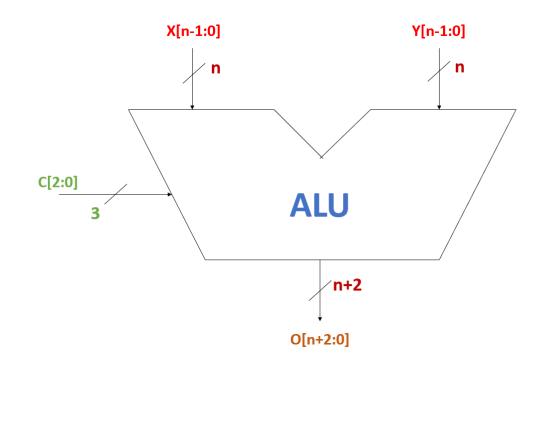


### BIRZEIT UNIVERSITY

# ENCS2340

## Project Report 1st semester 22/23


Instructor: Dr. Anjad Badran Prepared by: Obayda Sarraj ID: 1211128

#### Table of contents

| Introduction             |
|--------------------------|
| Specifying output's bits |
| ALU Implementation       |
| Used components          |
| Full Adder6              |
| Right Shifter7           |
| Lift Shifter8            |
| Subtractor9              |
| Bitwise XOR10            |
| Bitwise NAND11           |
| Bitwise NOR12            |
| Bitwise NOT13            |
| MUX 8-114                |
| ALU(Structural)          |
| Code15                   |
| Tests16                  |
| ALU (Behavioral)         |
| Code                     |
| Tests19                  |

#### Introduction

**Arithmetic Logic Unit** (**ALU**) : is a combinational digital circuit that performs arithmetic and bitwise operations on integer binary numbers. This is in contrast to a floating-point unit (FPU), which operates on floating point numbers. An ALU is a fundamental building block of many types of computing circuits, including the central processing unit (CPU) of computers, FPUs, and graphics processing units (GPUs). A single CPU, FPU or GPU may contain multiple ALUs.



a) Specify the size of the output (O) in bits so the overflow can never occur.

The ALU process two types of operations:

**1-Logic operations** the size of output stays the same of the input because there is no overflow in <u>all</u> logic operations , because every one bit from X&Y are return one bit as a result .

| 100 | X NAND Y |
|-----|----------|
| 101 | NOT(X)   |
| 110 | X NOR Y  |
| 111 | X XOR Y  |

Example for the **NOR** gate (Assume n=4 , X=10 ,Y=8 ,O=output):

| X : | 1   | 0 | 1 | 0 |   |
|-----|-----|---|---|---|---|
| Y : | 1   | 0 | 0 | 0 |   |
| (   | D : | 0 | 1 | 0 | 1 |

Notice that there is no overflow.

**2- Arithmetic operations**, there is an overflow and the output size increase as follows:

| ALU Function Code (C) | ALU Output (O)            |
|-----------------------|---------------------------|
| 000                   | ( <b>X</b> + <b>Y</b> )/2 |
| 001                   | 2*( <b>X</b> + <b>Y</b> ) |
| 010                   | (X/2)+Y                   |
| 011                   | <b>X-(Y</b> /2)           |

-If we sum two inputs we need an other bit(digit) for an overflow (as in case 1,2,3)

Example (Assume n=4, X=10, Y=8):

X+Y = 10+8

| X : | 1           | 0 | 1 | 0 |   |
|-----|-------------|---|---|---|---|
| Y : | 1           | 0 | 0 | 0 | + |
| С   | ): <u>1</u> | 0 | 0 | 1 | 0 |

-If we multiply the inputs by 2 we need an other bit(digit) for an overflow (as in case 2)

 $6^{*}2 = 12$ 

X: 0 1 1 0  $\implies 0: 0 1 1 0 0$ 

-If we subtract two inputs we need an other bit(digit) for an overflow (as in case 4)

Example (Assume n=3, X=-6, Y=-4):

X - Y = -6 - 4

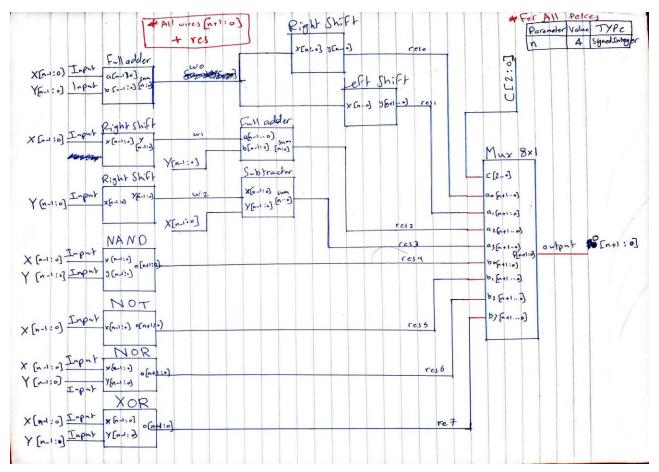
| 2's com      | рХ: | 0        | 0 | 1 | 0 |
|--------------|-----|----------|---|---|---|
| 2's comp Y : | 0   | 1        | 0 | 0 | + |
|              | 0   | 1        | 1 | 0 |   |
| O :          |     | <u>1</u> | 0 | 1 | 0 |

-If we divide two inputs we do not need an other bit(digit) for an overflow (as in case 1,3,4)

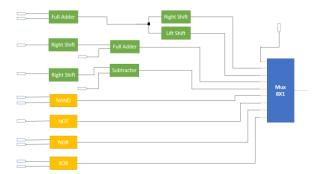
With looking at the table the size of output will be :

Case:  $(X+Y)/2 \rightarrow n+1$ 

Case:  $2^{*}(X+Y) \rightarrow n+2$ 


Case:  $(X/2)+Y \rightarrow n+1$ 

Case: X-(Y/2)  $\rightarrow$  n+1


Hence , the answer is : <u>**n+2**</u>

**b)** Show the ALU implementation using medium-scale integration (MSI) components and minimum number of gates (i.e. in blocks with their sizes). Note that, you might use some kind of extension (sign or zero-extension).

#### With details



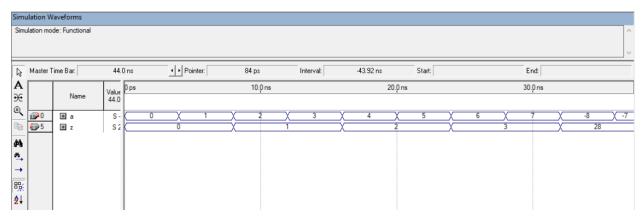
#### **Without details**



5 | Page

**c)** Write behavioral Verilog modules for your elements you defined in Part (b). Be noted that the size of every element you define should be **parameterized**, so that you can vary the design during the testing phase.

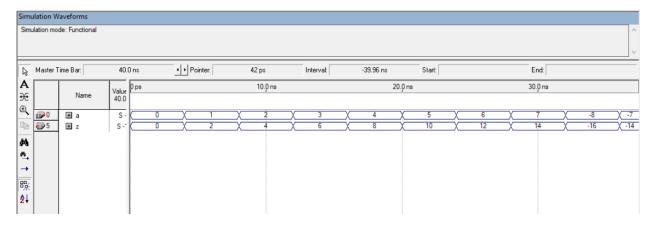
#### Full Adder :


```
module FullAdder_1211128 #(parameter n = 4)/*parameterization*/ (a, b, sum);
input signed [n-1:0] a, b; //declaring inputs
output reg signed [n:0] sum; //declaring outputs
always @ (a, b)
begin
    sum = a + b; //addition operation
end
endmodule
```



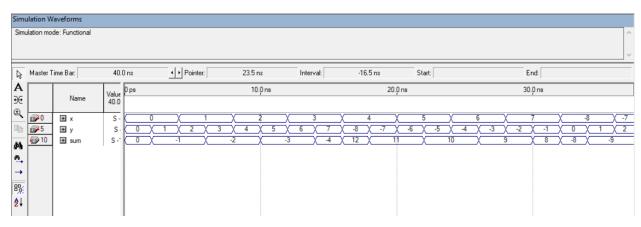
#### **Right shifter :**

```
module R_Shifter_1211128 #(parameter n = 4)/*parameterization*/ (a, z);
input signed [n-1:0] a ; //declaring inputs
output reg signed [n+1:0]z; //declaring outputs
always@ (a)
begin
    z = a >> 1 ; //dividing(shifting) operation
end
```


endmodule



#### Left shifter :


```
module L_Shifter_1211128 #(parameter n = 4)/*parameterization*/ (a, z);
input signed [n-1:0] a ; //declaring inputs
output reg signed [n+1:0]z; //declaring outputs
always@ (a)
begin
    z = a << 1 ; //mutiplying(shifting) operation
end
```

endmodule



#### Subtractor :

module Subtractor\_1211128 #(parameter n = 4)/\*parameterization\*/ (x,y, sum); input signed [n-1:0] x, y; //declaring inputs output reg signed [n:0] sum; //declaring outputs always @ (x,y) begin sum = x - y; //subtraction operation end endmodule



#### **Bitwise XOR :**

```
module XOR_1211128 #(parameter n = 4) /*parameterization*/ (a,b,c) ;
input [n-1:0] a,b ; //declaring inputs
output reg [n+1:0]c ; //declaring outputs
always@ (a,b)
    begin
        c = a ^ b ; //XOR operation
    end
endmodule
```

|         | mulation Waveforms                                                                             |              |               |                                      |      |      |                                      |                 |      |                    |      |
|---------|------------------------------------------------------------------------------------------------|--------------|---------------|--------------------------------------|------|------|--------------------------------------|-----------------|------|--------------------|------|
| 4       | Master Time Bar.         21.8 ns         Interval         -5.45 ns         Start.         End. |              |               |                                      |      |      |                                      |                 |      |                    |      |
| A<br>⊛  |                                                                                                | Name         | Value<br>21.8 | 0 ps                                 | 10.  | 0 ns | 20.                                  | 0 ns<br>21.8 ns | 30   | 0 ns               |      |
|         |                                                                                                | 🗄 a          | B 0(          | 000                                  |      | (00  |                                      | ĊĪ              | 0010 | X 0011             |      |
| 4       |                                                                                                | i ∎ b<br>E c | B 01<br>B 000 | ( <u>0000</u> X<br>( <u>000000</u> X | 0001 | 0010 | ( <u>0011</u> )<br>( <u>000010</u> ) | 0100            |      | X 0110<br>X 000101 | 0111 |
| ň.,     |                                                                                                |              |               |                                      |      |      |                                      |                 |      |                    |      |
| →<br>5% |                                                                                                |              |               |                                      |      |      |                                      |                 |      |                    |      |
| ĝ↓      |                                                                                                |              |               |                                      |      |      |                                      |                 |      |                    |      |

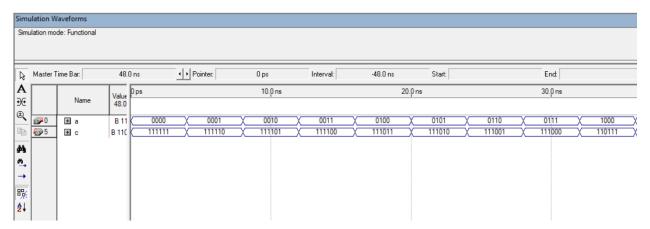
#### **Bitwise NAND :**

```
module NAND_1211128 #(parameter n = 4) /*parameterization*/ (a,b,c) ;
input signed [n-1:0] a,b ; //declaring inputs
output reg signed[n+1:0]c ; //declaring outputs
always@ (a,b)
        begin
        c = ~(a & b) ; //NOT AND operation
    end
```

endmodule

|               |                  | aveforms<br>de: Functional |               |                                                 |                                       |                                |                                    |                     |                                          | ^<br>~ |
|---------------|------------------|----------------------------|---------------|-------------------------------------------------|---------------------------------------|--------------------------------|------------------------------------|---------------------|------------------------------------------|--------|
| L3            | Master T         | ime Bar:                   | 57.0          | ) ns 🔸 Pointer:                                 | 295 ps                                | Interval:                      | -56.71 ns                          | Start:              | End:                                     | _      |
| A<br>₩        |                  | Name                       | Value<br>57.0 | 0 ps                                            | 10.0 ns                               |                                | 20.0                               | ns                  | 30.0 ns                                  |        |
|               | <b>₽</b> 0<br>₽5 | i a<br>i b                 | B 11<br>B 11  | <u>0000 X 0001</u><br>0000 X 0001 X 0010 X 0011 | <u>χ 0010</u><br><u>χ 0100 χ 0101</u> | <u>χ 0011</u><br>χ 0110 χ 0111 | <u>X 0100 X</u><br>X 1000 X 1001 X | 0101<br>1010 X 1011 |                                          | 001    |
| 144<br>19.    | <b>i</b> 10      | ± c                        | B 00C         | <u></u>                                         | ) <u>X 111111</u>                     | X111101 X11110                 | Σ <u>χ 111111</u>                  | X111110             | <u>X 111011 X111001 X111000 X 111111</u> | _      |
| →<br>5%<br>2↓ |                  |                            |               |                                                 |                                       |                                |                                    |                     |                                          |        |

#### Bitwise NOR :


```
module NOR_1211128 #(parameter n = 4) /*parameterization*/ (a,b,c) ;
input [n-1:0] a,b ; //declaring inputs
output reg [n+1:0]c ; //declaring outputs
always@ (a,b)
    begin
        c = ~(a | b) ; //NOT OR operation
    end
```

endmodule

|                                           |          | /aveforms<br>de: Functional |                       |                                                                                        |         |                                         |                                              |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>^</b>                                  |
|-------------------------------------------|----------|-----------------------------|-----------------------|----------------------------------------------------------------------------------------|---------|-----------------------------------------|----------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| ß                                         | Master T | lime Bar:                   | 44.0                  | ns Ins Pointer:                                                                        | 84 ps   | Interval:                               | -43.92 ns                                    | Start                             | End:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |
| A<br>⊛                                    |          | Name                        | Value<br>44.0         | 0 ps                                                                                   | 10.0 ns |                                         | 20.0                                         | ns                                | 30.0 ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |
|                                           |          | tera<br>terb<br>terb        | B 10<br>B 01<br>B 110 | ( <u>0000 X 0001</u><br>( <u>0000 X 0001 X 0010 X 0011</u><br>(111111 X 11110 X 111100 |         | 0011 x                                  | 0100 X<br>1000 X 1001 X<br>110011 X 110010 X | 0101<br>1010 ( 1011 )<br>110000 ) | (0110) (0111) (0100) (0111) (0100) (0110) (0110) (0110) (0110) (0110) (0100) (0110) (0100) (0110) (0100) (0110) (0100) (0110) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0 | 0 X 1001<br>0001 X 0010<br>110110 X 11010 |
| 144<br>10.,                               |          |                             | pine                  | (),                                                                                    |         | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                              |                                   | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |
| →<br>:::::::::::::::::::::::::::::::::::: |          |                             |                       |                                                                                        |         |                                         |                                              |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| ₽↓                                        |          |                             |                       |                                                                                        |         |                                         |                                              |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |

#### **Bitwise NOT :**

```
module NOT_1211128 #(parameter n = 4) /*parameterization*/ (a,c) ;
input [n-1:0] a ; //declaring inputs
output reg [n+1:0]c ; //declaring outputs
always@ (a)
    begin
        c = ~(a) ; //INVERTOR operation
end
endmodule
```



#### MUX 8x1 :

module MUX8x1\_1211128 #(parameter n = 4) /\*parameterization\*/ (c,a0,a1,a2,a3,b0,b1,b2,b3,f) ;

| <pre>.nput signed [n+1:0] a0,a1,a2,a3,<br/>.nput [2:0] c ;</pre> | ,b0,b1,b2,b3 ;      | //declaring    | inputs                |
|------------------------------------------------------------------|---------------------|----------------|-----------------------|
| utput reg signed [n+1:0] f ;                                     |                     | //declaring    | outpus                |
| <pre>lways@ (c,a0,a1,a2,a3,b0,b1,b2,b     begin</pre>            | 53)                 |                |                       |
| if (c == 'b000)<br>f = a0 ;                                      | //Setting values of | f the output d | epending on selection |
| <pre>else if (c == 'b001) f = a1 ;</pre>                         |                     |                |                       |
| <pre>else if (c == 'b010) f = a2 ;</pre>                         |                     |                |                       |
| <pre>else if (c == 'b011) f = a3 ;</pre>                         |                     |                |                       |
| <pre>else if (c == 'b100) f = b0;</pre>                          |                     |                |                       |
| <pre>else if (c == 'b101) f = b1 ;</pre>                         |                     |                |                       |
| <pre>else if (c == 'b110) f = b2 ;</pre>                         |                     |                |                       |
| else if (c == 'b111)<br>f = b3 ;                                 |                     |                |                       |
| end                                                              |                     |                |                       |

| imulation Waveforms<br>Simulation mode: Functional                      |              |               |               |        |          |          |        |        |        |          |         |
|-------------------------------------------------------------------------|--------------|---------------|---------------|--------|----------|----------|--------|--------|--------|----------|---------|
| Master Time Bar: 52.0 ns   Pointer: 0 ps Interval: -52.0 ns Start: End: |              |               |               |        |          |          |        |        |        |          |         |
| <b>\</b><br>€                                                           |              | Name          | Value<br>52.0 | 0 ps   |          | 10.0 ns  |        | 20.    | 0 ns   |          | 30.0 ns |
| ł                                                                       | 0            | . ± a0        | B 001         | 000000 | X 000001 | X 000010 | 000011 | 000100 | 000101 | X 000110 | 000111  |
| ì                                                                       | ₽7           | ⊞ a1          | B 001         | 000000 | X 000001 | X 000010 | 000011 | 000100 | 000101 | 000110   | 000111  |
| _                                                                       | <br>⊒¥14     | ± a2          | B 001         | 000000 | X 000001 | X 000010 | 000011 | 000100 | 000101 | 000110   | 000111  |
|                                                                         | <b>i</b> ≱21 |               | B 001         | 000000 | X 000001 | X 000010 | 000011 | 000100 | 000101 | 000110   | 000111  |
| •                                                                       | <b>i</b> ≱28 | <b>⊞</b> ЬО   | B 001         | 000000 | X 000001 | X 000010 | 000011 | 000100 | 000101 | 000110   | 000111  |
|                                                                         | ₫¥35         |               | B 001         | 000000 | X 000001 | X 000010 | 000011 | 000100 | 000101 | 000110   | 000111  |
| 7                                                                       | <b>i</b> €42 | ± b2          | B 001         | 000000 | X 000001 | X 000010 | 000011 | 000100 | 000101 | 000110   | 000111  |
| 6                                                                       | <b>i</b> 49  | . <b>±</b> b3 | B 001         | 000000 | X 000001 | X 000010 | 000011 | 000100 | 000101 | 000110   | 000111  |
| ,                                                                       | ₫€56         | ± c           | B 1           | 000    | χ 001    | χ 010    | 011    | 100    | 101    | ( 110 )  | ( 111   |
|                                                                         | <b>60</b> €  | ⊞ f           | B 001         | 000000 | X 000001 | X 000010 | 000011 | 000100 | 000101 | 000110   | 000111  |
|                                                                         |              |               |               |        |          |          |        |        |        |          |         |

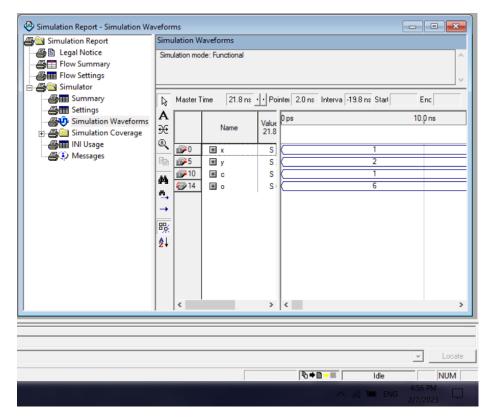
**d)** Write a structural Verilog model for your ALU designed in Part (b) using the elements you defined in Part (c).

#### **ALU structural code**

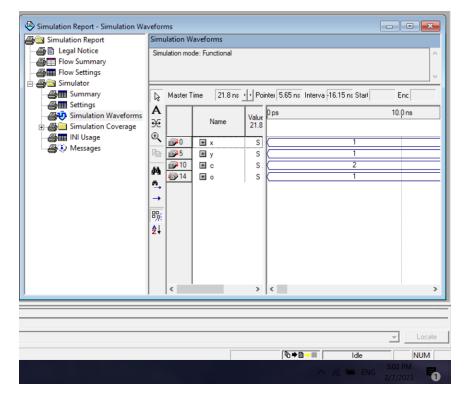
module ALU\_1211128 #(parameter n = 4) /\*parameterization\*/(x,y,c,o);

input signed [n-1:0] x,y ; //declaring inputs input [2:0] c ; wire signed [n+1:0] w0,w1,w2, res0,res1,res2,res3,res4,res5,res6,res7 ; //declaring wires output signed [n+1:0]o ; //declaring outputs  $\ensuremath{\left|}\xspace$  // Substitution in the component which I creadted FullAdder\_1211128 XsumY(x,y,w0); R\_Shifter\_1211128 Xdiv2(x,w1); R\_Shifter\_1211128 Ydiv2(y,w2); R\_Shifter\_1211128 RES0(w0, res0); //The result of case 1 L Shifter 1211128 RES1(w1, res1); //The result of case 2 L\_Shifter\_1211128 RES1(w1,res1); //The result of case 2 FullAdder\_1211128 RES2(w0,y,res2); //The result of case 3 Subtractor\_1211128 RES3(x,w2,res3); //The result of case 4 NAND\_1211128 RES4(x,y,res4); //The result of case 5 NOT 1211128 RES5(x, res5); //The result of case 6 NOR\_1211128 RES6(x,y,res6); //The result of case 7 XOR\_1211128 RES7(x,y,res7); //The result of case 8 //Implement ALU by useing structural solution MUX8x1\_1211128 (c,res0,res1,res2,res3,res4,res5,res6,res7,o); // Substitution the component in MUS8x1

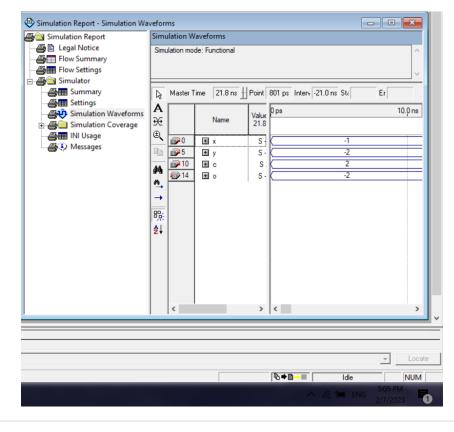
endmodule


e) Generate the waveforms of the ALU defined in Part (d), assumes that X and Y are 4-bits and their values based on your student ID should be set as follows:

Note: If any value from the set {C<sub>2</sub>, Y<sub>2</sub>, X<sub>2</sub>, C<sub>1</sub>, Y<sub>1</sub>, X<sub>1</sub>} is 8 or 9, you need to replace it by 1


#### By note, my ID is 1211128 $\rightarrow$ 1211121 (**1C**<sub>2</sub>**Y**<sub>2</sub>**X**<sub>2</sub>**C**<sub>1</sub>**Y**<sub>1</sub>**X**<sub>1</sub>)

| Test | Х                  | Y                  | С                  | Expected O |
|------|--------------------|--------------------|--------------------|------------|
| 1    | X <sub>1</sub> = 1 | Y <sub>1</sub> = 2 | C <sub>1</sub> = 1 | 6          |
| 2    | X <sub>2</sub> = 1 | Y <sub>2</sub> = 1 | $C_2 = 2$          | 1          |
| 3    | $X_3 = -X_1$       | $Y_3 = -Y_1$       | $C_3 = C_2$        | -2         |


#### First test :



#### Second test :



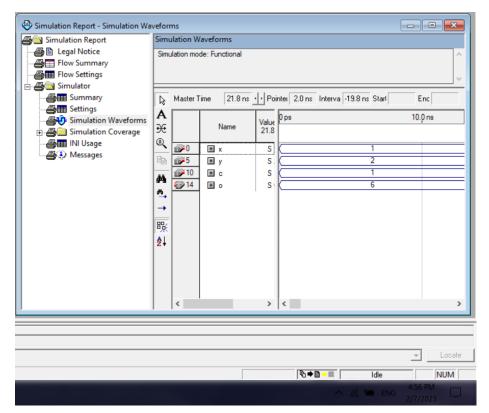
#### Third test :



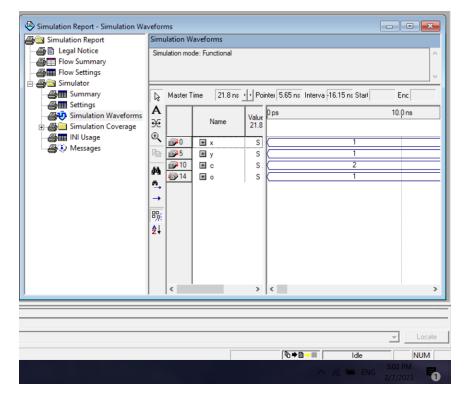
17 | Page

f) Write a single behavioral Verilog module that models the designed ALU.

#### ALU behavioral code


```
module ALU_behav_1211128 #(parameter n = 4) /*parameterization*/(x,y,c,o);
input signed [n-1:0] x,y ;
                                   //declaring inputs
input [2:0] c ;
output reg signed [n+1:0] o ; //declaring outputs
always@(*)
begin
   if(c == 3'b000)
                                   //Implement ALU by useing behavioral solution
       o = (x+y)/2;
   else if(c == 3'b001)
       o = 2*(x+y);
   else if(c == 3'b010)
       o = (x/2) + y;
   else if(c == 3'b011)
       o = x - (y/2);
   else if(c == 3'b100)
       o = \sim (x \& y);
   else if(c == 3'b101)
       o = ~(x);
   else if(c == 3'b110)
       o = \sim (x | y);
   else if(c == 3'b111)
       o = x ^ y;
   else
       o = 0;
end
endmodule
```

**g)** Generate the waveforms of the behavioral ALU defined in Part (e), assumes that X and Y are 4-bits and their values based on your student ID should be set as follows:


Note: If any value from the set {C<sub>2</sub>, Y<sub>2</sub>, X<sub>2</sub>, C<sub>1</sub>, Y<sub>1</sub>, X<sub>1</sub>} is 8 or 9, you need to replace it by 1

| Гest | Х                  | Y                  | С                  | Expected O |  |  |
|------|--------------------|--------------------|--------------------|------------|--|--|
| 1    | X <sub>1</sub> = 1 | Y <sub>1</sub> = 2 | C <sub>1</sub> = 1 | 6          |  |  |
| 2    | X <sub>2</sub> = 1 | Y <sub>2</sub> = 1 | $C_2 = 2$          | 1          |  |  |
| 3    | $X_3 = -X_1$       | $Y_3 = -Y_1$       | $C_3 = C_2$        | -2         |  |  |

#### First test :



#### Second test :



#### Third test :

| Simulation Report - Simulation Was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ulation W  | /avef         | orms                |                                       |               |                                            | _ 0     | ×      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|---------------------|---------------------------------------|---------------|--------------------------------------------|---------|--------|
| <ul> <li>♣ E Legal Notice</li> <li>♣ E Flow Summary</li> <li>♣ E Flow Settings</li> <li>♣ Simulator</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ulation mo |               |                     |                                       |               |                                            |         |        |
| Simulation     Simulation     Simulation Waveforms     Simulation Coverage     Simulation Coverag | Image: A 光 电     Image: A 光 电       Image: A 光 电     Image: A h       Image: A h     Image: A h       Image | Master 1   | ime<br>+<br>+ | Name<br>x<br>y<br>c | Value<br>21.8<br>S-<br>S-<br>S-<br>S- | 801 ps Interv | -21.0 ns Ste<br>-1<br>-2<br>-2<br>-2<br>-2 | Er   10 | 1.0 ns |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <          |               | _                   | >                                     | <             |                                            |         | >      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |               |                     |                                       |               |                                            |         | Locate |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |               |                     |                                       | ѷ♠∎→᠁         | Idle                                       |         | NUM    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |               |                     |                                       |               | 🔨 🌈 🍽 ENG                                  | 5:05 PM |        |

# Thank you ...