-, © -~ g 3 R N
R B A
“..M .

BIRZEIT UNIVERSITY

Digital Systems ENCS234
2022/2033
ALU Verilog Project

Mujahed Abuali #1211047

Dr.Ismail Khater sec.1

Problem: Modeling a Multifunction ALU

Design and implement a multifunction arithmetic and logic
unit (ALU)

ALU:

An arithmetic logic unit (ALU) is a combinational digital
electronic circuit that performs arithmetic and bitwise
operations on integer binary numbers. This is in contrast
to a floating-point unit (FPU), which operates on floating
point numbers. An ALU is a fundamental building block of
many types of computing circuits, including the central
processing unit (CPU) of computers, FPUs, and graphics
processing units (GPUs). A single CPU, FPU or GPU may
contain multiple ALUs.*

Implementation:

ALU Function Code (C) ALU Output (O) ALU Symbol
000 {X+Y}j{2 X[n-1:0] ¥Y[n-1:0]
001 2*¥(X+Y)
010 (X/2)+Y
011 X-(Y/2)
100 XNANDY
101 NOT(X)
110 XNORY
111 X XORY

a) Specify the size of the output (O) in bits so the overflow
can never occur

The size in the first option (X+Y)/2, it’s had sum
process, so You have to increase bits by one bit.
However, the division process does not lead to
an increase in digits. so, it’s needed n+1 bits.
The size in the Second option 2*(X+Y), it’s had
sum and Multiplication process, so You have to
increase bits by one bit to sum process and
more one for Multiplication process.so, it’s
needed n+2 bits.

The size in the third option (X/2) +Y, it’s had
sum process, so You have to increase bits by one
bit. However, the division process does not lead
to an increase in digits. so, it’s needed n+1 bits.
The size in the first option X-(Y/2), it’s had
subtracted process, so You have to increase bits
by one bit. However, the division process does
not lead to an increase in digits. so, it’s needed
n+1 bits.

The size for (X NAND Y), (NOT(x)), (X NORY), (X
XOR YY), No change occurs to it. n it’s still n.

So, the overflow can never occur it’s (n+2) bits.

b)Show the ALU implementation using medium-scale
integration (MSI) components and minimum number of
gates (i.e., in blocks with their sizes). Note that, you might
use some kind of extension (sign- or zero-extension).

e Adder for sum number

Adding two numbers using adders. This function

outputs one n+1-bit output(sum).

A
87@

Adder

n+1

Inputs
AulBo LS
0| O 0
0 1 1
1 (0 S e
1 310
Simulation:
A — | —
I
0 w b I N

Subtract for subtract number

Subtracting two binary numbers using adders and xor
gates that change the number to its 2’s complement.
This function outputs one n-bit output (sum) and one
outputs.

)
T:

Subtract

|

A B Cin D Cour
0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

e Multiplier number by 2

A multiplier is a combinational logic circuit that we use to multiply binary
digits. Just like the adder and the subtractor, a multiplier is an arithmetic
combinational logic circuit. It is also known as a binary multiplier or a
digital multiplier.

4 N

n n+1

X 7L. Multiplier Y

https://technobyte.org/sequential-combinational-logic-circuits-types/

AT
B1

AQ
BO

A1B1

A1BO0 AO0BO

AO0B1

X

e Division number by 2

A1B1+C AO0B1+A1B0 AO0BO

circuit to divide a digital signal by an even integer multiple is

a Johnson counter. This is a type of shift register network that is
clocked by the input signal. The last register's complemented output

is fed back to the first register's input.

-

n

o

Division

o

7Lv

e NAND

A NAND gate (“not AND gate”) is a logic gate that produces a low
output (0) only if all its inputs are true, and high output (1) otherwise.
Hence the NAND gate is the inverse of an AND gate, and its circuit is
produced by connecting an AND gate to a NOT gate. Just like an AND

gate, a NAND gate may have any number of input probes but only one
output probe.

o
O

|f
O
S

-0 0O
-_— O —= Ol

o_n_a_a

https://www.electrical4u.com/logical-and-gate/
https://www.electrical4u.com/not-gate/

e NOR

A NOR gate (“not OR gate”) is a logic gate that produces a high output
(1) only if all its inputs are false, and low output (0) otherwise. Hence
the NOR gate is the inverse of an OR gate, and its circuit is produced by
connecting an OR gate to a NOT gate. Just like an OR gate, a NOR gate
may have any number of input probes but only one output probe. A
NOR gate (“not OR gate”) is a logic gate that produces a high output (1)
only if all its inputs are false, and low output (0) otherwise. Hence the
NOR gate is the inverse of an OR gate, and its circuit is produced by
connecting an OR gate to a NOT gate. Just like an OR gate, a NOR gate
may have any number of input probes but only one output probe.

[nputs Output
A B X=4+B
0 0 1
0 1 0
1 0 0
1 1 0

https://www.electrical4u.com/logical-or-gate/
https://www.electrical4u.com/logical-or-gate/

e XOR

The XOR gate stands for the Exclusive-OR gate. This gate is a special type of
gate used in different types of computational circuits. The XOR gate stands for
the Exclusive-OR gate. This gate is a special type of gate used in different types
of computational circuits.

e MUX

The multiplexer is a combinational logic circuit designed to
switch one of several input lines to a single common output

line. Has six 8-bit inputs, one 3-bit input, and two

1-bit inputs, and has one 8-bit output. The output has value
same as one of the 8-bit or 1-bit inputs depending on the
selection input (the 3-bit input).

\
J

MUX
8*1

%3

T

sO sl s2

e Design

+
div
1*1

mult
1*1

Result

div
1*1

. div

c0 c2 ci

c) Write behavioral Verilog modules for your elements you
defined in Part (b). Be noted that the size of every
element you define should be parameterized, so that
you can vary the design during the testing phase.

e Adder

© adder_1211047.y

| 1 //adder to sum two number
2 Bmodule adder 1211047 #(parameter n=4) (x,y,sum);
3
4 input signed [n-1:0] x,y;
5 output reg signed [n+l:0) sum;
&
T & always@(x or y)begin //always block
8 sum=x+y;//sum equasion
9 end
10
11 endmodule

1:53PM
2112023

) 9 il A% @ me QD

e Subtract

& subliact 1211047,y

3
i

Al

//subtract to get equation from selection

mnodule subtract 1211047 # (parameter n=4)

input wire [n-1:0] x,y,
output reg [n:0]sub

!ri'-
(L1 1]

- always@ (x or y)begin //always block

-
W CO =1 On Dm e L B

ig sub=x-y,//to substract y from x
—| 1o end

Al L

% 12 endmodule

(112023

-) q E r; 18 @ 4) 1D 2

o Mux

X mux 1211047,

0| B

//mux 8*1 to get equation from selection
Emodule mux 1211047 #(parameter n=4) |
input [n-1:0) a,b,c,d,e, f,q,h,
input [2:0] sel,
output reg signed[n+l:0)out
)i

W0 o g o B WD e

47| ¢ malways @(*) begin //always block
7| &

7 —. 10 B case (sel)//cases to choose one input
Ty A 11 3'b000: out = a;//if selction 0 export a
;; 9‘ 12 3'b001: out = b;//if selction 1 export b

1A 13 3'b010: out = ¢;//if selction 2 export ¢
S| A 14 3'b011: out = d;//if selction 3 export d
9 % 15 3'bl00: out = e;//if selction 4 export e
a 16 3'bl0l: out = £;//if selction 5 export £
e @ 17 3'bl10: out = g;//if selction 6 export g
e :3 18 3'blll: out = h;//if selction 7 export h
e 19 default:out=0;

i EZ 20 endcase

21 end

oo
oo
OO -
ro
Lo

23 endmodule

8:02 PM
2/1/2023

NGB wn oD

°
2
>
2
O

)

B 3¢ pand_1211047 v
) @ 1 // nand to get !(a & b)
2 = module nand_;z;;o‘;?#(paramet.er n=4) {(
&4 3 input [n-1:0] a,b,
1 AR 4 output reg [n-1:0] ocut
| i -
1 @
i — 7 mMEalways @(*) begin//always block
f = 8 out = '(a & b);// nanad egquation
7 iE 9 end
; ' 10
A 11 endmodule
W]

759 PM
2/7/2023

N @ N @)D

S nor_1211047.v

@ 1 //nor to get equation from selection
P - B module nor_;EL;DQT#(parameter n=4) (

ih 3 input [n-1:0] a,b,

A 4 output reg [n-1:0] out

5):
€

o 7 Ealways B(*) begin//always block

= 8 out = !{a|b);//nor equation

i 9 end

: 10

A 11 endmodule

% 12

8:01 PM
2/1/2023

ENG €3 Q) YD

e XOR

<& o 1211047y

) Eﬁ l //xrtogeta’b

| 2 Emodule xor 12110474 (parameter n=4) (
i 3 input [n-1:0] a,b,

; Az - output reg [n-1:0] out

| S)i

y 6

4 o T HEalways @(*) begin// always block

If = 8 out = a " b;//xor equation

| ¢ 9 end

[—[10

r A 11 endmodule

; gl 12

800 PM
2/112023

' N) A% e G

e NOT

& no 1201047,y

8
lﬁ

|

2

3

| 4
+ N)

g

T

8

§

ot to get Reverse num
.nadale not 12110474 (parameter n=4) (
input [n 1:0] g,

output reg [n-1:0] out

Balways @(*) begin//always block
out = ~a;//not equation

—I'*'-
(L] 1]

g end

—| 10
11 endmodule
12

D e -

ph " y AGER we B T

2112023

d) Write a structural Verilog model for your ALU designed
in Part (b) using the elements you defined in Part (c)

ALU is the block that collects all of our project
components, it has two n-bit inputs that the
operations depend on, and one 3-bit input which
determines the operation, also it has one n+2-bit
output.

& AL 1211047y

@ 1 /[ALU_Structural to designed ALU
2 QEmodule ALU 1211047 #(parameter n=4) (
) 3 input signed[n-1:0)x,v,
ar 4 input([2:0)sel,
& 5 output signed[n+l:0]out
6)
. 7 //the wairs
ik 8 wire [n+1:0]sum, sum2, sub,multi;
is 9 wire [n:0]div,NAND, XOR,NOR,notX,divX,divY;
10
/‘ 11 adder 1211047 (x,y,sum);//to sum first equation and save it in wire(sum)
% 12 dividerBy2 1211047 (sum,div);//to division first equation and save it in wire(divv) AS FINAL STEP in this eqution
13
'% 14 multiplierBy2 1211047 (sum,multi);//to multplier the sum in second equation by to and save it in wire(multii) AS FINAL STEP in thi:
% 15
16 dividerBy2 1211047 (x,divX);//to divisin x by 2 in third equation and store it in (divX)
lﬂ] 17 adder 1211047 (divX,y,sum2);//to sum third equation to y and save it in (sum2) AS FINAL STEP in this eqution
R 18
19 dividerBy2 1211047 (y,divY);//to divisin y by 2 in forth equation and store it in (divy)
@ 20 subtract 1211047 (x,divY,sub);//to subtract forth equation from x and save it in wire(sub) AS FINAL STEP in this eqution
21
ol 2 nand 1211047 (z,y,NAND) ; //t!
o 23 not_1211047 (x,notX);//t
24 nor_1211047 (x,y,NOR);//
25 xor 1211047 (x,y,XOR);//the equation number §
26
217
= 28 mux 1211047 (div,multi,sum2, sub,NAND,notX,NOR,XOR,sel,out);//mux to selecte one of inputs
0 29
- 30
3l
32 endmodule

" Psearcn M W H E m W §f L Eh 9) AGER 6 BAD 752PM

2/1/2023

e) Generate the waveforms of the ALU defined in Part (d),
assumes that X and Y are 4-bits and their values based
on your student ID should be set as follows:

The general representation of the student ID is
1C2Y2X2C1Y1X1, so, if your student ID is 1220520, then
X, Y, and C values for the three test cases as follows:

T | X1=0 | Yi=2 | C1=5] NOT(D)

2 X2=0 | Y2=2 | C2=2 | ((0)/2)H2)
3 | Xs=-X1|Y3i=-Y1|Ci=C2 | ((0)/2)+(-2)
Note: If any value from the set {C2, Y2, X2, C1, Y1, Xu} is 8 or 9, vou need to replace it by 1

My ID number is 1211047 so,

Test1l X1=7,Y1=4,Cl=0 out: (7+4)/2
Test2 X2=1,Y2=1,C2=2 out: (1/2) +1
Test3 X3 =-7,Y3=-4,C3=2 out: (-7/2) +-4

The waveforms:

Master Time Bar: 25.25ns 4| v| Fointer. 258 ns Interval: -22.67 ns Start: End:

Value P8 1.696 ns 3.392ns 5.088 ns 6.784ns 3.431’14
Name 252¢
o0 & out ALK [2]
o1 otls] | A
o2 outld] | A
o3 out[3] A
o4 out[2] A
@5 ot[l] | A
o6 ot[0] | A
7 sel UK 0
=30 x 5 7
16 ¥ S. 4

ning ,’\ Critical Waming)\ Error }\ Suppressed ,\ Flag {

Testl

Simulation Waveforms
Simulation mode: Functional
[} Master Time Bar: 25.25ns 4| +| Painter: 360 ps Interval: -24 B9 ns Start: End:
A ps 165 ns 3392ns 5088ns 6.784ns 848n
Vdu‘ 1 [[l i
% Name 25,21
& 0 | Eou Al]
o1 out[5] A
o2 outld] | A
r o3 out[3] A
-+ g4 out[2] A
—+ (@5 o[l | A
go, (6 outl0] | A
;; = |7 sel u 2
AT s 1
> 16 y S 1

7:20 PM

S

Test2

Name

Value

& out

—out[5]
—out]d]
—out[3]
—out[2]
—out[1]
L out[0]

sel[2]
—sel[1]
L sel[0)]

—x[3]
=2l
1
—x[0]

3]
—vl2
i1l

—y{0]

wwmwm,m Yoo nPocooowwononnn D

-7

Test3

L@

ENG

2) O

7:49 PM
2/7/2023

f) Write a single behavioral Verilog module that models
the designed ALU

ALU is the block that collects all of our project
components, it has two n-bit inputs that the
operations depend on, and one 3-bit input which
determines the operation, also it has one n+2-bit
output.

U Behavioral to desiagne

//ALU Behavioral to designed ALU
module ALU Behavioral 1211047 # (parameter n=4) (
input signed[n-1:0]x,y,// sign input
input[2:0]sel,//selection
output reg signed[n+l:0]Result//sign output

always@ (sel)begin

case(sel)

3'b000:Result=((x+y)/2);//the equation number 1
3'b001:Result=(2* (x+y))://the equation number 2
3'b010:Result=((x/2)+y);//the equation number 3
3'b011:Result=(x-(y/2))://the equation number 4
3'bl00:Result=! (x&y);//the equation number 5
3'bl01:Result=~x;//the equation number 6
3'bl10:Result=! (x|y);//the equation number
3'blll:Result=x"y;//the equation number 8
default:Result=0;

endcase

end

endmodule

Cx? q) B 107 PM

2/1/2023

g) Generate the waveforms of the behavioral ALU defined
in Part (f), assumes that X and Y are 4-bits and their values
based on your student ID should be set as follows: The
general representation of the student ID is 1C2Y2X2C1Y1X1,
so, if your student ID is 1220520, then X, Y, and C values for
the three test cases as follows:

T | X1=0 | Yi=2 | C1=5] NOT(D)

2 X2=0 | Y2=2 | C=2 | ((0)/2)+H?2)
3 [X3=-X1|Y3=-Y1|C:=C2 | ((0)2)+(-2)
Note: If any value from the set {C2, Y2, X2, C1, Y1, Xu} is 8 or 9, vou need to replace it by 1

My ID number is 1211047 so,

Test1l X1=7,Y1=4,C1=0 out: (7+4)/2
Test2 X2=1,Y2=1,C2=2 out: (1/2) +1
Test3 X3 =-7,Y3=-4,C3=2 out: (-7/2) +-4

The waveforms:

0ps 10.0ns 200ns 30.0ns
Name Value '] !
of [Ops
E Result Al [5]
Lut[E] A
Lutlg]| A
Lult[3]] A
Lult2] A
)] A
Lu[0] A
sel u 0
x S 7
y 5 i

i 12:45 PM
%A@ v oD oo

0ps 10.0ns 200ns
Name Value I I
i ?DS
E Result Al [
_ut] A
Lokl A
Lul[3]] A
Lultf2] A
LUl A
Luk0] A
sel u 2
X S 1
y S 1

23 12:59 PM
N2 QQ N6 WD oo

Name:

=<
o
=k

_| [Resut

Il el |

. ult[5]
. uit]4]
—..ut[3]
i
T
k(0]

Fsell2)
F—self1]
L sell0]

03]
2]
1]
(0]

]
v
¥
—yl0)

LWLV CocCoCw®nnnnnn

P search

=]

[Gom=® [1de NUM

- aQ

NG f) @

1:06 PM
2/7/2023

