
Gate-Level Minimization

Aziz Qaroush



Presentation Outline

 Boolean Function Minimization

 The Karnaugh Map (K-Map)

 Two, Three, and Four-Variable K-Maps

 Prime and Essential Prime Implicants

 Minimal Sum-of-Products and Product-of-Sums

 Don't Cares

 Five and Six-Variable K-Maps

 Multiple Outputs



Boolean Function Minimization

 Complexity of a Boolean function is directly related to the 

complexity of the algebraic expression

 The truth table of a function is unique

 However, the algebraic expression is not unique

 Boolean function can be simplified by algebraic manipulation

 However, algebraic manipulation depends on experience

 Algebraic manipulation does not guarantee that the simplified 

Boolean expression is minimal



Example: Sum of Minterms

 Sum-of-Minterms has 15 literals  Can be simplified

Truth Table

x y z f Minterm

0 0 0 0

0 0 1 1 𝑚1 = 𝑥′𝑦′𝑧

0 1 0 1 𝑚2 = 𝑥′𝑦𝑧′

0 1 1 1 𝑚3 = 𝑥′𝑦𝑧

1 0 0 0

1 0 1 1 𝑚5 = 𝑥𝑦′𝑧

1 1 0 0

1 1 1 1 𝑚7 = 𝑥𝑦𝑧

Focus on the ‘1’ entries 

𝑓 = 𝑚1 +𝑚2 +𝑚3 +𝑚5 +𝑚7

𝑓 =෍ 1, 2, 3, 5, 7

𝑓 = 𝑥′𝑦′𝑧 + 𝑥′𝑦𝑧′ +
𝑥′𝑦𝑧 + 𝑥𝑦′𝑧 + 𝑥𝑦𝑧



Algebraic Manipulation

 Simplify: 𝑓 = 𝑥′𝑦′𝑧 + 𝑥′𝑦𝑧′ + 𝑥′𝑦𝑧 + 𝑥𝑦′𝑧 + 𝑥𝑦𝑧 (15 literals)

𝑓 = 𝑥′𝑦′𝑧 + 𝑥′𝑦𝑧′ + 𝑥′𝑦𝑧 + 𝑥𝑦′𝑧 + 𝑥𝑦𝑧 (Sum-of-Minterms)

𝑓 = 𝑥′𝑦′𝑧 + 𝑥′𝑦𝑧 + 𝑥′𝑦𝑧′ + 𝑥𝑦′𝑧 + 𝑥𝑦𝑧 Reorder

𝑓 = 𝑥′𝑧 𝑦′ + 𝑦 + 𝑥′𝑦𝑧′ + 𝑥𝑧(𝑦′ + 𝑦) Distributive · over +

𝑓 = 𝑥′𝑧 + 𝑥′𝑦𝑧′ + 𝑥𝑧 Simplify (7 literals)

𝑓 = 𝑥′𝑧 + 𝑥𝑧 + 𝑥′𝑦𝑧′ Reorder

𝑓 = (𝑥′ + 𝑥)𝑧 + 𝑥′𝑦𝑧′ Distributive · over +

𝑓 = 𝑧 + 𝑥′𝑦𝑧′ Simplify (4 literals)

𝑓 = (𝑧 + 𝑥′𝑦)(𝑧 + 𝑧′) Distributive + over ·

𝑓 = 𝑧 + 𝑥′𝑦 Simplify (3 literals)



Drawback of Algebraic Manipulation

 No clear steps in the manipulation process

 Not clear which terms should be grouped together

 Not clear which property of Boolean algebra should be used next

 Does not always guarantee a minimal expression

 Simplified expression may or may not be minimal

 Different steps might lead to different non-minimal expressions

 However, the goal is to minimize a Boolean function

Minimize the number of literals in the Boolean expression

 The literal count is a good measure of the cost of logic implementation

 Proportional to the number of transistors in the circuit implementation



Karnaugh Map

 Called also K-map for short

 The Karnaugh map is a diagram made up of squares

 It is a reorganized version of the truth table

 Each square in the Karnaugh map represents a minterm

 Adjacent squares differ in the value of one variable

 Simplified expressions can be derived from the Karnaugh map

 By recognizing patterns of squares

 Simplified sum-of-products expression (AND-OR circuits)

 Simplified product-of-sums expression (OR-AND circuits)



Two-Variable Karnaugh Map

Minterms 𝑚0 and 𝑚1 are adjacent (also, 𝑚2 and 𝑚3)

 They differ in the value of variable 𝑦

Minterms 𝑚0 and 𝑚2 are adjacent (also, 𝑚1 and 𝑚3)

 They differ in the value of variable 𝑥

m3m21

m1m00

10
x

y

x yx y'1

x' yx' y'0

10
x

y

Two-variable K-map

Note: adjacent squares horizontally and vertically NOT diagonally



From a Truth Table to Karnaugh Map

 Given a truth table, construct the corresponding K-map

 Copy the function values from the truth table into the K-map

Make sure to copy each value into the proper K-map square

x y f

0 0 1

0 1 0

1 0 1

1 1 1

Truth Table

111

010

10
x

y

K-map



Two-variable Map Minimization– Example 1

 Two adjacent cells containing 1's can be combined

 𝑓 = 𝑚0+𝑚2+𝑚3

 𝑓 = 𝑥′𝑦′ + 𝑥𝑦′ + 𝑥𝑦 (6 literals)

𝑚0+𝑚2 = 𝑥′𝑦′ + 𝑥𝑦′ = (𝑥′ + 𝑥)𝑦′ = 𝑦′

𝑚2+𝑚3 = 𝑥𝑦′ + 𝑥𝑦 = 𝑥(𝑦′ + 𝑦) = 𝑥

 Therefore, 𝑓 can be simplified as: 𝑓 = 𝑥 + 𝑦′ (2 literals)

111

010

10
x

y

K-map



y

x 0 1

0 1

1 1 1

Two-variable Map – Example 2

 Example

x y F Minterm

0 0   0 0 m0

1 0   1 1 m1

2 1   0 1 m2

3 1   1 1 m3
y

x 0

0

1

m0 m1

m2 m3

yxxyyxF 

yxx )(  )( yyx 

xyF 

yx 

yx

yx 

xy

yx  yx

yx  yx

y

1



Three-Variable Karnaugh Map

 Have eight squares (for the 8 minterms), numbered 0 to 7

 The last two columns are not in numeric order: 11, 10

 Remember the numbering of the squares in the K-map

 Each square is adjacent to three other squares

Minterms in adjacent squares can always be combined

 This is the key idea that makes the K-map work

 Labeling of rows and columns is also useful

00 01 11 10

0 𝑚0 𝑚1 𝑚3 𝑚2

1 𝑚4 𝑚5 𝑚7 𝑚6

𝑥

𝑦𝑧
00 01 11 10

0 𝑥′𝑦′𝑧′ 𝑥′𝑦′𝑧 𝑥′𝑦𝑧 𝑥′𝑦𝑧′

1 𝑥𝑦′𝑧′ 𝑥𝑦′𝑧 𝑥𝑦𝑧 𝑥𝑦𝑧′

𝑥
𝑦𝑧 𝒚𝒚′

𝒛 𝒛′𝒛′

𝒙′

𝒙



Three-variable Map Minimization – Example 1

Simplify the Boolean function: 𝑓(𝑥, 𝑦, 𝑧) = σ(3, 4, 5, 7)

𝑓 = 𝑥′𝑦𝑧 + 𝑥𝑦′𝑧′ + 𝑥𝑦′𝑧 + 𝑥𝑦𝑧 (12 literals)

1. Mark ‘1’ all the K-map squares that represent function 𝑓

2. Find possible adjacent squares

𝑥′𝑦𝑧 + 𝑥𝑦𝑧 = (𝑥′ + 𝑥)𝑦𝑧 = 𝑦𝑧

𝑥𝑦′𝑧′ + 𝑥𝑦′𝑧 = 𝑥𝑦′(𝑧′ + 𝑧) = 𝑥𝑦′

Therefore, 𝑓 = 𝑥𝑦′ + 𝑦𝑧 (4 literals)

00 01 11 10

0

1

𝑥
𝑦𝑧 𝒚𝒚′

𝒛 𝒛′𝒛′

𝒙′

𝒙

0 0 1 0

1 1 1 0



Three-variable Map Minimization – Example 2

Here is a second example: 𝑓(𝑥, 𝑦, 𝑧) = σ(3, 4, 6, 7)

𝑓 = 𝑥′𝑦𝑧 + 𝑥𝑦′𝑧′ + 𝑥𝑦𝑧′ + 𝑥𝑦𝑧 (12 literals)

Learn the locations of the 8 indices based on the variable order

𝑥′𝑦𝑧 + 𝑥𝑦𝑧 = (𝑥′ + 𝑥)𝑦𝑧 = 𝑦𝑧

Corner squares can be combined

𝑥𝑦′𝑧′ + 𝑥𝑦𝑧′ = 𝑥𝑧′(𝑦′ + 𝑦) = 𝑥𝑧′

Therefore, 𝑓 = 𝑥𝑧′ + 𝑦𝑧 (4 literals)

00 01 11 10

0

1

𝑥
𝑦𝑧 𝒚𝒚′

𝒛 𝒛′𝒛′

𝒙′

𝒙

0 0 1 0

1 0 1 1



Combining Squares on a 3-Variable K-Map

 By combining squares, we reduce number of literals 

in a product term, thereby reducing the cost

 On a 3-variable K-Map:

One square represents a minterm with 3 variables

 Two adjacent squares represent a term with 2 variables

 Four adjacent squares represent a term with 1 variable

 Eight adjacent square is the constant ‘1’ (no variables)



Three-variable Map Minimization – Example 3

x y  z F Minterm

0 0  0  0 0 m0

1 0  0  1 0 m1

2 0  1  0 1 m2

3 0  1  1 1 m3

4 1  0  0 1 m4

5 1  0  1 1 m5

6 1  1  0 0 m6

7 1  1  1 0 m7

y z

x 00 01 11 10

0

1

 Example: Simplify the Boolean function

F yxyx  

zyx 

zyx 

zyx 

yzx

zyx 

zyx 

zxy 

xyz

zyx  zyx  zyx yzx

zyx  zyx  zxy xyz

F(x, y, z) = Σ(2,3,4,5) = x’y + xy’

y z y

x 00 01 11 10

0 1 1

x 1 1 1

z



Three-variable Map Minimization – Example 4

 Consider the Boolean function: 𝑓(𝑥, 𝑦, 𝑧) = σ(2, 3, 5, 6, 7)

 𝑓 = 𝑥′𝑦𝑧′ + 𝑥′𝑦𝑧 + 𝑥𝑦′𝑧 + 𝑥𝑦𝑧′ + 𝑥𝑦𝑧

00 01 11 10

0

1

𝑥
𝑦𝑧 𝒚𝒚′

𝒛 𝒛′𝒛′

𝒙′

𝒙

0 0 1 1

0 1 1 1

 The four minterms that form 

the 2×2 red square are 

reduced to the term 𝑦

 The two minterms that form 

the blue rectangle are 

reduced to the term 𝑥𝑧

 Therefore: 𝑓 = 𝑦 + 𝑥𝑧

𝑥′𝑦𝑧 + 𝑥′𝑦𝑧′ + 𝑥𝑦𝑧 + 𝑥𝑦𝑧′

= 𝑥′𝑦(𝑧 + 𝑧′) + 𝑥𝑦(𝑧 + 𝑧′)

= 𝑥′𝑦 + 𝑥𝑦 = (𝑥′ + 𝑥)𝑦 = 𝑦



Three-variable Map Minimization – Example 5

Consider the function: 𝑓(𝑥, 𝑦, 𝑧) = σ(0, 1, 2, 4, 6, 7)

Find a minimal sum-of-products (SOP) expression

Solution:

Red block: term = 𝑧′

Green block: term = 𝑥′𝑦′

Blue block: term = 𝑥𝑦

Minimal sum-of-products: 𝑓 = 𝑧′ + 𝑥′𝑦′ + 𝑥𝑦 (5 literals)

00 01 11 10

0

1

𝑥
𝑦𝑧 𝒚𝒚′

𝒛 𝒛′𝒛′

𝒙′

𝒙

1 1 0 1

1 0 1 1



xy

Three-variable Map Minimization – Example 6

m0 m1 m3 m2

m4 m5 m7 m6

x y  z F Minterm

0 0  0  0 0 m0

1 0  0  1 0 m1

2 0  1  0 0 m2

3 0  1  1 1 m3

4 1  0  0 1 m4

5 1  0  1 0 m5

6 1  1  0 1 m6

7 1  1  1 1 m7

y z

x 00 01 11 10

0

1

 Example

y

0 0 1 0

x 1 0 1 1

z

F yzzx   

Extra

zyx 

zyx 

zyx 

yzx

zyx 

zyx 

zxy 

xyz

zyx  zyx  zyx yzx

zyx  zyx  zxy xyz

F(x, y, z) = Σ(3, 4, 6, 7) = yz + xz’



Three-variable Map Minimization – Example 7

Map for F(x,y,z) = Σ(0,2,4,5,6) = z’ + xy’



Three-variable Map Minimization – Example 8

x y  z F Minterm

0 0  0  0 0 m0

1 0  0  1 1 m1

2 0  1  0 0 m2

3 0  1  1 1 m3

4 1  0  0 0 m4

5 1  0  1 1 m5

6 1  1  0 0 m6

7 1  1  1 1 m7

 Example: y

0 1 1 0

x 0 1 1 0

z

zx zx

xyzzyxyzxzyxzyxF ),,(

)( yyzx  )( yyzx 

y

0 1 1 0

x 0 1 1 0

z

zyx 

zyx 

zyx 

yzx

zyx 

zyx 

zxy 

xyz

z



Three-variable Map Minimization – Example 9

m0 m1 m3 m2

m4 m5 m7 m6x y  z F Minterm

0 0  0  0 1 m0

1 0  0  1 0 m1

2 0  1  0 1 m2

3 0  1  1 0 m3

4 1  0  0 1 m4

5 1  0  1 1 m5

6 1  1  0 1 m6

7 1  1  1 0 m7

y z

x 00 01 11 10

0

1

y

1 0 0 1

x 1 1 0 1

z

F z yx 

zyx 

zyx 

zyx 

yzx

zyx 

zyx 

zxy 

xyz

zyx  zyx  zyx yzx

zyx  zyx  zxy xyz



Three-variable Map Minimization – Example 10
Let the Boolean Function

(a) Express this function as a sum of minterms



Three-variable Map Minimization – Example 11
Simplify the following Boolean function, using three-variable maps

00 01 11 10

0

1

Find adjacent squares



Four-Variable Karnaugh Map

4 variables  16 squares

Remember the numbering of 

the squares in the K-map

Each square is adjacent to  

four other squares

𝑚00 = 𝑤′𝑥′𝑦′𝑧′ 𝑚10 = 𝑤′𝑥′𝑦′𝑧

𝑚20 = 𝑤′𝑥′𝑦 𝑧′ 𝑚30 = 𝑤′𝑥′𝑦 𝑧

𝑚40 = 𝑤′𝑥 𝑦′𝑧′ 𝑚50 = 𝑤′𝑥 𝑦′𝑧

𝑚60 = 𝑤′𝑥 𝑦 𝑧′ 𝑚70 = 𝑤′𝑥 𝑦 𝑧

𝑚80 = 𝑤 𝑥′𝑦′𝑧′ 𝑚90 = 𝑤 𝑥′𝑦′𝑧

𝑚10 = 𝑤 𝑥′𝑦𝑧′ 𝑚11 = 𝑤 𝑥′𝑦 𝑧

𝑚12 = 𝑤 𝑥 𝑦′𝑧′ 𝑚13 = 𝑤 𝑥 𝑦′𝑧

𝑚14 = 𝑤 𝑥 𝑦 𝑧′ 𝑚15 = 𝑤 𝑥 𝑦 𝑧

00 01 11 10

00

𝑤𝑥

𝑦𝑧 𝒚𝒚′

𝒛 𝒛′𝒛′

𝒘′

𝒘

𝑚0 𝑚1 𝑚3 𝑚2

𝑚4 𝑚5 𝑚7 𝑚6

𝒙′

𝒙

𝒙′

01

11

10

𝑚12 𝑚13 𝑚15 𝑚14

𝑚8 𝑚9 𝑚11 𝑚10

Notice the order of Rows 11 and 10

and the order of columns 11 and 10



Combining Squares on a 4-Variable K-Map

 On a 4-variable K-Map:

One square represents a minterm with 4 variables

 Two adjacent squares represent a term with 3 variables

 Four adjacent squares represent a term with 2 variables

 Eight adjacent squares represent a term with 1 variable

Combining all 16 squares is the constant ‘1’ (no variables)



Combining Eight Squares

00 01 11 10

00

𝑤𝑥

𝑦𝑧 𝒚𝒚′

𝒛 𝒛′𝒛′

𝒘′

𝒘

𝑚0 𝑚1 𝑚3 𝑚2

𝑚4 𝑚5 𝑚7 𝑚6

𝒙′

𝒙

𝒙′

01

11

10

𝑚12 𝑚13 𝑚15 𝑚14

𝑚8 𝑚9 𝑚11 𝑚10

Term = 𝑤′

Term = 𝑦

Term = 𝑧′



Combining Four Squares

00 01 11 10

00

𝑤𝑥

𝑦𝑧 𝒚𝒚′

𝒛 𝒛′𝒛′

𝒘′

𝒘

𝑚0 𝑚1 𝑚3 𝑚2

𝑚4 𝑚5 𝑚7 𝑚6

𝒙′

𝒙

𝒙′

01

11

10

𝑚12 𝑚13 𝑚15 𝑚14

𝑚8 𝑚9 𝑚11 𝑚10

Term = 𝑥𝑦′

Term = 𝑤𝑦

Term = 𝑥′𝑧′



Combining Two Squares

00 01 11 10

00

𝑤𝑥

𝑦𝑧 𝒚𝒚′

𝒛 𝒛′𝒛′

𝒘′

𝒘

𝑚0 𝑚1 𝑚3 𝑚2

𝑚4 𝑚5 𝑚7 𝑚6

𝒙′

𝒙

𝒙′

01

11

10

𝑚12 𝑚13 𝑚15 𝑚14

𝑚8 𝑚9 𝑚11 𝑚10

Term = 𝑤′𝑥𝑦′

Term = 𝑤′𝑦𝑧

Term = 𝑤𝑦′𝑧
Term = 𝑤𝑥′𝑧′



Four-variable Map Minimization – Example 1

Given 𝑓(𝑤, 𝑥, 𝑦, 𝑧) = σ(0, 2, 4, 5, 6, 7, 8, 12)

Draw the K-map for function 𝑓

Minimize 𝑓 as sum-of-products

Solution:

𝑓 = 𝑤′𝑥 + 𝑦′𝑧′ + 𝑤′𝑧′

00 01 11 10

00

𝑤𝑥

𝑦𝑧 𝒚𝒚′

𝒛 𝒛′𝒛′

𝒘′

𝒘

1 0 0 1

1 1 1 1

𝒙′

𝒙

𝒙′

01

11

10

1 0 0 0

1 0 0 0Term = 𝑦′𝑧′

Term = 𝑤′𝑥

Term = 𝑤′𝑧′



Four-variable Map Minimization – Example 2

w  x y  z F Minterm

0 0  0  0  0 1 m0

1 0  0  0  1 1 m1

2 0  0  1  0 1 m2

3 0  0  1  1 0 m3

4 0  1  0  0 1 m4

5 0  1  0  1 1 m5

6 0  1  1  0 1 m6

7 0  1  1  1 0 m7

8 1  0  0  0 1 m8

9 1  0  0  1 1 m9

10 1  0  1  0 0 m10

11 1  0  1  1 0 m11

12 1  1  0  0 1 m12

13 1  1  0  1 1 m13

14 1  1  1  0 1 m14

15 1  1  1  1 0 m15

y z

wx 00 01 11 10

00

01

11

10

zyxw 

zyxw 

zyxw 

yzxw 

zyxw 

zyxw 

zxyw 

xyzw
zyxw 

zyxw 

zyxw 

yzxw 

zywx 

zywx 

zwxy 
wxyz

zyxw zyxw yzxw zyxw

zyxw zyxw xyzw zxyw

zyxw zyxw yzxw zyxw

zywx zywx wxyz zwxy

y

1 1 0 1

1 1 0 1
x

w
1 1 0 1

1 1 0 0

z

F y zw   zx 



Four-variable Map Minimization – Example 3

Example

Simplify:   F = A’ B’ C’ + B’ C D’ + A’ B C D’ + A B’ C’

C

1 1 1

1
B

A
1 1 1

D

F DB  CB   DCA 



Next . . .

 Boolean Function Minimization

 The Karnaugh Map (K-Map)

 Two, Three, and Four-Variable K-Maps

 Prime and Essential Prime Implicants

 Minimal Sum-of-Products and Product-of-Sums

 Don't Cares

 Five and Six-Variable K-Maps

 Multiple Outputs



Prime Implicants

 Prime Implicant: a product term obtained by combining the 

maximum number of adjacent squares in the K-map

 The number of combined squares must be a power of 2

 Essential Prime Implicant: is a prime implicant that covers at 

least one minterm not covered by the other prime implicants

 The prime implicants and essential prime implicants can be 

determined by inspecting the K-map



Prime implicants

1. All the minterms are covered when combining 

the squares

2. The number of terms in the expression is 

minimized

3. There are no redundant terms (minterms

already covered by other terms)

When choosing adjacent squares in a 

map, make sure that:



Example of Prime Implicants

Find all the prime implicants and essential prime implicants for:

𝑓(𝑎, 𝑏, 𝑐, 𝑑) = σ(0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)

𝑏𝑑

𝑏′𝑑′

𝑎𝑏′

𝑎𝑑

𝑐𝑑

𝑏′𝑐
Six Prime Implicants

𝑏𝑑, 𝑏′𝑑′, 𝑎𝑏′, 𝑎𝑑, 𝑐𝑑, 𝑏′𝑐

Only Two Prime 

Implicants are essential

𝑏𝑑 and 𝑏′𝑑′

00 01 11 10

00

𝑎𝑏
𝑐𝑑

1 1 1

1 101

11

10

1 1

1 1 1 1

K-Map



Prime Implicant – Example 2

 Find all prime implicants for

F(A, B, C, D) = ∑ (0,2,3,8,9,10,11,12,13,14,15)

1 1

1 1

1

1 1

1

1 11

B C

A
8 9 1011

12 13 1415

0 1 3 2

5 64 7

B

C

D

A

B D

3 prime implicants:

A, B C, B D

All 3 prime 

implicants are 

essential



Simplification Procedure Using the K-Map

1. Find all the essential prime implicants

 Covering maximum number (power of 2) of 1's in the K-map

 Mark the minterm(s) that make the prime implicants essential

2. Add prime implicants to cover the function

 Choose a minimal subset of prime implicants that cover all remaining 1's

 Make sure to cover all 1's not covered by the essential prime implicants

 Minimize the overlap among the additional prime implicants

 Sometimes, a function has multiple simplified expressions

 You may be asked to list all the simplified sum-of-product expressions



Obtaining All Minimal SOP Expressions

Consider again: 𝑓(𝑎, 𝑏, 𝑐, 𝑑) = σ(0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)

Obtain all minimal sum-of-products (SOP) expressions

𝑎𝑏′

𝑎𝑑

𝑐𝑑

𝑏′𝑐

𝑏𝑑

𝑏′𝑑′

Two essential Prime 

Implicants: 𝑏𝑑 and 𝑏′𝑑′
00 01 11 10

00

𝑎𝑏
𝑐𝑑

1 1 1

1 101

11

10

1 1

1 1 1 1

K-Map

Four possible solutions:

𝑓 = 𝑏𝑑 + 𝑏′𝑑′ + 𝑐𝑑 + 𝑎𝑑

𝑓 = 𝑏𝑑 + 𝑏′𝑑′ + 𝑐𝑑 + 𝑎𝑏′

𝑓 = 𝑏𝑑 + 𝑏′𝑑′ + 𝑏′𝑐 + 𝑎𝑏′

𝑓 = 𝑏𝑑 + 𝑏′𝑑′ + 𝑏′𝑐 + 𝑎𝑑



 Simplify F(A, B, C, D) given on the K-map 

Simplification Example 2 



Product-of-Sums (POS) Simplification

 All previous examples were expressed in Sum-of-Products form

With a minor modification, the Product-of-Sums can be obtained

 Example: 𝑓(𝑎, 𝑏, 𝑐, 𝑑) = σ(1, 2, 3, 9, 10, 11, 13, 14, 15)

00 01 11 10

00

𝑎𝑏
𝑐𝑑

1 1 1

01

11

10

1 1

1 1

1

1

K-Map of 𝒇

00 01 11 10

00

𝑎𝑏
𝑐𝑑

1

01

11

10

1

1

1

1 1 1

K-Map of 𝒇′

𝑓 = 𝑎𝑑 + 𝑎𝑐 + 𝑏′𝑑 + 𝑏′𝑐

Minimal Sum-of-Products = 8 literals

𝑓′ = 𝑐′𝑑′ + 𝑎′𝑏

𝑓 = (𝑐 + 𝑑)(𝑎 + 𝑏′)

All prime 

implicants

are essential

M
in

im
a
l 
P

ro
d
u
c
t-

o
f-

S
u
m

s
 =

 4
 l
it
e
ra

ls



Product-of-Sums Simplification Procedure

1. Draw the K-map for the function 𝑓

 Obtain a minimal Sum-of-Products (SOP) expression for 𝑓

2. Draw the K-map for 𝑓′, replacing the 0's of 𝑓 with 1's in 𝑓′

3. Obtain a minimal Sum-of-Products (SOP) expression for 𝑓′

4. Use DeMorgan's theorem to obtain 𝑓 = (𝑓′)′

 The result is a minimal Product-of-Sums (POS) expression for 𝑓

5. Compare the cost of the minimal SOP and POS expressions

 Count the number of literals to find which expression is minimal



Product of Sums Simplification-example 2



Product-Of-Sums Simplification – Example 3

Take the squares with zeros and obtain the 

simplified complemented function

Complement the above expression and use 

DeMorgan’s



Next . . .

 Boolean Function Minimization

 The Karnaugh Map (K-Map)

 Two, Three, and Four-Variable K-Maps

 Prime and Essential Prime Implicants

 Minimal Sum-of-Products and Product-of-Sums

 Don't Cares

 Five and Six-Variable K-Maps

 Multiple Outputs



Don't Cares

Sometimes, a function table may contain entries for which:

 The input values of the variables will never occur, or

 The output value of the function is never used

 In this case, the output value of the function is not defined

The output value of the function is called a don't care

A don't care is an X value that appears in the function table

The X value can be later chosen to be 0 or 1

 To minimize the function implementation



Example of a Function with Don't Cares

 Consider a function 𝑓 defined over BCD inputs

 The function input is a BCD digit from 0 to 9

 The function output is 0 if the BCD input is 0 to 4

 The function output is 1 if the BCD input is 5 to 9

 The function output is X (don't care) if the input is 

10 to 15 (not BCD)

 𝑓 = σ𝑚 5, 6, 7, 8, 9 + σ𝑑 (10, 11, 12, 13, 14, 15)

a b c d f

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0 1

1 0 0 1 1

1 0 1 0 X

1 0 1 1 X

1 1 0 0 X

1 1 0 1 X

1 1 1 0 X

1 1 1 1 X

Truth Table

Minterms Don't Cares



Don’t-Care Condition

Example

otherwise
C

0

depositedisNIS 1aif1{
otherwise

B
0

depositedisNIS 2aif1{
otherwise

A
0

depositedis NIS 5aif1{

A  B  C NIS Value

0   0   0 0.00

0   0   1 1 NIS

0   1   0 2 NIS

0   1   1 Not possible

1   0   0 5 NIS 

1   0   1 Not possible

1   1   0 Not possible

1   1   1 Not possible

You can only 

drop one coin at 

a time.

Used as

“don’t care”

http://www.vending101.com/snacks.htm


Don’t-Care Condition



Don’t-Care Condition – Example 1



Minimizing Functions with Don't Cares – Example 2

Consider: 𝑓 = σ𝑚 5, 6, 7, 8, 9 + σ𝑑 (10, 11, 12, 13, 14, 15)

If the don't cares were treated as 0's we get:

𝑓 = 𝑎′𝑏𝑑 + 𝑎′𝑏𝑐 + 𝑎𝑏′𝑐′ (9 literals)

If the don't cares were treated as 1's we get:

𝑓 = 𝑎 + 𝑏𝑑 + 𝑏𝑐 (5 literals)
00 01 11 10

00

𝑎𝑏
𝑐𝑑

01

11

10

K-Map of 𝒇

0 0 00

1 1 10

X X XX

1 X X1

The don't care values can be 

selected to be either 0 or 1, to 

produce a minimal expression



Simplification Procedure with Don't Cares

1. Find all the essential prime implicants

 Covering maximum number (power of 2) of 1's and X's (don't cares)

 Mark the 1's that make the prime implicants essential

2. Add prime implicants to cover the function

 Choose a minimal subset of prime implicants that cover all remaining 1's

 Make sure to cover all 1's not covered by the essential prime implicants

 Minimize the overlap among the additional prime implicants

 You need not cover all the don't cares (some can remain uncovered)

 Sometimes, a function has multiple simplified expressions



Minimizing Functions with Don't Cares – Example 3

Simplify: 𝑔 = σ𝑚 1, 3, 7, 11, 15 + σ𝑑 (0, 2, 5)

Solution 1: 𝑔 = 𝑐𝑑 + 𝑎′𝑏′ (4 literals)

Solution 2: 𝑔 = 𝑐𝑑 + 𝑎′𝑑 (4 literals)

00 01 11 10

00

𝑎𝑏
𝑐𝑑

01

11

10

K-Map of 𝒈

1 1 XX

X 1 00

0 1 00

0 1 00

00 01 11 10

00

𝑎𝑏
𝑐𝑑

01

11

10

K-Map of 𝒈

1 1 XX

X 1 00

0 1 00

0 1 00

Not all don't 

cares need 

be covered

Prime 

Implicant 𝑐𝑑
is essential



Minimal Product-of-Sums with Don't Cares

Simplify: 𝑔 = σ𝑚 1, 3, 7, 11, 15 + σ𝑑 (0, 2, 5)

Obtain a product-of-sums minimal expression

Solution: 𝑔′ = σ𝑚 4, 6, 8, 9, 10, 12, 13, 14 + σ𝑑 (0, 2, 5)

Minimal 𝑔′ = 𝑑′ + 𝑎𝑐′ (3 literals)

Minimal product-of-sums:

𝑔 = 𝑑(𝑎′ + 𝑐) (3 literals)

00 01 11 10

00

𝑎𝑏
𝑐𝑑

01

11

10

K-Map of 𝒈′

0 0 XX

X 0 11

1 0 11

1 0 11

The minimal sum-of-products 

expression for 𝑔 had 4 literals



Next . . .

 Boolean Function Minimization

 The Karnaugh Map (K-Map)

 Two, Three, and Four-Variable K-Maps

 Prime and Essential Prime Implicants

 Minimal Sum-of-Products and Product-of-Sums

 Don't Cares

 Five and Six-Variable K-Maps

 Multiple Outputs



Five-Variable Karnaugh Map

 Consists of 25 = 32 squares, numbered 0 to 31

 Remember the numbering of squares in the K-map

 Can be visualized as two layers of 16 squares each

 Top layer contains the squares of the first 16 minterms (𝑎 = 0)

 Bottom layer contains the squares of the last 16 minterms (𝑎 = 1)

00 01 11 10

00

𝑏𝑐

𝑑𝑒
𝑎 = 0

𝑚0 𝑚1 𝑚3 𝑚2

𝑚4 𝑚5 𝑚7 𝑚601

11

10

𝑚12 𝑚13 𝑚15 𝑚14

𝑚8 𝑚9 𝑚11 𝑚10

00 01 11 10

00

𝑏𝑐

𝑑𝑒
𝑎 = 1

𝑚16 𝑚17 𝑚19 𝑚18

𝑚20 𝑚21 𝑚23 𝑚2201

11

10

𝑚28 𝑚29 𝑚31 𝑚30

𝑚24 𝑚25 𝑚27 𝑚26

Each square is adjacent 

to 5 other squares:

4 in the same layer and

1 in the other layer:

𝑚0 is adjacent to 𝑚16

𝑚1 is adjacent to 𝑚17

𝑚4 is adjacent to 𝑚20 …



Five-Variable K-Map – Example 1

Given: 𝑓(𝑎, 𝑏, 𝑐, 𝑑, 𝑒) = σ(0, 1, 8, 9, 16, 17, 22, 23, 24, 25)

Draw the 5-Variable K-Map

Obtain a minimal Sum-of-Products expression for 𝑓

Solution: 𝑓 = 𝑐′𝑑′ + 𝑎𝑏′𝑐𝑑 (6 literals)

00 01 11 10

00

𝑏𝑐

𝑑𝑒
𝑎 = 0

01

11

10

00 01 11 10

00

𝑏𝑐

𝑑𝑒
𝑎 = 1

01

11

10

5-Variable K-Map

1 1 1 1

1 1 1 1

1 1
𝑐′𝑑′

𝑎𝑏′𝑐𝑑



Five-Variable K-Map – Example 3

𝑔(𝑎, 𝑏, 𝑐, 𝑑, 𝑒) = σ𝑚(3, 6, 7, 11, 24, 25, 27, 28, 29) + σ𝑑 (2, 8, 9, 12, 13, 26)

Draw the 5-Variable K-Map

Obtain a minimal Sum-of-Products expression for 𝑔

Solution: 𝑔 = 𝑏𝑑′ + 𝑎′𝑏′𝑑 + 𝑏𝑐′𝑒 (8 literals)

𝑏𝑑′

00 01 11 10

00

𝑏𝑐

𝑑𝑒
𝑎 = 0

01

11

10

00 01 11 10

00

𝑏𝑐

𝑑𝑒
𝑎 = 1

01

11

10

5-Variable K-Map

1

X X 1 1

X X 1 1

1 1 X

X

1 1

𝑎′𝑏′𝑑

𝑏𝑐′𝑒

All prime 

implicants

are essential

Not covered



Six-Variable Karnaugh Map

 Consists of 26 = 64 squares, numbered 0 to 63

 Can be visualized as four layers of 16 squares each

 Four layers: 𝑎𝑏 = 00, 01, 11, 10 (Notice that layer 11 comes before 10)

 Each square is adjacent to 6 other squares:

 4 squares in the same layer and 2 squares in the above and below layers

00 01 11 10

00

𝑐𝑑

𝑒𝑓
𝑎𝑏 = 00

𝑚0 𝑚1 𝑚3 𝑚2

𝑚4 𝑚5 𝑚7 𝑚601

11

10

𝑚12 𝑚13 𝑚15 𝑚14

𝑚8 𝑚9 𝑚11 𝑚10

00 01 11 10

𝑎𝑏 = 01

𝑚16 𝑚17 𝑚19 𝑚18

𝑚20 𝑚21 𝑚23 𝑚22

𝑚28 𝑚29 𝑚31 𝑚30

𝑚24 𝑚25 𝑚27 𝑚26

00 01 11 10

𝑎𝑏 = 11

𝑚48 𝑚49 𝑚51 𝑚50

𝑚52 𝑚53 𝑚55 𝑚54

𝑚60 𝑚61 𝑚63 𝑚62

𝑚56 𝑚57 𝑚59 𝑚58

00 01 11 10

𝑎𝑏 = 10

𝑚32 𝑚33 𝑚35 𝑚34

𝑚36 𝑚37 𝑚39 𝑚38

𝑚44 𝑚45 𝑚47 𝑚46

𝑚40 𝑚41 𝑚43 𝑚42



6- Variable K-Maps – Example 1

ƒ(A,B,C,D,E,F) =
m(2,8,10,18,24,

26,34,37,42,45,50,
53,58,61)

= 

CD 
EF 

CD 
EF 

AB =00 

AB =01 

00 01 11 10 

00 

01 

11 

10 

00 01 11 10 

00 

01 

11 

10 

0 4 12 8 

1 5 13 9 

3 7 15 11 

2 6 14 10 

16 20 28 24 

17 21 29 25 

19 23 31 27 

18 22 30 26 

CD 
EF 

AB =11 

00 01 11 10 

00 

01 

11 

10 

48 52 60 56 

49 53 61 57 

51 55 63 59 

50 54 62 58 

CD 
EF 

AB =10 

00 01 11 10 

00 

01 

11 

10 

32 36 44 40 

33 37 45 41 

35 39 47 43 

34 38 46 42 

CD 
EF 

CD 
EF 

AB =00 

AB =01 

00 01 11 10 

00 

01 

11 

10 

00 01 11 10 

00 

01 

11 

10 

CD 
EF 

AB =11 

00 01 11 10 

00 

01 

11 

10 

CD 
EF 

AB =10 

00 01 11 10 

00 

01 

11 

10 

1 

1 1 

1 

1 1 

1 1 

1 1 

1 1 

1 1 



6- Variable K-Maps – Example 1

ƒ(A,B,C,D,E,F) =
m(2,8,10,18,24,

26,34,37,42,45,50,
53,58,61)

= D' E F'  +  A D E' F
+  A' C D' F'

CD 
EF 

CD 
EF 

AB =00 

AB =01 

00 01 11 10 

00 

01 

11 

10 

00 01 11 10 

00 

01 

11 

10 

0 4 12 8 

1 5 13 9 

3 7 15 11 

2 6 14 10 

16 20 28 24 

17 21 29 25 

19 23 31 27 

18 22 30 26 

CD 
EF 

AB =11 

00 01 11 10 

00 

01 

11 

10 

48 52 60 56 

49 53 61 57 

51 55 63 59 

50 54 62 58 

CD 
EF 

AB =10 

00 01 11 10 

00 

01 

11 

10 

32 36 44 40 

33 37 45 41 

35 39 47 43 

34 38 46 42 

CD 
EF 

CD 
EF 

AB =00 

AB =01 

00 01 11 10 

00 

01 

11 

10 

00 01 11 10 

00 

01 

11 

10 

CD 
EF 

AB =11 

00 01 11 10 

00 

01 

11 

10 

CD 
EF 

AB =10 

00 01 11 10 

00 

01 

11 

10 

1 

1 1 

1 

1 1 

1 1 

1 1 

1 1 

1 1 



6 Variable K-Maps – Example 2

ℎ(𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓) = σ(2, 10, 11, 18, 21, 23, 29, 31, 34, 41, 50, 53, 55, 61, 63)

Draw the 6-Variable K-Map

Obtain a minimal Sum-of-Products expression for ℎ

Solution: ℎ = 𝑐′𝑑′𝑒𝑓′ + 𝑏 𝑑 𝑓 + 𝑎′𝑏′𝑐 𝑑′𝑒 + 𝑎 𝑏 𝑐 𝑑′𝑒′𝑓 (18 literals)

00 01 11 10

00

𝑐𝑑

𝑒𝑓
𝑎𝑏 = 00

01

11

10

00 01 11 10

𝑎𝑏 = 01

00 01 11 10

𝑎𝑏 = 11

00 01 11 10

𝑎𝑏 = 10

1 1 1

1

1

1

1

1

1

1

1

111

1𝑐′𝑑′𝑒𝑓′

𝑏𝑑𝑓

𝑎′𝑏′𝑐 𝑑′𝑒 𝑎 𝑏 𝑐 𝑑′𝑒′𝑓



Next . . .

 Boolean Function Minimization

 The Karnaugh Map (K-Map)

 Two, Three, and Four-Variable K-Maps

 Prime and Essential Prime Implicants

 Minimal Sum-of-Products and Product-of-Sums

 Don't Cares

 Five and Six-Variable K-Maps

 Multiple Outputs



Multiple Outputs

 Suppose we have two functions: 𝑓(𝑎, 𝑏, 𝑐) and 𝑔(𝑎, 𝑏, 𝑐)

 Same inputs: 𝑎, 𝑏, 𝑐, but two outputs: 𝑓 and 𝑔

We can minimize each function separately, or

Minimize 𝑓 and 𝑔 as one circuit with two outputs

 The idea is to share terms (gates) among 𝑓 and 𝑔

𝑎
𝑏
𝑐

𝑓

𝑎
𝑏
𝑐

𝑔

𝑎
𝑏
𝑐 𝑔

𝑓

One circuit with

Two OutputsTwo separate circuits



Multiple Outputs: Example 1

Given: 𝑓 𝑎, 𝑏, 𝑐 = σ(0, 2, 6, 7) and 𝑔 𝑎, 𝑏, 𝑐 = σ(1, 3, 6, 7)

Minimize each function separately

Minimize both functions as one circuit

00 01 11 10

0

1

𝑎
𝑏𝑐

1 0 0 1

0 0 1 1

K-Map of 𝒇

00 01 11 10

0

1

𝑎
𝑏𝑐

0 1 1 0

0 0 1 1

K-Map of 𝒈

𝑓 = 𝑎′𝑐′ + 𝑎𝑏

𝑔 = 𝑎′𝑐 + 𝑎𝑏

Common

Term = 𝑎𝑏

O
n
e
 c

ir
c
u
it
 w

it
h

tw
o
 O

u
tp

u
ts

𝑔

𝑎′
𝑐′

𝑓
𝑎
𝑏

𝑎′
𝑐

𝑎′
𝑐′

𝑓
𝑎
𝑏

𝑎′
𝑐

𝑔
𝑎
𝑏

O
n
e
 c

ir
c
u
it
 

p
e
r 

fu
n
c
ti
o
n



Multiple Outputs: Example 2

𝑓 𝑎, 𝑏, 𝑐, 𝑑 = σ(3, 5, 7, 10, 11, 14, 15), 𝑔 𝑎, 𝑏, 𝑐, 𝑑 = σ(1, 3, 5, 7, 10, 14)

Draw the K-map and write minimal SOP expressions of 𝑓 and 𝑔

𝑓 = 𝑎′𝑏𝑑 + 𝑎𝑐 + 𝑐𝑑 𝑔 = 𝑎′𝑑 + 𝑎𝑐𝑑′

Extract the common terms of 𝑓 and 𝑔

1 1

00 01 11 10

00

𝑎𝑏

𝑐𝑑

01

11

10

K-Map of 𝒇

1

1

1

1

1

00 01 11 10

00

𝑎𝑏

𝑐𝑑

01

11

10

K-Map of 𝒈

1 1

1

1

1 1

Common Terms

𝑇1 = 𝑎′𝑑 and 𝑇2 = 𝑎𝑐

Minimal 𝑓 and 𝑔

𝑓 = 𝑇1𝑏 + 𝑇2 + 𝑐𝑑

𝑔 = 𝑇1 + 𝑇2𝑑′



Common Terms  Shared Gates

Minimal 𝑓 = 𝑎′𝑏𝑑 + 𝑎𝑐 + 𝑐𝑑 Minimal 𝑔 = 𝑎′𝑑 + 𝑎𝑐𝑑′

Let 𝑇1 = 𝑎′𝑑 and 𝑇2 = 𝑎𝑐 (shared by 𝑓 and 𝑔)

Minimal 𝑓 = 𝑇1𝑏 + 𝑇2 + 𝑐𝑑, Minimal 𝑔 = 𝑇1 + 𝑇2𝑑′

One Circuit

Two Shared Gates

𝑐
𝑑
𝑎′
𝑏
𝑑

𝑓

𝑎
𝑐

𝑎
𝑐
𝑑′

𝑔

𝑎′
𝑑

NO Shared Gates

𝑓𝑎′
𝑑

𝑎
𝑐

𝑏

𝑑′

𝑐
𝑑

𝑔



Quine-McCluskey Method

 The Karnaugh map method described in Unit 5 is an effective 

way to simplify switching functions which have a small 

number of variables

 A systematic solution to K-Map when more complex function 

with more literals is given

 In principle, can be applied to an arbitrary large number of 

inputs

 One can translate Quine-McCluskey method into a computer 

program to perform minimization 



Universal Gates

 NAND and NOR gates are said to be universal gate because any 

logic circuit can be implemented with it.

 Digital circuits are frequently constructed with NAND or NOR gates rather 

than with AND and OR gates. 

 NAND and NOR gates are easier to fabricate with electronic 

components and are the basic gates used in all IC digital logic 

families. 

 Because of the prominence of NAND and NOR gates in the 

design of digital circuits, rules and procedures have been 

developed for the conversion from Boolean functions given in 

terms of AND, OR, and NOT into equivalent NAND and NOR 

logic diagrams



Universal Gates

 NAND Gate

 NOT:

 AND:

 OR:

A F = A

A
F = A • BB

A

B
F = A + B

DeMorgan’s



NAND Gate Symbol

Two equivalent graphic symbols for the NAND gate 

 The AND-invert symbol has been defined previously and 

consists of an AND graphic symbol followed by a small 

circle negation indicator referred to as a bubble. 

 Alternatively, it is possible to represent a NAND gate by an 

OR graphic symbol that is preceded by a bubble in each 

input. 



Two-Level NAND Implementation
 A convenient way to implement a Boolean function with 

NAND gates is to obtain the simplified Boolean function in 
terms of Boolean operators and then convert the function to 
NAND logic.

 The implementation of Boolean functions with NAND gates 
requires that the functions be in sum-of-products form.

 Procedure:

 Draw a NAND gate for each product term of the expression that has at 
least two literals. The inputs to each NAND gate are the literals of the 
term. This procedure produces a group of first-level gates.

 Draw a single gate using the AND-invert or the invert-OR graphic symbol 
in the second level, with inputs coming from outputs of first-level gates.

 A term with a single literal requires an inverter in the first level. However, if 
the single literal is complemented, it can be connected directly to an input 
of the second level NAND gate.



Two-Level NAND Implementation



Boolean function with NAND gates

Implement the following Boolean function with NAND gates:

F (x, y, z) = (1, 2, 3, 4, 5, 7)



Multilevel NAND Implementation

General Procedure for converting a multilevel AND–

OR diagram into an all-NAND diagram using mixed 

notation is as follows:

Convert all AND gates to NAND gates with AND-invert 

graphic symbols.

Convert all OR gates to NAND gates with invert-OR 

graphic symbols.

Check all the bubbles in the diagram. For every bubble 

that is not compensated by another small circle along the 

same line, insert an inverter (a one-input NAND gate) or 

complement the input literal.



Multilevel NAND Implementation



Multilevel NAND Implementation



NOR Gates

 The NOR operation is the dual of the NAND operation. Therefore, all 

procedures and rules for NOR logic are the duals of the corresponding 

procedures and rules developed for NAND logic.

 NOT:

 OR:

 AND:

A F = A

A
F = A + B

B

A

B
F = A • B

DeMorgan’s



NOR Gate Symbol

The two graphic symbols for the mixed notation.

 The OR-invert symbol defines the NOR operation as an 

OR followed by a complement. 

 The invert-AND symbol complements each input and then 

performs an AND operation.



Two-Level NOR Implementation

 Rules for 2-Level NOR Implementations

 Simplify the function and express it in product of sums form

 Draw a NOR gate (using OR-NOT symbol) for each sum term (with 2 

literals or more)

 Draw a single NOR gate (using NOT-AND symbol) the 2nd level (in 

place of the AND gate) 

 A term with single literal requires a NOT



Two-Level NOR Implementation



Rules for Multi-Level NOR Implementations
 NOTE: the function is NOT in the standard form – WHY?

 Steps:

 Draw a NOR (OR-NOT) gate for each OR gate

 Draw a NOR (NOT-AND) gate for each AND gate

 Check paths – add inverters to make even number of bubbles



Multilevel NOR Implementation



Multilevel NOR Implementation



Exclusive OR / Exclusive NOR

 Exclusive OR (XOR) is an important Boolean operation used 

extensively in logic circuits

 Exclusive NOR (XNOR) is the complement of XOR

𝑥
𝑦

𝑥 ⨁ 𝑦

XOR gate

𝑥
𝑦

(𝑥 ⨁ 𝑦)′

XNOR gate

x y XOR

0  0 0

0  1 1

1  0 1

1  1 0

x y XNOR

0  0 1

0  1 0

1  0 0

1  1 1

XNOR is also known 

as equivalence



XOR / XNOR Functions

 The XOR function is: 𝑥 ⨁ 𝑦 = 𝑥𝑦′ + 𝑥′𝑦

 The XNOR function is: (𝑥 ⨁ 𝑦)′ = 𝑥𝑦 + 𝑥′𝑦′

 XOR and XNOR gates are complex

 Can be implemented as a true gate, or by

 Interconnecting other gate types

 XOR and XNOR gates do not exist for more than two inputs

 For 3 inputs, use two XOR gates

 The cost of a 3-input XOR gate is greater than the cost of two XOR gates

 Uses for XOR and XNOR gates include:

 Adders, subtractors, multipliers, counters, incrementers, decrementers

 Parity generators and checkers



XOR Implementations

SOP implementation

for XOR:

X  Y = X Y + X Y

NAND only

implementation

for XOR:



XOR and XNOR Properties

 𝑥 ⨁ 0 = 𝑥 𝑥 ⨁ 1 = 𝑥′

 𝑥 ⨁ 𝑥 = 0 𝑥 ⨁ 𝑥′ = 1

 𝑥 ⨁ 𝑦 = 𝑦⨁ 𝑥

 𝑥′ ⨁ 𝑦′ = 𝑥⨁ 𝑦

 𝑥 ⨁ 𝑦 ′ = 𝑥′ ⨁ 𝑦 = 𝑥 ⨁ 𝑦′

XOR and XNOR are associative operations

 𝑥 ⨁ 𝑦 ⨁ 𝑧 = 𝑥⨁ 𝑦 ⨁ 𝑧 = 𝑥 ⨁ 𝑦 ⨁ 𝑧

 𝑥 ⨁ 𝑦 ′ ⨁ 𝑧
′
= 𝑥⨁ (𝑦⨁ 𝑧)′ ′ = 𝑥⨁ 𝑦⨁ 𝑧



Odd Function

 Output is 1 if the number of 1's is odd in the inputs

 Output is the XOR operation on all input variables

x y z fodd

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1O
d

d
 F

u
n

c
ti

o
n

 w
it

h
 3

 i
n

p
u

ts

𝑓𝑜𝑑𝑑 =෍(1, 2, 4, 7)

𝑓𝑜𝑑𝑑 = 𝑥′𝑦′𝑧 + 𝑥′𝑦𝑧′ + 𝑥𝑦′𝑧′ + 𝑥𝑦𝑧

𝑓𝑜𝑑𝑑 = 𝑥 ⨁ 𝑦 ⨁ 𝑧

𝑥
𝑦

𝑧
𝑓𝑜𝑑𝑑

Implementation using two XOR gates



Even Function

 Output is 1 if the number of 1's is even in 

the inputs (complement of odd function)

 Output is the XNOR operation on all inputs

w x y z feven

0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0
1 0 0 0 0
1 0 0 1 1
1 0 1 0 1
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1

E
v

e
n

 F
u

n
c
ti

o
n

 w
it

h
 4

 i
n

p
u

ts

𝑓𝑒𝑣𝑒𝑛 =෍(0, 3, 5, 6, 9, 10, 12, 15)

𝑤

𝑥

𝑦
𝑓𝑒𝑣𝑒𝑛

𝑧

Implementation using two XOR gates and one XNOR

𝑓𝑒𝑣𝑒𝑛 = (𝑤 ⨁ 𝑥⨁ 𝑦⨁ 𝑧)′



Parity Generators and Checkers

 A parity bit is added to the n-bit code

 Produces (n+1)-bit code with an odd (or even) count of 1's

 Odd parity: count of 1's in the (n+1)-bit code is odd

 Use an even function to generate the odd parity bit

 Use an even function to check the (n+1)-bit code

 Even parity: count of 1's in the (n+1)-bit code is even

 Use an odd function to generate the even parity bit

 Use an odd function to check the (n+1)-bit code

Sender Receiver

n-bit code Parity

Generator

(n+1)-bit code Parity

Checker
Error



Example of Parity Generator and Checker

 Design even parity generator & checker for 3-bit codes

 Solution:

 Use 3-bit odd function to generate 

even parity bit 𝑃.

 Use 4-bit odd function to check if 

there is an error 𝐸 in even parity.

 Given that: 𝑥𝑦𝑧 = 001 then 𝑃 = 1. 

The sender transmits 𝑃𝑥𝑦𝑧 = 1001.

 If 𝑦 changes from 0 to 1 between 

generator and checker, the parity 

checker receives 𝑃𝑥𝑦𝑧 = 1011 and 

produces 𝐸 = 1, indicating an error.

𝑥
𝑦

𝑧
𝑃

Parity Generator

𝑃
𝑥

𝑦
𝐸

𝑧

Parity Checker


