

ENCS2340

Project Report
1st semester 22/23

Instructor: Dr. Bilal Karaki

Prepared by: Diaa Badaha

ID: 1210478

1 | P a g e

Table of contents

Introduction ……………………………………………………………………………………………….…………2

Specifying output’s bits ……………………………………………………………………….…………..4

ALU Implementation ……………………………………………………………………….….…………….6

Used components ……………………………………………………………………………….……………..9

 Full Adder …………………………………………………………………………………….…………...9

 Full Subtractor ………………………………….…………………………………..………………..11

 Shifters (Divider & Multiplier) ……………………………………...……………………12

 Bitwise NAND …………………………………….………………………………..…………………..15

Bitwise NOT ……………………………………………………………………..………………………..16

Bitwise NOR ……………………………………………………………………….……………………..17

Bitwise XOR ………………………………………………………………..……………………………..18

MUX 8-1 …………………………………………………………………..……….…....……………………19

ALU (Structural) ……………………………………………………….…………………………………………21

 Code ………………………………………………….……………………………………..…….…………….21

 Tests …………………………………………………………………………………….……………………….22

ALU (Behavioral) …………………………………………………………………………………………………24

 Code ………………………………………………………………………...……….………………………….24

 Tests ………………………………………………………………….………………………………………….25

2 | P a g e

Introduction

ALU:

An arithmetic logic unit (ALU) is a combinational digital electronic circuit that performs

arithmetic and bitwise operations on integer binary numbers. This is in contrast to

a floating-point unit (FPU), which operates on floating point numbers. An ALU is a

fundamental building block of many types of computing circuits, including the central

processing unit (CPU) of computers, FPUs, and graphics processing units (GPUs). A

single CPU, FPU or GPU may contain multiple ALUs.

3 | P a g e

Implementation:

This project is designed to do multiple tasks on n-bits binary numbers as shown in

the table below.

Later, answers to the following questions will be mentioned

 a) Specify the size of the output (O) in bits so the overflow can never occur.

b) Show the ALU implementation using medium-scale integration (MSI) components and

minimum number of gates (i.e. in blocks with their sizes). Note that, you might use some kind of

extension (sign- or zero-extension).

c) Write behavioral Verilog modules for your elements you defined in Part (b). Be noted that the

size of every element you define should be parameterized, so that you can vary the design during

the testing phase.

d) Write a structural Verilog model for your ALU designed in Part (b) using the elements you

defined in Part (c).

e) Generate the waveforms of the ALU defined in Part (d), assumes that X and Y are 4-bits and

their values based on your student ID should be set as follows: 2 | P a g e

The general representation of the student ID is 1C2Y2X2C1Y1X1, so, if your student ID is 1220520,

then X, Y, and C values for the three test cases as follows:

4 | P a g e

Answers

a) Specify the size of the output (O) in bits so the overflow can never occur.

Main explanation :

 The output of an addition operation of 2 numbers with n bits for each one

requires (n+1) bits (Sum & Carry[overflow])

 The output of a subtraction operation of two numbers with n bits for each one

needs the same number of bits as an addition operation (n+1) bits, since

the subtraction is converted to addition of 2’s complement before doing the

operation.

 Multiplying an n-bits number by 2 is the same is as shifting each bit to the left

by one bit, and the most left bit is shifted into the carry flag, which means that

the output of this operation needs n+1 bits.

 However, dividing an n-bits number by 2 is the same is as shifting each bit to

the right by one bit, and the most right bit is shifted into the carry flag, but

since we add zero on the left of the number(zero’s on the left don’t affect the

value) the output of this operation needs the same number of bits in the input

(n) bits.

Specific explanation :

 X NAND Y, NOT(X), X NOR Y, X XOR Y:
These are logical operations in which the number of bits in the output is the

same as the number of input’s bits.

 (X + Y) / 2:
As mentioned before, the operation of adding X & Y requires (n+1) bits to

represent it. And the division of the summation by 2 doesn’t affect on the

number of input’s bits. Which means the result of this operation needs

(n+1) bits.

 (X / 2) + Y, X – (Y / 2):
As the previous point, these operations consist of (addition or subtraction) and

division operations, division does not affect the number of bits in the input,

addition or subtraction requires one more bit than bits in the input. As a result,

these operations needs (n+1) bits to represent them.

5 | P a g e

 2 * (X + Y):
Let X + Y = Z, which needs (n+1) bits to represent, the operation of

multiplication Z by 2 requires ((no. of bits in Z) + 1), that equals (n+2) bits.

Summary :

Operation Arithmetic Logic No. of bits

(X + Y) / 2 🗸 n+1

2 * (X + Y) 🗸 n+2

(X / 2) + Y 🗸 n+1

X – (Y / 2) 🗸 n+1

X NAND Y 🗸 n

NOT(X) 🗸 n

X NOR Y 🗸 n

X XOR Y 🗸 n

6 | P a g e

ALU implementation: -This is the main answer for question (b)-

7 | P a g e

ALU implementation(divided into two photos):

8 | P a g e

9 | P a g e

C) Write behavioral Verilog modules for your elements you defined in Part (b). Be noted that

the size of every element you define should be parameterized, so that you can vary the

design during the testing phase.

Used components

__

Full Adder:

Full_adder circuit has two inputs: X and Y it calculates the summation

of them and set it as output (sum).

Code: -from the answer of question (c)-

10 | P a g e

Simulation:

11 | P a g e

Full Subtractor:

Full_Subtractor_1210478 circuit has two inputs: X & Y it calculates the difference

between them as (X – Y) and sets it as output (diff).

Code: -from the answer of question (c)-

Simulation:

12 | P a g e

Shifters (Dividers & Multipliers)

Right shifters (Dividers):

I made tow dividers circuits, in order to get the same number of bits in inputs &

outputs in ALU circuit to get an accuracy results. In general, R_shifter_n_1210478

(which has inputs and outputs of n bits) and R_shifter_n_1_1210478 (which has

inputs and outputs of n+1 bits) circuit take one number as input (x) and find the

division by 2 operation and set it as output (y).

Codes: -from the answer of question (c)-

13 | P a g e

Simulation: *Simulation for both circuits is the same

14 | P a g e

Left shifters (Multiplier):

L_shifter_n_1210478 circuit take one number as input (x) and find the multiplication

by 2 operation and set it as output (y).

Code: -from the answer of question (c)-

Simulation:

15 | P a g e

Bitwise NAND:

This block has two n-bit inputs (X and Y), and one output (f), The bitwise_nand circuit

check X and Y bit by bit, if they are both one, the result of this bit in the f output will

be zero, otherwise, it will be one.

Code: -from the answer of question (c)-

Simulation:

16 | P a g e

Bitwise NOT:

This block has one n-bit input (X), and one output (f). The bitwise_nor circuit check X

bit by bit, if the bit is one, the result of this bit in the f output will be zero, otherwise, it

will be one.

Code: -from the answer of question (c)-

Simulation:

17 | P a g e

Bitwise NOR:

This block has two n-bit inputs (X and Y), and one output (f), The bitwise_nor circuit

check X and Y bit by bit, if they are both zero, the result of this bit in the f output will

be one, otherwise, it will be zero.

Code: -from the answer of question (c)-

Simulation:

18 | P a g e

Bitwise XOR:

This block has two n-bit inputs (X and Y), and one output (f), The bitwise_nor circuit

check X and Y bit by bit, if they are both zero or both one, the result of this bit in th

f output will be zero, otherwise, it will be one.

Code: -from the answer of question (c)-

Simulation:

19 | P a g e

8-1 Multiplexer:

This multiplexer has five (n+2) bits inputs, three (n+1) bits inputs, selection ((3)

bits input) and one (n+2) bits output. The output has value same as one of the

inputs depending on the selection input (the 3-bit input).

Code: -from the answer of question (c)-

20 | P a g e

Simulation:

21 | P a g e

ALU:

ALU is the block that collects all of this project components, it has two n-bit inputs

that the operations depend on, and one 3-bit input (selection) which determines the

operation, Also it has one n-bit output.

D) Write a structural Verilog model for your ALU designed in Part (b) using the elements

you defined in Part (c).

ALU (structural) code: -This is the answer for question (d)-

22 | P a g e

E) Generate the waveforms of the ALU defined in Part (d), assumes that X and Y are 4-bits

and their values based on your student ID should be set as follows:

The general representation of the student ID is 1C2Y2X2C1Y1X1, so, if your student ID is

1220520, then X, Y, and C values for the three test cases as follows:

Note: If any value from the set {C2, Y2, X2, C1, Y1, X1} is 8 or 9, you need to replace it by 1

Simulation:-This is the answer for question (e), test by test (depending
on my ID: 1210478)-

Test X Y C O

1 X1 = 1 Y1 = 7 C1 = 4 X NAND Y
2 X2 = 0 Y2 = 1 C2 = 2 ((0)/2)+(1) = 1

3 X3 = -1 Y3 = -7 C3 = 2 ((-1)/2)+(-7) = -7

First test

23 | P a g e

Second test

Third test

24 | P a g e

f) Write a single behavioral Verilog module that models the designed ALU.

ALU (behavioral) code: -This is the answer for question (f)-

25 | P a g e

g) Generate the waveforms of the behavioral ALU defined in Part (f), assumes that X and Y are 4-

bits and their values based on your student ID should be set as follows:

The general representation of the student ID is 1C2Y2X2C1Y1X1, so, if your student ID is 1220520,

then X, Y, and C values for the three test cases as follows:

Note: If any value from the set {C2, Y2, X2, C1, Y1, X1} is 8 or 9, you need to replace it by 1

Simulation:-This is the answer for question (g), test by test (depending
on my ID: 1210478)-

Test X Y C O

1 X1 = 1 Y1 = 7 C1 = 4 X NAND Y
2 X2 = 0 Y2 = 1 C2 = 2 ((0)/2)+(1) = 1
3 X3 = -1 Y3 = -7 C3 = 2 ((-1)/2)+(-7) = -7

First test

26 | P a g e

Second test

Third test

27 | P a g e

Thank you …

