

ENCS2340

 Project Report

1st semester 22/23

Instructor: Dr. Anjad Badran

Prepared by: Obayda Sarraj

 ID: 1211128

1 | P a g e

Table of contents

Introduction ……………………………………………….……………………………2

Specifying output’s bits ………………………..………………….……………………3

ALU Implementation …………………………………………………………………...5

Used components …………………………………………….………………………..6

Full Adder …………………………………………………….…………............6

 Right Shifter ………………………………….……….……….………………...7

Lift Shifter ……………………………………..........……………………………8

Subtractor…………………………………………………………………………9

Bitwise XOR …………………………………….……………….……...……...10

 Bitwise NAND …………………………………………….…………………….11

 Bitwise NOR ………………………………………………………………..…..12

Bitwise NOT …………………………………………………………………….13

 MUX 8-1 …………………………………………………..………………….…14

 ALU(Structural) …………………………………………………………………….…15

 Code ……………………………………………………..…….…………….….15

Tests ……………………………………………………...……………….…….16

ALU (Behavioral) …………………………………………………..……………….…18

 Code ………………………………………………………...………….……….18

Tests ………………………………………………………...…………….…….19

2 | P a g e

Introduction

Arithmetic Logic Unit (ALU) : is a combinational digital circuit that

performs arithmetic and bitwise operations on integer binary numbers. This

is in contrast to a floating-point unit (FPU), which operates on floating point

numbers. An ALU is a fundamental building block of many types of

computing circuits, including the central processing unit (CPU) of

computers, FPUs, and graphics processing units (GPUs). A single CPU,

FPU or GPU may contain multiple ALUs.

https://en.wikipedia.org/wiki/Combinational_logic
https://en.wikipedia.org/wiki/Digital_circuit
https://en.wikipedia.org/wiki/Arithmetic
https://en.wikipedia.org/wiki/Bitwise_operation
https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Binary_number

3 | P a g e

a) Specify the size of the output (O) in bits so the overflow can never occur.

The ALU process two types of operations:

1- Logic operations the size of output stays the same of the input because

there is no overflow in all logic operations , because every one bit from

X&Y are return one bit as a result .

Example for the NOR gate (Assume n=4 , X=10 ,Y=8 ,O=output):

X : 1 0 1 0

Y : 1 0 0 0

 O : 0 1 0 1

 Notice that there is no overflow.

2- Arithmetic operations , there is an overflow and the output size

increase as follows:

-If we sum two inputs we need an other bit(digit) for an overflow (as in case

1,2,3)

Example (Assume n=4 , X=10 ,Y=8):

X+Y = 10+8

X : 1 0 1 0

 Y : 1 0 0 0 +

 O : 1 0 0 1 0

4 | P a g e

-If we multiply the inputs by 2 we need an other bit(digit) for an overflow (as

in case 2)

Example (Assume n=4 , X=6):

6*2 = 12

X : 0 1 1 0

O : 0 1 1 0 0

-If we subtract two inputs we need an other bit(digit) for an overflow (as in

case 4)

Example (Assume n=3 , X=-6 ,Y=-4):

X-Y = -6-4

 2’s comp X : 0 0 1 0

2’s comp Y : 0 1 0 0 +

 0 1 1 0

 O : 1 0 1 0

-If we divide two inputs we do not need an other bit(digit) for an overflow

(as in case 1,3,4)

With looking at the table the size of output will be :

Case: (X+Y)/2  n+1

Case: 2*(X+Y)  n+2

Case: (X/2)+Y  n+1

Case: X-(Y/2)  n+1

Hence , the answer is : n+2

5 | P a g e

b) Show the ALU implementation using medium-scale integration (MSI) components and

minimum number of gates (i.e. in blocks with their sizes). Note that, you might use some kind of

extension (sign or zero-extension).

With details

Without details

6 | P a g e

c) Write behavioral Verilog modules for your elements you defined in Part (b). Be noted that the

size of every element you define should be parameterized, so that you can vary the design during

the testing phase.

Full Adder :

Simulation :

7 | P a g e

Right shifter :

Simulation :

8 | P a g e

Left shifter :

Simulation :

9 | P a g e

Subtractor :

Simulation :

10 | P a g e

Bitwise XOR :

Simulation :

11 | P a g e

Bitwise NAND :

Simulation:

12 | P a g e

Bitwise NOR :

Simulation :

13 | P a g e

Bitwise NOT :

Simulation :

14 | P a g e

MUX 8x1 :

Simulation :

15 | P a g e

d) Write a structural Verilog model for your ALU designed in Part (b) using the elements you

defined in Part (c).

ALU structural code

16 | P a g e

e) Generate the waveforms of the ALU defined in Part (d), assumes that X and Y are 4-bits and

their values based on your student ID should be set as follows:

Note: If any value from the set {C2, Y2, X2, C1, Y1, X1} is 8 or 9, you need to replace it by 1

By note, my ID is 1211128  1211121 (1C2Y2X2C1Y1X1)

Test X Y C Expected O

1 X1 = 1 Y1 = 2 C1 = 1 6

2 X2 = 1 Y2 = 1 C2 = 2 1

3 X3 = -X1 Y3 = -Y1 C3 = C2 -2

First test :

17 | P a g e

Second test :

Third test :

18 | P a g e

f) Write a single behavioral Verilog module that models the designed ALU.

ALU behavioral code

19 | P a g e

g) Generate the waveforms of the behavioral ALU defined in Part (e), assumes that X and Y are

4-bits and their values based on your student ID should be set as follows:

Note: If any value from the set {C2, Y2, X2, C1, Y1, X1} is 8 or 9, you need to replace it by 1

Test X Y C Expected O

1 X1 = 1 Y1 = 2 C1 = 1 6

2 X2 = 1 Y2 = 1 C2 = 2 1

3 X3 = -X1 Y3 = -Y1 C3 = C2 -2

First test :

20 | P a g e

Second test :

Third test :

21 | P a g e

Thank

you …

