] XplusY, SECOND, THIRD, plusHalf;

wire signed [n+1:0] plusDouble,mux arth;

wire signed [n+1:0] nand XY, not_X, nor_ XY, xor XY, mux logic;

Adder_ 1210241 add (X, Y,XplusY); // Adds X and Y and saves the value in XplusY

D-vzszonﬁlghe- 1210241 DivideXplusY (XplusY, plusHalf); d { by 2 (OPERATION 000
Multiplication 1210241 MultiplyXplusY (XplusY, plusDouble); + Y by 2 (OPERATION 001)

Division 1210241 DivideX (X,XHalf); // Divides X and saves th o

Adder_ 1210241 add2 (XHalf, Y, SECOND); // Adds X/2 and Y and sa in SECOND (OPERATION 010)
Division 1210241 DivideY (Y,YHalf); // Divides Y and

Subc'acto: 1210241 add3 (X, YHalf, THIRD); // Su alue in THIRD (OPERATION 011

mux4tol_ 1210241 MUXLOL (plusHalf, plusDouble, SECOND, THIRD, C[1:0], mux_arth):;

logical operations using their designed functions

nand 1210241 NANDXY (X,Y,nand XY); |
not_1210241 NOTX (X, not_X):

nor_ 1210241 NORX (X,Y,nor XY);

xor_ 1210241 XORX (X,Y,xor XY);

’ muxLogic decides whether the output is nand or not Oor nor or xor

241 muxLogic (nand XY, not X, nor XY, xor XY, C[1:0], mux logic);

mux2tol --lu’é- MUXO (mux_arth, mux logic, C[2], O);
endmodule

The structural model for my ALU

9|Page

Part E - Generate the waveforms of the ALU in part (D)

First Case (X=1,Y=4,C=2,0=X/2+Y=4)

11:27 AM &

WO 003 E

Second Test Case (X=0,Y=1,C=2,0=X/2+Y=1)

0 EC Ui 2 X 3 X 4
>4 X 5 0 4 1 b Z
9 Y S. 1 X 2) { 3
4| @O 5 1 X 0 X 13

M27AM g,
2172023 B

0 e 2 O

Third Test Case (X=-1,Y=-4,C=2,0=X/2+Y=-4)

>0 C Uj 2 X 3 X Z
w4 X S 1 X 0 X 1
9 | @Y S- 3 X 3 X 2
214 0 S 4 X i b 15

-) D 11:26 AM

3z
2/7/2023 I;

10|Page

Part F - Write a single behavioral Verilog module that models the
designed ALU.

What is behavioral Model in Verilog

Behavioral models in Verilog contain procedural statements, which control the simulation and
manipulate variables of the data types. These all statements are contained within the
procedures. Each of the procedure has an activity flow associated with it.

During simulation of behavioral model, all the flows defined by the ‘always’ and ‘initial’
statements start together at simulation time ‘zero’. The initial statements are executed once,
and the always statements are executed repetitively. The initial statement is then completed
and is not executed again during that simulation run. This initial statement is containing a
begin-end block (also called a sequential block) of statements.

Emodule ALU 1210241 # (parameter n=4) (input [2:0] C,
input signed [n-1:0] X,¥, output reg signed [n+1:0] 0Q):
always@ (*) // start seguentially and build the sensitivitcy list for me
begin // start the seguence

Ecase(C) // using switch e
0: O= (X +X) [/ 2; // (X+4YX)/2
1l: O =2 * (X + X): // 2% (X+Y)

2: 0=X/ 2 + ¥X; //(X/2)+X

3: 0=X-XY/ 2; // X-(¥/2)

4: 0 = {2'D00,~(X & X))} // X HNAND ¥
5: 0 = {2'b00,~X}; // NOT (X)

6: 0 = {2'DO0,~(X | X)}; // X NCR Y
T: 0= {2'b00,X * Y}; // X XOR Y
default: O = 0; // default wvalue
endcase end the switch case

end // end the alwa '_.":'t: %)

endmodule // end the module

The behavioral model for my ALU

Additional explanation:
<+ This was done by using switch case conditional method

% {2’b00} was added for the zero extension

1l1|Page

Part G - Generate the waveforms of the behavioral ALU in part (F).

First TestCase (X=1,Y=4,C=2,0=X/2+Y=4)

|
>0 C 2
>4 X 1
F=F) Y]
D14 | @O]

907 PM
2572023 &

7) O

Second Test Case (X=0,Y=1,C=2,0=X/2+Y=1)

|
>0 C]
At X 0
s | @Y 1
o4 0 1

911 PM fod

- ‘:13)) ()

2/5/2023 =

Third Test Case (X=-1,Y=-4,C=2,0=X/2+Y =-4)

]
>0 C 2
mFd X -1
D9 Y]
14 0 3

9:37 PM &

= 4
> DO o0 B

12|Page

	Ahmed Hamdan
	1210241

