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Preface
The	ARM	processor	 is	 becoming	 the	 dominant	CPU	architecture	 in	 the	 computer

industry.	 It	 is	 already	 the	 leading	architecture	 in	cell	phones	and	 tablet	 computers.	With
such	a	large	number	of	companies	producing	ARM	chips,	it	is	certain	that	the	architecture
will	move	to	the	laptop,	desktop	and	high-performance	computers	currently	dominated	by
x86	 architecture	 from	 Intel	 and	 AMD.	 	 Currently	 the	 PIC	 and	 AVR	 microcontrollers
dominate	 the	 8-bit	 microcontroller	 market.	 	 The	 ARM	 architecture	 will	 have	 a	 major
impact	in	this	area	too	as	designers	become	more	familiar	with	its	architecture.	This	book
is	intended	as	an	introduction	to	ARM	assembly	language	programming	and	architecture.	
We	 assume	no	 prior	 background	 in	 assembly	 language	 programming	with	 other	CPUs.	
However,	we	urge	you	 to	 study	Chapter	0	covering	 the	 fundamentals	of	digital	 systems
such	as	hexadecimal	numbers,	various	types	of	memory,	memory	and	I/O	interfacing,	and
memory	 address	 decoding.	 Chapter	 0	 is	 available	 free	 of	 charge	 on	 our	 website
http://www.MicroDigitalEd.com/ARM/ARM_books.htm

Universities	and	colleges
This	 book	 is	 intended	 for	 both	 academic	 and	 industry	 readers.	 	 The	 answers	 to

review	questions	at	end	of	each	section	are	provided	at	end	of	the	chapter.	If	you	are	using
this	book	for	a	university	course	there	are	end-of-chapter	problems	that	can	be	found	on		
www.MicroDigitalEd.com/ARM/ARM_books.htm

Our	upcoming	books	in	the	ARM	series
This	book	covers	the	Assembly	language	programming	of	the	ARM	chip.	The	ARM

Assembly	language	is	standard	regardless	of	who	makes	the	chip.	The	ARM	licensees	are
free	 to	 implement	 the	on-chip	peripheral	 (ADC,	Timers,	 I/O,	…)	as	 	 they	choose.	Since
the	ARM	peripherals	 are	not	 standard	 among	 the	various	vendors,	we	have	dedicated	 a
separate	book	to	each	vendor.	The	following	books	are	planned	in	this	series:

TI	ARM	Peripheral	Programming	and	Interfacing

Freescale	ARM	Peripheral	Programming	and	Interfacing

NXP	ARM	Peripheral	Programming	and	Interfacing

Atmel	ARM	Peripheral	Programming	and	Interfacing

The	above	books	use	C	language	to	program	the	peripherals.

Finally,	we	would	 like	 to	 thank	professors	Shujen	Chen,	Rabah	Aoufi,	 and	Clyde
Knight	 for	 their	 reading	 of	 the	 book	 before	 publication.	 We	 sincerely	 appreciate	 their
insights	and	inputs.	We	would	also	like	to	thank	Fada	Mahmoudi,	Mozhde	Amiri,	Keyvan
Roshani,	Azalia	Yaghini,	Arash	Zamani,	Parham	Fazlali,	and	Ashkan	Farivar	for	sharing
their	comments	on	the	prepublication	version	of	this	e-book.

Contact	us	at	the	following	email	address:

http://www.MicroDigitalEd.com/ARM/ARM_books.htm


mdebooks@yahoo.com

	and	please	place	ARM	book	in	subject	line	of	your	email.

mailto:mdebooks@yahoo.com
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Chapter	1:	The	History	of	ARM	and	Microcontrollers
In	Section	1.1	we	look	at	the	history	of	microcontrollers	then	we	introduce	some	of

the	available	microcontrollers.	The	history	of	ARM	is	provided	in	Section	1.2.





Section	1.1:	Introduction	to	Microcontrollers
The	evolution	of	Microprocessors	and	Microcontrollers

In	 early	 computers,	 CPUs	 were	 designed	 using	 a	 number	 of	 vacuum	 tubes.	 The
vacuum	 tube	was	 bulky	 and	 consumed	 a	 lot	 of	 electricity.	 The	 invention	 of	 transistors,
followed	 by	 the	 IC	 (Integrated	 Circuit),	 provided	 the	 means	 to	 put	 a	 CPU	 on	 printed
circuit	boards.	The	advances	in	IC	technology	allowed	putting	the	entire	CPU	on	a	single
IC	chip.	This	 IC	was	called	a	microprocessor.	Some	of	 the	microprocessors	are	 the	x86
family	 of	 Intel	 used	 widely	 in	 desktop	 computers,	 and	 the	 68000	 of	 Motorola.	 The
microprocessors	do	not	contain	RAM,	ROM,	or	I/O	peripherals.	As	a	result,	they	must	be
connected	externally	to	RAM,	ROM	and	I/O,	as	shown	in	Figure	1-1.

Figure	1-	1:	A	Computer	Made	by	General	Purpose	Microprocessor

In	 the	next	step,	 the	different	parts	of	a	system,	 including	CPU,	RAM,	ROM,	and
I/Os,	 were	 put	 together	 on	 a	 single	 IC	 chip	 and	 it	 was	 called	 microcontroller.	 SOC
(System	 on	 Chip)	 and	MCU	 (Micro	 Controller	 Unit)	 are	 other	 names	 used	 to	 refer	 to
microcontrollers.	 Figure	 1-2	 shows	 the	 simplified	 view	 of	 the	 internal	 parts	 of
microcontrollers.

Figure	1-	2:	Simplified	View	of	the	Internal	Parts	of	Microcontrollers	(SOC)

Since	 the	 microcontrollers	 are	 cheap	 and	 small,	 they	 are	 widely	 used	 in	 many
devices.

Types	of	Computers

Typically,	computers	are	categorized	into	3	groups:	desktop	computers,	servers,	and
embedded	systems.

Desktop	 computers,	 including	 PCs,	 tablets,	 and	 laptops,	 are	 general	 purpose
computers.	They	can	be	used	to	play	games,	read	and	edit	articles,	and	do	any	other	task
just	 by	 running	 the	 proper	 application	 programs.	 The	 desktop	 computers	 use
microprocessors.



In	contrast,	embedded	systems	are	special-purpose	computers.	In	embedded	system
devices,	the	software	application	and	hardware	are	embedded	together	and	are	designed	to
do	a	specific	task.	For	example,	the	Kindle,	digital	camera,	vacuum	cleaner,	mp3	player,
mouse,	 keyboard,	 and	 printer,	 are	 some	 examples	 of	 embedded	 systems.	 In	most	 cases
embedded	systems	run	a	fixed	program	and	contain	a	microcontroller.	It	is	interesting	to
note	 that	 embedded	 systems	 are	 the	 largest	 class	 of	 computers	 though	 they	 are	 not
normally	considered	as	computers	by	the	general	public.

Servers	are	the	fast	computers	which	might	be	used	as	web	hosts,	database	servers,
and	in	any	application	in	which	we	need	to	process	a	huge	amount	of	data	such	as	weather
forecasting.	 Similar	 to	 desktop	 computers,	 servers	 are	 made	 of	 microprocessors	 but,
multiple	processors	are	usually	used	in	each	server.	Both	servers	and	desktop	computers
are	 connected	 to	 a	 number	 of	 embedded	 system	devices	 such	 as	mouse,	 keyboard,	 disk
controller,	Flash	stick	memory	and	so	on.

A	Brief	History	of	the	Microcontrollers

In	the	1980s	and	1990s,	Intel	and	Motorola	dominated	the	field	of	microprocessors
and	microcontrollers.	 Intel	 had	 the	 x86	 (8088/86,	 80286,	 80386,	 80486,	 and	 Pentium).
Motorola	 (now	Freescale)	 had	 the	 68xxx	 (68000,	 68010,	 68020,	 etc.).	Many	 embedded
systems	used	Intel’s	32-bit	chips	of	x86	(386,	486,	Pentium)	and	Motorola’s	32-bit	68xxx
for	high-end	embedded	products	such	as	routers.	For	example,	Cisco	routers	used	68xxx
for	 the	CPU.	At	 the	 low	end,	 the	8051	 from	Intel	and	68HC11	from	Motorola	were	 the
dominant	8-bit	microcontrollers.	With	 the	 introduction	of	PIC	from	Microchip	and	AVR
from	Atmel,	 they	 became	major	 players	 in	 the	 8-bit	market	 for	microcontroller.	 At	 the
time	 of	 this	 writing,	 PIC	 and	 AVR	 are	 the	 leaders	 in	 terms	 of	 volume	 for	 8-bit
microcontrollers.	 In	 the	 late	 1990s,	 the	 ARM	 microcontroller	 started	 to	 challenge	 the
dominance	of	Intel	and	Motorola	in	the	32-bit	market.	Although	both	Intel	and	Motorola
used	RISC	features	to	enhance	the	performance	of	their	microprocessors,	due	to	the	need
to	maintain	 compatibility	with	 legacy	 software,	 they	 could	 not	make	 a	 clean	 break	 and
start	 over.	 Intel	 used	 massive	 amounts	 of	 gates	 to	 keep	 up	 the	 performance	 of	 x86
architecture	 and	 that	 in	 turn	 increased	 the	 power	 consumption	 of	 the	 x86	 to	 a	 level
unacceptable	 for	 battery-powered	 embedded	 products.	Meanwhile	 Freescale	 (Motorola)
streamlined	the	instructions	of	the	68xxx	CPU	and	created	a	new	line	of	microprocessors
called	ColdFire,	while	at	the	same	time	worked	with	IBM	to	design	a	new	RISC	processor
called	PowerPC.	While	both	PowerPC	and	Coldfire	are	 still	 alive	and	being	used	 in	 the
32-bit	 market,	 it	 is	 ARM	 which	 has	 become	 the	 leading	 microcontroller	 in	 the	 32-bit
market.

Currently	Available	Microcontrollers

There	are	many	microcontrollers	available	in	the	market.	Some	of	them	are	listed	in
Table	1-1.

32-bit

ARM,	 AVR32	 (Atmel),	 ColdFire	 (Freescale),	 MIPS32,	 PIC32	 (Microchip),	 PowerPC,	 TriCore
(Infineon),	SuperH



16-bit

MSP430	(TI),	HCS12	(Freescale),	PIC24	(Microchip),	dsPIC	(Microchip)

8-bit

8051,	AVR	(Atmel),	HCS08	(Freescale),	PIC16,	PIC18

Table	1-	1:	Some	Microcontrollers

Introduction	to	some	32-bit	microcontrollers

x86:	 The	 x86	 and	 Pentium	 processors	 are	 based	 on	 the	 32-bit	 architecture	 of	 the
386.		Although	both	Intel	and	AMD	are	pushing	the	x86	into	the	embedded	market,	due	to
the	high	power	consumption	of	 these	chips,	 the	embedded	market	has	not	embraced	 the
x86.	Intel	is	working	hard	to	make	a	low-power	version	of	the	386	called	Atom	available
for	the	embedded	market.

PIC32:		It	is	based	on	the	MIPS	architecture	and	is	getting	some	attention	due	to	the
fact	 it	 shares	 some	 of	 the	 peripherals	 with	 the	 PIC24/PIC18	 chips	 and	 also	 using	 the
MPLAB	for	 IDE.	 	Microchip	hopes	 the	 free	MPLAB	IDE	and	engineers’	knowledge	of
the	 8-bit	 PIC	 will	 attract	 embedded	 developers	 to	 the	 PIC32	 as	 they	 move	 to	 32-bit
systems	for	their	high	end	embedded	products.

ColdFire:	 The	 Freescale	 (formerly	 Motorola)	 is	 based	 on	 the	 venerable	 680x0
(68000,	 68010)	 so	 popular	 in	 the	 1980s	 and	 1990s.	 They	 streamlined	 the	 68000
instructions	 to	 make	 it	 more	 RISC-type	 architecture	 and	 is	 the	 top	 seller	 of	 32-bit
processors	from	the	Freescale.	In	recent	years	Freescale	revamped	and	redesigned	the	8-
bit	HCS08	(from	the	6808)	to	share	some	of	the	peripherals	with	ColdFire	and	are	pushing
them	under	the	name	Flexis.	They	hope	engineers	use	the	HCS08	at	the	low-end	and	move
to	Coldfire	for	high-end	of	the	embedded	products	with	minimum	learning	curve.

PowerPC:	 This	was	 developed	 jointly	 by	 IBM	 and	 Freescale.	 It	was	 used	 in	 the
Apple	Mac	for	a	few	years.	Then	Apple	switched	to	x86	for	a	while	and	currently	is	using
ARM	in	all	 their	products.	Nowadays,	both	Freescale	and	IBM	market	 the	PowerPC	for
the	high-end	of	the	embedded	systems.

How	to	choose	a	microcontroller

The	following	two	factors	can	be	important	in	choosing	a	microcontroller:

·	 	 	 	 	 	 	 	 	Chip	characteristics:	Some	of	the	factors	in	choosing	a	microcontroller	chip	are
clock	speed,	power	consumption,	price,	and	on-chip	memories	and	peripherals.

·	 	 	 	 	 	 	 	 	Available	resources:	Other	factors	in	choosing	a	microcontroller	include	the	IDE
compiler,	legacy	software,	and	multiple	sources	of	production.

Review	Questions

1.							True	or	false.	Microcontrollers	are	normally	less	expensive	than	microprocessors.

2.	 	 	 	 	 	 	When	comparing	a	system	board	based	on	a	microcontroller	and	a	general-	purpose
microprocessor,	which	one	is	cheaper?



3.							A	microcontroller	normally	has	which	of	the	following	devices	on-chip?

(a)	RAM							(b)	ROM															(c)	I/O			(d)	all	of	the	above

4.							A	general-purpose	microprocessor	normally	needs	which	of	the	following	devices	to
be	attached	to	it?

(a)	RAM							(b)	ROM															(c)	I/O			(d)	all	of	the	above

5.							An	embedded	system	is	also	called	a	dedicated	system.	Why?

6.							What	does	the	term	embedded	system	mean?

7.							Why	does	having	multiple	sources	of	a	given	product	matter?





Section	1.2:	The	ARM	Family	History
In	this	section,	we	look	at	the	ARM	and	its	history.

A	brief	history	of	the	ARM

The	ARM	came	out	of	a	company	called	Acorn	Computers	 in	United	Kingdom	in
the	1980s.	Professor	Steve	Furber	of	Manchester	University	worked	with	Sophie	Wilson
to	define	 the	ARM	architecture	 and	 instructions.	The	VLSI	Technology	Corp.	produced
the	 first	 ARM	 chip	 in	 1985	 for	 Acorn	 Computers	 and	 was	 designated	 as	 Acorn	 RISC
Machine	(ARM).	Unable	 to	compete	with	x86	(8088,	80286,	80386,	…)	PCs	from	IBM
and	other	personal	computer	makers,	the	Acorn	was	forced	to	push	the	ARM	chip	into	the
single-chip	microcontroller	market	for	embedded	products.	That	is	when	Apple	Corp.	got
interested	in	using	the	ARM	chip	for	the	PDA	(personal	digital	assistants)	products.	This
renewed	interest	in	the	chip	led	to	the	creation	of	a	new	company	called	ARM	(Advanced
RISC	Machine).	This	new	company	bet	its	entire	fortune	on	selling	the	rights	to	this	new
CPU	 to	 other	 silicon	manufacturers	 and	 design	 houses.	 Since	 the	 early	 1990s,	 an	 ever
increasing	number	of	companies	have	licensed	the	right	to	make	the	ARM	chip.	See	Table
1-2	for	the	major	milestones	of	the	ARM.

Also	see	http://www.arm.com/about/company-profile/milestones.php	for	the	list.

Table	1-	2:	ARM	Company	milestones	(www.ARM.com)

	

1982

						Acorn	produced	a	computer	for	BBC	named	BBC	micro.	Good	sales	of	the	computer
motivated	Acorn	to	decide	to	make	its	own	microprocessor.

	

1983

						Acorn	and	VLSI	began	designing	the	ARM	microprocessor.

	

1985

						Acorn	Computer	Group	developed	the	world’s	first	commercial	RISC	processor.	The
ARMv1	had	2500	transistors,	and	worked	with	a	frequency	of	4MHz.

	

1987

						Acorn’s	ARM	processor	debuts	as	the	first	RISC	processor	for	low-cost	PCs

	

1989

						Acorn	introduced	ARMv3	with	a	frequency	of	25MHz.	It	had	a	4KB	cache	as	well.

	

1990

http://www.arm.com/about/company-profile/milestones.php
http://www.ARM.com


						Advanced	RISC	Machines	(ARM)	spins	out	of	Acorn	and	Apple	Computer’s	collaboration
efforts	with	a	charter	to	create	a	new	microprocessor	standard.	VLSI	Technology	becomes
an	investor	and	the	first	licensee.

	

1991

						ARM	introduced	its	first	embeddable	RISC	core,	the	ARM6	solution	using	ARMv3
architecture.

	

1992

						GEC	Plessey	and	Sharp	licensed	ARM	technology

	

1993

						Texas	Instruments	licensed	ARM	technology

						ARM	introduced	the	ARM7	core.

	

1995

						ARM	announced	the	Thumb	architecture	extension,	which	gives	32-bit	RISC	performance
at	16-bit	system	cost	and	offers	industry-leading	code	density

						ARM	launched	Software	Development	Toolkit

	

1996

						ARM	and	VLSI	Technology	introduced	the	ARM810	microprocessor

						ARM	and	Microsoft	worked	together	to	extend	Windows	CE	to	the	ARM	architecture

	

1997

						Hyundai,	Lucent,	Philips,	Rockwell	and	Sony	licensed	ARM	technology

						ARM9TDMI	family	announced

	

1998

						HP,	IBM,	Matsushita,	Seiko	Epson	and	Qualcomm	licensed	ARM	technology

						ARM	developed	synthesizable	version	of	the	ARM7TDMI	core	

						ARM	Partners	shipped	more	than	50	million	ARM-powered	products

	

1999

						LSI	Logic,	STMicroelectronics	and	Fujitsu	licensed	ARM	technology

						ARM	announced	synthesizable	ARM9E	processor	with	enhanced	signal	processing

	



2000

						Agilent,	Altera,	Micronas,	Mitsubishi,	Motorola,	Sanyo,	Triscend	and	ZTEIC	licensed
ARM	technology

						ARM	launched	SecurCore	family	for	smartcards

						TSMC	and	UMC	became	members	of	ARM	Foundry	Program

	

2001

						ARM’s	share	of	the	32-bit	embedded	RISC	microprocessor	market	grew	to	76.8	per	cent

						ARM	announced	new	ARMv6	architecture

						Fujitsu,	Global	UniChip,	Samsung	and	Zeevo	licensed	ARM	technology

						ARM	acquired	key	technologies	and	an	embedded	debug	design	team	from	Noral
Micrologics	Ltd

	

2002

						ARM	announced	that	it	had	shipped	over	one	billion	of	its	microprocessor	cores	to	date

						ARM	technology	licensed	to	Seagate,	Broadcom,	Philips,	Matsushita,	Micrel,	eSilicon,
Chip	Express	and	ITRI

						ARM	launched	the	ARM11	micro-architecture

						ARM	launches	its	RealView	family	of	development	tools

						Flextronics	became	the	first	ARM	Licensing	Partner	program	member,	allowing	it	to	sub-
license	ARM	technology	to	its	own	customers

	

2004

						The	ARM	Cortex	family	of	processors,	based	on	the	ARMv7	architecture,	is	announced.	
The	ARM	Cortex-M3	is	announced	in	conjunction,	as	the	first	of	the	new	family	of
processors

						ARM	Cortex-M3	processor	announced,	the	first	of	a	new	Cortex	family	of	processor	cores

						MPCore	multiprocessor	launched,	the	first	integrated	multiprocessor

						OptimoDE	technology	launched,	the	groundbreaking	embedded	signal	processing	core

	

2005

						ARM	acquired	Keil	Software

						ARM	Cortex-A8	processor	announced

	

2007

						Five	billionth	ARM	Powered	processor	shipped	to	the	mobile	device	market

						ARM	Cortex-M1	processor	launched	–	the	first	ARM	processor	designed	specifically	for
implementation	on	FPGAs



						RealView	Profiler	for	Embedded	Software	Analysis	introduced

						ARM	unveils	Cortex-A9	processors	for	scalable	performance	and	low-power	designs

	

2008

						ARM	announces	10	billionth	processor	shipment

						ARM	Mali-200	GPU	Worlds	First	to	achieve	Khronos	Open	GL	ES	2.0	conformance	at
1080p	HDTV	resolution

	

2009

						ARM	announces	2GHz	capable	Cortex-A9	dual	core	processor	implementation

						ARM	launches	its	smallest,	lowest	power,	most	energy	efficient	processor,	Cortex-M0

	

2010

						ARM	launches	Cortex-M4	processor	for	high	performance	digital	signal	control

						ARM	together	with	key	Partners	form	Linaro	to	speed	rollout	of	Linux-based	devices

						Microsoft	becomes	an	ARM	Architecture	Licensee

						ARM	&	TSMC	sign	long-term	agreement	to	achieve	optimized	Systems-on-Chip	based	on
ARM	processors,	extending	down	to	20nm

						ARM	extends	performance	range	of	processor	offering	with	the	Cortex-A15	MPCore
processor

						ARM	Mali	becomes	the	most	widely	licensed	embedded	GPU	architecture

						ARM	Mali-T604	Graphics	Processing	Unit	introduced	providing	industry-leading	graphics
performance	with	an	energy-efficient	profile

	

2011

						Microsoft	unveils	Windows	on	ARM	at	CES	2011

						IBM	and	ARM	collaborate	to	provide	comprehensive	design	platforms	down	to	14nm

						ARM	and	UMC	extend	partnership	into	28nm

						Cortex-A7	processor	launched

						Big-Little	processing	announced,	linking	Cortex-A15	and	Cortex-A7	processors

						ARMv8	architecture	unveiled	at	TechCon

						AMP	announce	license	and	plans	for	first	ARMv8-based	processor

						ARM	Mali-T658	GPU	launched

						ARM	expands	R&D	presence	in	Taiwan	with	Hsinchu	Design	Center

						ARM	and	Avnet	launch	Embedded	Software	Store	(ESS)

						ARM,	Cadence	and	TSMC	tape	out	first	20nm	Cortex-A15	multicore	processor		

	



2012

						ARM,	Gemalto	and	G&D	form	joint	venture	to	deliver	next-generation	mobile	security

						First	Windows	RT	(Windows	on	ARM)	devices	revealed

						ARM,	AMD,	Imagination,	MediaTek	and	Texas	Instruments	founding	members	of
Heterogeneous	System	Architecture	(HAS)	Foundation

						ARM	and	TSMC	work	together	on	FinFET	process	technology	for	next-generation	64-bit
ARM	processors

						ARM	forms	first	UK	forum	to	create	technology	blueprint	“Internet	of	Things”	devices

						ARM	named	one	of	Britain’s	Top	Employers

						MIT	Technology	Review	named	ARM	in	its	list	of	50	Most	Innovative	Companies

Currently	 the	ARM	Corp.	 receives	 its	 entire	 revenue	 from	 licensing	 the	ARM	 to
other	 companies	 since	 it	 does	 not	 own	 state	 of	 the	 art	 chip	 fabrication	 facility.	 This
business	model	of	making	money	from	selling	IP	(intellectual	property)	has	made	ARM
one	of	the	most	widely	used	CPU	architectures	in	the	world.	Unlike	Intel	or	Freescale	who
define	the	architecture	and	fabricate	 the	chip,	hundreds	of	companies	who	have	licensed
the	ARM	IP	feel	a	level	playing	field	when	it	comes	to	competing	with	the	originator	of
the	chip.

ARM	and	Apple

When	Steve	Jobs	came	back	to	run	the	Apple	in	1996,	the	company	was	in	decline.
It	had	lost	the	personal	computer	race	that	had	started	20	years	earlier.	The	introduction	of
iPod	 in	 2001	 changed	 the	 fortune	 of	 that	 company	more	 than	 anything	 else.	Apple	 had
tried	to	sell	a	PDA	called	Newton	in	the	1990s	but	was	not	successful.	The	Newton	was
using	 the	ARM	processor	 and	 it	was	 too	 early	 for	 its	 time.	The	 iPod	used	 an	 enhanced
version	of	ARM	called	ARM7	and	became	an	instant	success.	iPod	brought	the	attention
to	 the	 ARM	 chip	 that	 it	 deserved.	 Since	 then	 Apple	 has	 been	 using	 the	 ARM	 chip	 in
iPhones	and	 iPads.	Today,	 the	ARM	microcontroller	 is	 the	CPU	of	choice	 for	designing
cell	 phone	 and	 other	 hand-held	 devices.	 In	 the	 future,	ARM	will	make	 further	 in-roads
into	 the	 tablet	 and	 laptop	PC	market	now	 that	Microsoft	Corp	has	 introduced	 the	ARM
version	of	its	Windows	operating	system.

ARM	family	variations

Although	the	ARM7	family	is	the	most	widely	used	version,	ARM	is	determined	to
push	the	architecture	into	the	low	end	of	the	microcontroller	market	where	8-	and	16-bit
microcontrollers	have	been	traditionally	dominating.	 	For	this	reason	they	have	come	up
with	a	microcontroller	version	of	ARM	called	Cortex.	As	we	will	see	in	future	chapters,
the	 Cortex	 family	 of	 ARM	 microcontrollers	 maintains	 compatibility	 with	 the	 ARM7
without	 sacrificing	 performance.	The	ARM	architecture	 is	 also	 being	 pushed	 into	 high-
performance	systems	where	multicore	chips	such	as	Intel	Xeon	dominate.

Figure	 1-3	 shows	 some	 of	 the	 most	 widely	 used	 ARM	 processors.	 It	 should	 be
emphasized	 that	 we	 cannot	 use	 the	 terms	 ARM	 family	 and	 ARM	 architecture
interchangeably.	 For	 example,	 ARM11	 family	 is	 based	 on	 ARMv6	 architecture	 and



ARMv7A	is	the	architecture	of	Cortex-A	family.

Figure	1-	3:	ARM	Family	and	Architecture

One	CPU,	many	peripherals

ARM	has	defined	the	details	of	architecture,	registers,	instruction	set,	memory	map,
and	timing	of	the	ARM	CPU	and	holds	the	copyright	to	it.	The	various	design	houses	and
semiconductor	manufacturers	 license	 the	 IP	 (intellectual	 property)	 for	 the	CPU	and	 can
add	 their	 own	 peripherals	 as	 they	 please.	 It	 is	 up	 to	 the	 licensee	 (design	 houses	 and
semiconductor	manufactures)	to	define	the	details	of	peripherals	such	as	I/O	ports,	serial
port	UART,	timer,	ADC,	SPI,	DAC,	I2C,	and	so	on.	As	a	result	while	the	CPU	instructions
and	 architecture	 are	 same	 across	 all	 the	 ARM	 chips	 made	 by	 different	 vendors,	 their
peripherals	are	not	compatible.	That	means	if	you	write	a	program	for	the	serial	port	of	an
ARM	chip	made	by	TI	(Texas	Instrument),	 the	program	might	not	necessarily	run	on	an
ARM	chip	sold	by	NXP.	This	is	the	only	drawback	of	the	ARM	microcontroller.	The	good
news	is	the	IDE	(integrated	development	environment)	such	as	Keil	(see	www.keil.com)
or	IAR	(see	www.IAR.com)	do	provide	peripheral	libraries	for	chips	from	various	vendors
and	make	 the	 job	of	programming	the	peripherals	much	easier.	 	 It	must	be	noted	 that	 in
recent	years	ARM	provides	the	IP	for	some	peripherals	such	as	UART	and	SPI,	but	unlike
the	CPU	architecture,	its	adoption	is	not	mandatory	and	it	is	up	to	the	chip	manufacturer
whether	 to	 adopt	 it	 or	 not.	 This	 is	 in	 contrast	 to	 the	 Coldfire	 microcontroller	 from
Freescale,	in	which	the	Freescale	defines	the	architecture	and	peripherals,	fabricates,	sells,
and	supports	the	chip.	Figure	1-4	shows	the	ARM	simplified	block	diagram	and	Table	1-3
provides	a	list	of	some	ARM	vendors.



Figure	1-	4:	ARM	Simplified	Block	Diagram

	

Actel Analog	Devices Atmel

Broadcom Cypress Ember

Dust	Networks Energy Freescale

Fujitso Nuvoton NXP

Renesas Samsung ST

Toshiba Texas	Instruments Triad	Semiconductor

Table	1-	3:	ARM	Vendors

Review	Questions

1.							True	or	false.	The	ARM	CPU	instructions	are	universal	regardless	of	who	makes	the
chip.

2.							True	or	false.	The	peripherals	of	ARM	microcontroller	are	standardized	regardless	of



who	makes	the	chip.

3.							An	ARM	microcontroller	normally	has	which	of	the	following	devices	on-chip?

(a)	RAM							(b)	Timer													(c)	I/O			(d)	all	of	the	above

4.							For	which	of	the	followings,	ARM	has	defined	standard?

(a)	RAM	size															(b)	ROM	size						(c)	instruction	set													(d)	all	of	the	above

See	the	following	websites	for	ARM	microcontrollers	and	ARM	trainers:

http://www.ARM.com

http://www.MicroDigitalEd.com

	

http://www.ARM.com
http://www.MicroDigitalEd.com


Problems
Section	1.1:	Introduction	to	Microcontrollers

1.							True	or	False.	A	general-purpose	microprocessor	has	on-chip	ROM.

2.							True	or	False.	Generally,	a	microcontroller	has	on-chip	ROM.

3.							True	or	False.	A	microcontroller	has	on-chip	I/O	ports.

4.							True	or	False.	A	microcontroller	has	a	fixed	amount	of	RAM	on	the	chip.

5.							What	components	are	usually	put	together	with	the	microcontroller	onto	a	single
chip?

6.							Intel’s	Pentium	chips	used	in	Windows	PCs	need	external	______	and	_____	chips
to	store	data	and	code.

7.							List	three	embedded	products	attached	to	a	PC.

8.							Why	would	someone	want	to	use	an	x86	as	an	embedded	processor?

9.							Give	the	name	and	the	manufacturer	of	some	of	the	most	widely	used	8-bit
microcontrollers.

10.			In	Question	9,	which	one	has	the	most	manufacture	sources?

11.			In	a	battery-based	embedded	product,	what	is	the	most	important	factor	in	choosing
a	microcontroller?

12.			In	an	embedded	controller	with	on-chip	ROM,	why	does	the	size	of	the	ROM
matter?

13.			In	choosing	a	microcontroller,	how	important	is	it	to	have	multiple	sources	for	that
chip?

14.			What	does	the	term	“third-party	support”	mean?

Section	1.2:	The	ARM	Family	History

15.			What	does	ARM	stand	for?

16.			True	or	false.	In	ARM,	architectures	have	the	same	names	as	families.

17.			True	or	false.	In	1990s,	ARM	was	widely	used	in	microprocessor	world.

18.			True	or	false.	ARM	is	widely	used	in	Apple	products,	like	iPhone	and	iPod.

19.			True	or	false.	Currently	the	Microsoft	Windows	does	not	support	ARM	products.

20.			True	or	false.	All	ARM	chips	have	standard	instructions.

21.			True	or	false.	All	ARM	chips	have	standard	peripherals

22.			True	or	false.	The	ARM	corp.	also	manufactures	the	ARM	chip.

23.			True	or	false.	The	ARM	IP	must	be	licensed	from	ARM	corp.

24.			True	or	false.	A	given	serial	communication	program	is	written	for	TI	ARM	chip.	It



should	work	without	any	modification	on	Freescale	ARM	chip

25.			True	or	false.	A	given	Assembly	language	program	is	written	for	a	given	family	of
ARM	Cortex	chip.	Any	other	Cortex	ARM	chip	can	execute	the	program.

26.			True	or	false.	At	the	present	time,	ARM	has	just	one	manufacturer.

27.			What	is	the	difference	between	the	ARM	products	of	different	manufacturers?

28.			Name	some	32-bit	microcontrollers.

29.			What	is	Intel’s	challenge	in	decreasing	the	power	consumption	of	the	x86?



Answers	to	Review	Questions
Section	1.1

1.							True

2.							A	microcontroller-based	system

3.							d

4.							d

5.							It	is	dedicated	because	it	does	only	one	type	of	job.

6.							Embedded	system	means	that	the	application	(software)	and	the	processor	(hardware
such	as	CPU	and	memory)	are	embedded	together	into	a	single	system.

7.							Having	multiple	sources	for	a	given	part	means	you	are	not	hostage	to	one	supplier.
More	importantly,	competition	among	suppliers	brings	about	lower	cost	for	that
product.

Section	1.2

1.							True

2.							False

3.							d

4.							c

	



	





Chapter	2:	ARM	Architecture	and	Assembly	Language
Programming

CPUs	use	registers	to	store	data	temporarily.	To	program	in	Assembly	language,	we
must	understand	 the	 registers	and	architecture	of	a	given	CPU	and	 the	 role	 they	play	 in
processing	 data.	 In	 Section	 2.1	we	 look	 at	 the	 general	 purpose	 registers	 (GPRs)	 of	 the
ARM.	We	demonstrate	the	use	of	GPRs	with	simple	instructions	such	as	MOV	and	ADD.
Memory	 map	 and	 memory	 access	 of	 the	 ARM	 are	 discussed	 in	 Sections	 2.2	 and	 2.3,
respectively.	 In	 Section	 2.4	 we	 discuss	 the	 status	 register’s	 flag	 bits	 and	 how	 they	 are
affected	by	arithmetic	instructions.	In	Section	2.5	we	look	at	some	widely	used	Assembly
language	directives,	pseudo-code,	and	data	 types	 related	 to	 the	ARM.	In	Section	2.6	we
examine	Assembly	 language	and	machine	 language	programming	and	define	 terms	such
as	 mnemonics,	 opcode,	 operand,	 and	 so	 on.	 The	 process	 of	 assembling	 and	 creating	 a
ready-to-run	program	for	the	ARM	is	discussed	in	Section	2.7.	Step-by-step	execution	of
an	 ARM	 program	 and	 the	 role	 of	 the	 program	 counter	 are	 examined	 in	 Section	 2.8.
Section	2.9	examines	some	ARM	addressing	modes.	The	merits	of	RISC	architecture	are
examined	in	Section	2.10.	Section	2.11	discusses	the	Keil	IDE.





Section	2.1:	The	General	Purpose	Registers	in	the	ARM
CPUs	use	registers	to	store	data	temporarily.	To	program	in	Assembly	language,	we

must	understand	 the	 registers	and	architecture	of	a	given	CPU	and	 the	 role	 they	play	 in
processing	 data.	 In	 this	 section	we	 look	 at	 the	 general	 purpose	 registers	 (GPRs)	 of	 the
ARM	and	we	demonstrate	 the	 use	 of	GPRs	with	 simple	 instructions	 such	 as	MOV	and
ADD.

ARM	microcontrollers	have	many	 registers	 for	 arithmetic	 and	 logic	operations.	 In
the	CPU,	registers	are	used	to	store	information	temporarily.	That	information	could	be	a
byte	of	data	to	be	processed,	or	an	address	pointing	to	the	data	to	be	fetched.	All	of	ARM
registers	are	32-bit	wide.	The	32	bits	of	a	register	are	shown	in	Figure	2-1.	These	range
from	the	MSB	(most-significant	bit)	D31	to	the	LSB	(least-significant	bit)	D0.	With	a	32-
bit	data	 type,	any	data	 larger	 than	32	bits	must	be	broken	into	32-bit	chunks	before	 it	 is
processed.	Although	the	ARM	default	data	size	is	32-bit	many	assemblers	also	support	the
single	bit,	8-bit,	and	16-bit	data	 types,	as	we	will	see	in	future	chapters.	The	32-bit	data
size	of	the	ARM	is	often	referred	as	word.	This	is	in	contrast	to	x86	CPU	in	which	word	is
defined	 as	 16-bit.	 In	ARM	 the	 16-bit	 data	 is	 referred	 to	 as	 half-word.	 Therefore	ARM
supports	byte,	half-word	(two	byte),	and	word	(four	bytes)	data	types.	

Figure	2-	1:	ARM	Registers	Data	Size

In	ARM	there	are	13	general	purpose	registers.	They	are	R0–R12.	See	Figure	2-2.
All	of	these	registers	are	32	bits	wide.	

Figure	2-	2:	ARM	Registers

The	 general	 purpose	 registers	 in	 ARM	 are	 the	 same	 as	 the	 accumulator	 in	 other



microprocessors.	They	can	be	used	by	all	arithmetic	and	logic	instructions.	To	understand
the	 use	 of	 the	 general	 purpose	 registers,	we	will	 show	 it	 in	 the	 context	 of	 three	 simple
instructions:	MOV,	ADD,	and	SUB.	The	ARM	core	has	three	special	function	registers	of
R13,	 R14,	 and	 R15.	 We	 will	 examine	 their	 use	 in	 the	 next	 section.	 In	 some	 ARM
processors,	we	also	have	shadow	registers	in	various	operating	modes	designed	to	speed
up	the	program	execution	when	CPU	switches	task.

ARM	Instruction	Format

The	ARM	CPU	uses	the	tri-part	instruction	format	for	most	instructions.	One	of	the
most	common	format	is:

instruction		destination,source1,source2

Depending	 on	 the	 instruction	 the	 source2	 can	 be	 a	 register,	 immediate	 (constant)
value,	or	memory.	The	destination	is	often	a	register	or	read/write	memory.

MOV	instruction

Simply	 stated,	 the	 MOV	 instruction	 copies	 data	 into	 register	 or	 from	 register	 to
register.	It	has	the	following	formats:

MOV					Rn,Op2	;load	Rn	register	with	Op2	(Operand2).

;Op2	can	be	immediate

Op2	can	be	an	immediate	(constant)	number	#K	which	is	an	8-bit	value	that	can	be
0–255	in	decimal,	(00–FF	in	hex).	Op2	can	also	be	a	register	Rm.	Rn	or	Rm	are	any	of	the
registers	R0	to	R15.	If	we	see	the	word	“immediate”,	we	are	dealing	with	a	constant	value
that	 must	 be	 provided	 right	 there	 with	 the	 instruction.	 Notice	 the	 #	 before	 immediate
values.	The	following	instruction	loads	the	R2	register	with	a	value	of	0x25	(25	in	hex).

MOV	R2,#0x25		;load	R2	with	0x25	(R2	=	0x25)

The	following	instruction	loads	the	R1	register	with	the	value	0x87	(87	in	hex).

MOV	R1,#0x87		;copy	0x87	into	R1		(R1	=	0x87)

The	following	instruction	loads	R5	with	the	value	of	R7.

MOV	R5,R7									;copy	contents	of	R7	into	R5	(R5	=	R7)

Notice	 the	 position	 of	 the	 source	 and	 destination	 operands.	 As	 you	 can	 see,	 the
MOV	loads	the	right	operand	into	the	left	operand.	In	other	words,	the	destination	comes
first.

To	write	 a	 comment	 in	Assembly	 language	we	 use	 ‘;’.	 It	 is	 the	 same	 as	 ‘//’	 in	C
language,	which	causes	 the	remainder	of	 the	 line	of	code	to	be	 ignored.	For	 instance,	 in
the	above	examples	the	expressions	mentioned	after	‘;’	just	explain	the	functionality	of	the
instructions	to	you,	and	do	not	have	any	effects	on	the	execution	of	the	instructions.

When	 programming	 the	 registers	 of	 the	ARM	microcontroller	with	 an	 immediate
value,	the	following	points	should	be	noted:



1.							We	put	#	in	front	of	every	immediate	value.

2.							If	we	want	to	present	a	number	in	hex,	we	put	a	0x	in	front	of	it.	If	we	put	nothing
in	front	of	a	number,	it	is	in	decimal.	For	example,	in	“MOV	R1,#50”,	R1	is	loaded
with	50	in	decimal,	whereas	in	“MOV	R1,#0x50”,	R1	is	loaded	with	50	in	hex	(	80
in	decimal).

3.							If	values	0	to	FF	are	moved	into	a	32-bit	register,	the	rest	of	the	bits	are	assumed	to
be	all	zeros.	For	example,	 in	“MOV	R1,#0x5”	 the	 result	will	be	R1=0x00000005;
that	is,	R1=00000000000000000000000000000101	in	binary.

4.							Moving	an	immediate	value	larger	than	255	(FF	in	hex)	into	the	register	will	cause
an	error.

Note!

We	cannot	load	values	larger	than	0xFF	(255)	into	registers	R0	to	R12	using	the	MOV
instruction.	For	example,	the	following	instruction	is	not	valid:

MOV	R5,#0x999999																																									;invalid	instruction

The	reason	is	the	fact	that	although	the	ARM	instruction	is	32-bit	wide,	only	8	bits	of
MOV	instruction	can	be	used	as	an	immediate	value	which	can	take	values	not	larger
than	0xFF	(255).

ADD	instruction

The	ADD	instruction	has	the	following	format:

ADD							Rd,Rn,Op2		;ADD	Rn	to	Op2	and	store	the	result	in	Rd				

;Op2	can	be	Immediate	value	#K		(K	is	between	0	and	255)										

;or	Register	Rm

The	ADD	instruction	tells	the	CPU	to	add	the	value	of	Rn	to	Op2	and	put	the	result
into	 the	 Rd	 (destination)	 register.	 	 As	we	mentioned	 before,	 Op2	 can	 be	 an	 immediate
value	#K	between	0–255	in	decimal	(00–FF	in	hex)	or	a	register	Rm.	To	add	two	numbers
such	as	0x25	and	0x34,	one	can	do	any	of	the	following:

MOV					R1,#0x25	;copy	0x25	into	R1	(R1	=	0x25)																		

MOV					R7,#0x34	;copy	0x34	into	R1	(R7	=	0x34)

ADD							R5,R1,R7	;add	value	R7	to	R1	and	put	it	in	R5

			;(R5	=	R1	+	R7)

or

MOV					R1,#0x25														;load	(copy)	0x25	into	R1	(R1	=	0x25)								

ADD							R5,R1,#0x34							;add	0x34	to	R1	and	put	it	in	R5

;(R5	=	R1	+	0x34)



Executing	the	above	lines	results	in	R5	=	0x59	(0x25	+	0x34	=	0x59)

SUB	instruction

The	SUB	instruction	is	like	ADD	instruction	format.	It	subtracts	Op2	from	Rn	and
put	the	result	in	Rd	(destination)

SUB								Rd,Rn,Op2										;Rd=Rn	–	Op2

To	subtract	two	numbers	such	as	0x34	and	0x25,	one	can	do	the	following:

MOV					R1,#0x34														;load	(copy)	0x34	into	R1	(R1=0x34)										

SUB								R5,R1,#0x25							;R5	=	R1	–	0x25	(R1	=	0x34	–	0x25)

The	old	format

Notice	that	in	most	of	instructions	like	ADD	and	SUB,	Rn	can	be	omitted	if	Rd	and
Rn	are	the	same.	This	format	is	no	longer	recommended	by	Unified	Assembler	Language.

For	example,	each	pair	of	the	following	instructions	are	the	same.

SUB								R1,R1,#0x25							;R1=R1-0x25

SUB								R1,#0x25														;R1=R1-0x25

	

SUB								R1,R1,R2														;R1=R1-R2

SUB								R1,R2																					;R1=R1-R2

	

ADD							R1,R1,#0x25							;R1=R1+0x25

ADD							R1,#0x25														;R1=R1+0x25

	

ADD							R1,R1,R2														;R1=R1+R2

ADD							R1,R2																					;R1=R1+R2

Figure	2-3	shows	the	general	purpose	registers	(GPRs)	and	the	ALU	in	ARM.	The
effect	of	arithmetic	and	logic	operations	on	the	status	register	will	be	discussed	in	Section
2.4.	In	Table	2-1	you	see	some	of	the	ARM ALU	instructions.



Figure	2-	3:	ARM	Registers	and	ALU

Instruction Description

ADD							Rd,	Rn,Op2* ADD	Rn	to	Op2	and	place	the	result	in	Rd

ADC							Rd,
Rn,Op2								 ADD	Rn	to	Op2	with	Carry	and	place	the	result	in	Rd

AND							Rd,
Rn,Op2								 AND	Rn	with	Op2	and	place	the	result	in	Rd

BIC									Rd,
Rn,Op2								 AND	Rn	with	NOT	of	Op2	and	place	the	result	in	Rd

CMP						Rn,Op2 Compare	Rn	with	Op2	and	set	the	status	bits	of	CPSR**

CMN						Rn,Op2 Compare	Rn	with	negative	of	Op2	and	set	the	status	bits

EOR								Rd,
Rn,Op2								 Exclusive	OR	Rn	with	Op2	and	place	the	result	in	Rd

MVN					Rd,Op2 Place	NOT	of	Op2	in	Rd



MOV					Rd,Op2 MOVE	(Copy)	Op2	to	Rd

ORR							Rd,	Rn,Op2 OR	Rn	with	Op2	and	place	the	result	in	Rd

RSB								Rd,	Rn,Op2 Subtract	Rn	from	Op2	and	place	the	result	in	Rd

RSC								Rd,	Rn,Op2 Subtract	Rn	from	Op2	with	carry	and	place	the	result	in	Rd

SBC								Rd,	Rn,Op2 Subtract	Op2	from	Rn	with	carry	and	place	the	result	in	Rd

SUB								Rd,	Rn,Op2 Subtract	Op2	from	Rn	and	place	the	result	in	Rd

TEQ								Rn,Op2 Exclusive-OR	Rn	with	Op2	and	set	the	status	bits	of	CPSR

TST									Rn,Op2 AND	Rn	with	Op2	and	set	the	status	bits	of	CPSR

*														Op2	can	be	an	immediate	8-bit	value	#K	which	can	be	0–255	in	decimal,	(00–FF	in	hex).	Op2	can	also	be	a	register	Rm.
Rd,	Rn	and	Rm	are	any	of	the	general	purpose	registers

**											CPSR	is	discussed	later	in	this	chapter

***									The	instructions	are	discussed	in	detail	in	the	next	chapters

Table	2-	1:	ALU	Instructions	Using	GPRs

Review	Questions

1.							Write	instructions	to	move	the	value	0x34	into	the	R2	register.

2.							Write	instructions	to	add	the	values	0x16	and	0xCD.	Place	the	result	in	the	R1
register.

3.							True	or	false.	No	value	can	be	moved	directly	into	the	GPRs.

4.							What	is	the	largest	hex	value	that	can	be	moved	into	a	32-bit	register	using	MOV
instruction?	What	is	the	decimal	equivalent	of	that	hex	value?

5.							All	of	the	registers	in	the	ARM	are	_____-bit.





Section	2.2:	The	ARM	Memory	Map
In	this	section	we	discuss	the	memory	map	for	ARM	family	members.

The	Special	Function	Registers	in	ARM

In	ARM the	R13,	R14,	R15,	 and	CPSR	 (current	 program	 status	 register)	 registers
are	 called	 SFRs	 (special	 function	 registers)	 since	 each	 one	 is	 dedicated	 to	 a	 specific
function.	A	given	special	function	register	is	dedicated	to	specific	function	such	as	status
register,	program	counter,	stack	pointer,	and	so	on.	The	function	of	each	SFR	is	fixed	by
the	CPU	designer	at	the	time	of	design	because	it	is	used	for	control	of	the	microcontroller
or	keeping	track	of	specific	CPU	status.	The	four	SFRs	of	R13,	R14,	R15,	and	CPSR	play
an	extremely	important	role	 in	ARM.	The	R13	is	set	aside	for	stack	pointer.	The	R14	is
designated	as	link	register	which	holds	the	return	address	when	the	CPU	calls	a	subroutine
and	the	R15	is	the	program	counter	(PC).	The	PC	(program	counter)	points	to	the	address
of	 the	next	 instruction	to	be	executed	as	we	will	see	in	next	section.	The	CPSR	(current
program	status	register)	is	used	for	keeping	condition	flags	among	other	things,	as	we	will
see	 in	 Section	 2.4.	 In	 contrast	 to	 SFRs,	 the	 GPRs	 (R0-R12)	 do	 not	 have	 any	 specific
function	 and	 are	 used	 for	 storing	 general	 data.	 For	 this	 reason	 some	 ARM	 instruction
formats	(the	Thumb)	have	only	R0-7	but	every	variation	of	ARM	chip	has	R13-R15	SFRs.
The	 Thumb	 instruction	 format	 is	 designed	 to	 compete	 with	 the	 8-	 and	 16-bit
microcontrollers	and	increase	code	density.

Program	Counter	in	the	ARM

One	of	the	most	important	register	in	the	ARM	microcontroller	is	the	PC	(program
counter)	.	As	we	mentioned	earlier,	the	R15	is	the	program	counter.	The	program	counter
is	used	by	the	CPU	to	point	to	the	address	of	the	next	instruction	to	be	executed.		As	the
CPU	fetches	 the	opcode	from	the	program	memory,	 the	program	counter	 is	 incremented
automatically	 to	 point	 to	 the	 next	 instruction.	The	wider	 the	 program	counter,	 the	more
memory	locations	a	CPU	can	access.	That	means	that	a	32-bit	program	counter	can	access
a	maximum	of	4G	(232	=	4G)	bytes	of	program	memory	locations.

In	ARM	microcontrollers	each	memory	location	is	a	byte	wide.	In	the	case	of	a	32-
bit	 program	 counter,	 the	 code	 space	 is	 4G	 bytes	 (232	 =	 4G),	 which	 occupies	 the
0x00000000–0xFFFFFFFF	address	range.	The	program	counter	in	the	ARM	family	is	32
bits	 wide.	 This	 means	 that	 the	 ARM	 family	 can	 access	 addresses	 0x00000000	 to
0xFFFFFFFF,	a	total	of	4G	bytes	of	locations	(memory	spaces).	Although	this	4G	bytes	of
memory	 space	can	be	allocated	 to	on-chip	or	off-chip	memory;	however,	 at	 the	 time	of
this	writing,	none	of	the	members	of	the	ARM	microcontroller	family	have	the	entire	4G
bytes	of	on-chip	memory	populated.	See	Table	2-2.

Company Device Flash	(K	Bytes) RAM	(K	Bytes) I/O	Pins

Atmel AT91SAM7X512 512 128 62

NXP LPC2367 512 58 70



ST STR750FV2 256 16 72

TI TMS470R1A256 256 12 49

Freescale MK10DX256VML7 256 64 74

Table	2-	2:	On-chip	Memory	Size	for	some	ARM	Chips

Memory	space	allocation	in	the	ARM

The	ARM	has	4G	bytes	of	directly	accessible	memory	space.	This	memory	space
has	addresses	0	to	0xFFFFFFFF.	The	4G	bytes	of	memory	space	can	be	divided	into	five
sections.	They	are	as	follows:

1.							On-chip	peripheral	and	I/O	registers:		This	area	is	dedicated	to	general	purpose
I/O	(GPIO)	and	special	function	registers	(SFRs)	of	peripherals	such	as	timers,	serial
communication,	ADC,	and	so	on.	In	other	words,	ARM	uses	memory-mapped	I/O.
See	 Chapter	 0	 for	 discussion	 of	 memory-mapped	 I/O.	 The	 function	 and	 address
location	of	each	SFR	is	fixed	by	the	chip	vendor	at	the	time	of	design	because	it	is
used	 for	port	 registers	of	peripherals.	The	number	of	 locations	 set	 aside	 for	GPIO
registers	and	SFRs	depends	on	the	pin	numbers	and	peripheral	functions	supported
by	that	chip.	That	number	can	vary	from	chip	to	chip	even	among	members	of	the
same	family	 from	the	same	vendor.	Due	 to	 the	 fact	 that	ARM	does	not	define	 the
type	 and	 number	 of	 I/O	 peripherals	 one	 must	 not	 expect	 to	 have	 same	 address
locations	for	the	peripheral	registers	among	various	vendors.

2.	 	 	 	 	 	 	On-chip	data	SRAM:	A	RAM	space	 ranging	 from	a	 few	kilobytes	 to	 several
hundred	kilobytes	is	set	aside	mainly	for	data	storage.	The	data	RAM	space	is	used
for	data	variables	and	stack	and	is	accessed	by	the	microcontroller	instructions.	The
data	 RAM	 space	 is	 read/write	 memory	 used	 by	 the	 CPU	 for	 storage	 of	 data
variables,	 scratch	 pad,	 and	 stack.	 The	 ARM	 microcontrollers’	 data	 SRAM	 size
ranges	 from	 2K	 bytes	 to	 several	 thousand	 kilobytes	 depending	 on	 the	 chip.	 Even
within	the	same	family,	the	size	of	the	data	SRAM	space	varies	from	chip	to	chip.	A
larger	data	SRAM	size	means	more	difficulties	in	managing	these	RAM	locations	if
you	 use	 Assembly	 language	 programming.	 In	 today’s	 high-performance
microcontroller,	 however,	 with	 over	 a	 thousand	 bytes	 of	 data	 RAM,	 the	 job	 of
managing	them	is	handled	by	the	C	compilers.	Indeed,	the	C	compilers	are	the	very
reason	we	need	a	large	data	RAM	since	it	makes	it	easier	for	C	compilers	to	store
parameters	and	allows	them	to	perform	their	jobs	much	faster.	The	amount	and	the
location	of	the	SRAM	space	vary	from	chip	to	chip	in	the	ARM	chips.	A	section	of
the	data	RAM	space	is	used	by	stack	as	we	will	see	in	Chapter	6.	Although	many	of
the	ARM	microcontrollers	used	in	embedded	products	the	SRAM	space	is	used	for
data;	one	can	also	buy	or	design	an	ARM-based	system	in	which	the	RAM	space	is
used	for	both	data	and	program	codes.	This	is	what	we	see	in	the	x86	PCs.	In	such
systems	normally	one	connects	 the	ARM CPU	to	external	DRAM	and	 the	DRAM
memory	is	used	for	both	code	and	data.	Microsoft	Windows	8	uses	such	a	system	for
ARM-based	Tablet	computers.



3.							On-chip	EEPROM:	A	block	of	memory	from	1K	bytes	to	several	thousand	bytes
is	 set	 aside	 for	EEPROM	memory.	The	amount	 and	 the	 location	of	 the	EEPROM
space	 vary	 from	 chip	 to	 chip	 in	 the	 ARM	 microcontrollers.	 Although	 in	 some
applications	the	EEPROM	is	used	for	program	code	storage,	it	is	used	most	often	for
saving	critical	data.	Not	all	ARM	chips	have	on-chip	EEPROM.

4.							On-chip	Flash	ROM:	A	block	of	memory	from	a	few	kilobytes	to	several	hundred
kilobytes	is	set	aside	for	program	space.	The	program	space	is	used	for	the	program
code.	In	today’s	ARM microcontroller	chips,	the	code	ROM	space	is	of	Flash	type
memory.	The	 amount	 and	 the	 location	 of	 the	 code	ROM	space	 vary	 from	chip	 to
chip	 in	 the	 ARM	 products.	 See	 Table	 2-2	 and	 Examples	 2-1	 and	 2-2.	 The	 Flash
memory	of	code	ROM	is	under	the	control	of	the	PC	(program	counter).	The	code
ROM	memory	can	also	be	used	for	storage	of	static	fixed	data	such	as	ASCII	data
strings	and	look-up	tables.		

Example	2-1

A	given	ARM	chip	has	the	following	address	assignments.	Calculate	the	space	and	the
amount	of	memory	given	to	each	section.

(a)										Address	range	of	0x00100000	–	0x00100FFF	for	EEPROM

(b)										Address	range	of	0x40000000	–	0x40007FFF	for	SRAM

(c)											Address	range	of	0x00000000	–	0x0007FFFF	for	Flash

(d)										Address	range	of	0xFFFC0000	–	0xFFFFFFFF	for	peripherals

	

Solution:

(a)	With	address	space	of	0x00100000	to	00100FFF,	we	have	00100FFF	–	00100000	=
0FFF	bytes.	Converting	0FFF	to	decimal,	we	get	4,095	+	1,	which	is	equal	to	4K	bytes.

(b)	With	address	space	of	0x40000000	to	0x40007FFF,	we	have	40007FFF	–	40000000	=
7FFF	bytes.	Converting	7FFF	to	decimal,	we	get	32,767	+	1,	which	is	equal	to	32K	bytes.

(c)	With	address	space	of	0000	to	7FFFF,	we	have	7FFFF	–	0	=	7FFFF	bytes.	Converting
7FFFF	to	decimal,	we	get	524,287	+	1,	which	is	equal	to	512K	bytes.

(d)	With	address	space	of	FFFC0000	to	FFFFFFFF,	we	have	FFFFFFFF–FFFC0000	=
3FFFF	bytes.	Converting	3FFFF	to	decimal,	we	get	262,143	+	1,	which	is	equal	to	256K
bytes.

See	Figure	2-4.

	

	

Example	2-2



Find	the	address	space	range	of	each	of	the	following	memory	of	an	ARM	chip:

(a)										2	KB	of	EEPROM	starting	at	address	0x80000000

(b)										16	KB	of	SRAM	starting	at	address	0x90000000

(c)											64	KB	of	Flash	ROM	starting	at	address	0xF0000000

	

Solution:

	

(a)										With	2K	bytes	of	on-chip	EEPROM	memory,	we	have	2048	bytes	(2	×	1024	=
2048).		This	maps	to	address	locations	of	0x80000000	to	0x800007FF.	Notice	that	0	is
always	the	first	location.

(b)										With	16K	bytes	of	on-chip	SRAM memory,	we	have	16,384	bytes	(16	×	1024	=
16,384),	and	16,384	locations	gives	0x90000000–0x90003FFF.

(c)											With	64K	we	have	65,536	bytes	(64	×	1024	=	65,536),	therefore,	the	memory
space	is	0xF0000000	to	0xF000FFFF.

	

	

Figure	2-	4:	An	Example	of	ARM	Memory	Allocation

5.	 	 	 	 	 	 	Off-chip	DRAM	 space:	 A	 DRAM	memory	 ranging	 from	 few	megabytes	 to
several	hundred	mega	bytes	can	be	 implemented	 for	 external	memory	connection.
Although	many	 of	 the	ARM	microcontrollers	 used	 in	 embedded	 products	 use	 the
on-chip	SRAM	for	data,	 one	 can	 also	design	 an	ARM-based	 system	 in	which	 the
RAM	is	used	for	both	data	and	program	codes.	This	is	what	we	see	in	the	x86	PCs.
In	 such	 systems	 one	 connects	 the	ARM CPU	 to	 external	DRAM	 and	 the	DRAM
memory	is	used	for	both	code	and	data,	just	like	the	x86	PCs.	Many	ARM	vendors



are	 pushing	 the	ARM11	 chip	 for	 the	 high-end	 of	 the	market	 such	 as	 servers	 and
database	computers.	 In	 an	ARM11-based	 server	 computers,	 the	external	 (off-chip)
DRAM	 is	 used	 and	 managed	 by	 the	 operating	 system	 while	 on-chip	 Flash,
EEPROM,	 and	 SRAM	memories	 are	 used	 for	 BIOS	 (basic	 input	 output	 system),
POST	 (power	 on	 self	 test),	 and	 CPU	 scratch	 pad,	 respectively.	 In	 such	 cases	 the
system	 is	 not	 different	 from	 x86	 computers	 currently	 in	 use,	 except	 it	 uses	ARM
CPU	 instead	 of	 a	 Pentium	 chip	 from	 Intel	 or	 x86	 from	 AMD.	 The	 Microsoft
Windows	8	uses	ARM	motherboard	with		off-chip	DRAM

Notice	 the	following	differences	among	 the	on-chip	Flash	ROM,	data	SRAM,	and
EEPROM	memories	in	ARM microcontrollers	used	for	embedded	products:

a)	The	 data	 SRAM	 is	 used	 by	 the	CPU	 for	 data	 variables	 and	 stack,	whereas	 the
EEPROMs	are	considered	to	be	memory	that	one	can	also	add	externally	to	the	chip.	In
other	words,	 while	many	ARM	microcontroller	 chips	 have	 no	 EEPROM	memory,	 it	 is
very	unlikely	for	an	ARM	microcontroller	to	have	no	on-chip	data	SRAM.	

b)	The	on-chip	Flash	ROM	is	used	for	program	code,	while	 the	EEPROM	is	used
most	often	for	critical	system	data	that	must	not	be	lost	if	power	is	cut	off.	Remember	that
data	SRAM	is	volatile	memory	and	its	contents	are	lost	if	the	power	to	the	chip	is	cut	off.
Since	volatile	data	SRAM	is	used	 for	dynamic	variables	 (constantly	changing	data)	and
stack.	We	need	EEPROM	memory	to	secure	critical	system	data	that	does	not	change	very
often	and	will	not	be	lost	in	the	event	of	power	failure.

c)	The	on-chip	Flash	ROM	is	programmed	and	erased	in	block	size.	The	block	size
is	8,	16,	32,	or	64	bytes	or	more	depending	on	the	chip	technology.	That	 is	not	 the	case
with	 EEPROM,	 since	 the	 EEPROM	 is	 byte	 programmable	 and	 erasable.	 Both	 the
EEPROM	and	Flash	memories	have	 limited	number	of	erase/write	cycles,	which	can	be
100,000	 or	 more.	 While	 all	 semiconductor	 memories	 have	 unlimited	 number	 of	 reads
(accesses),	the	number	of	times	that	we	can	erase	and	write	to	the	Flash	and	EEPROM	are
limited	to	around	100,000	times	at	the	time	of	this	writing.	As	this	number	increases,	the
likelihood	that	we	will	have	hard	drive	made	out	of	Flash	memory	will	also	increase.	We
have	already	seen	how	the	Flash	stick	memory	has	replaced	the	floppy	drives	which	were
so	common	into	early	2000s.

Memory	mapped	I/O	in	the	ARM

Traditional	CPUs	such	as	x86	had	 two	distinct	 spaces:	 the	 I/O	space	and	memory
space.	In	x86,	while	all	of	the	I/O	ports	are	accessed	using	IN	and	OUT	instructions,	the
memory	address	space	is	accessed	using	the	MOV	instruction.	In	the	ARM	CPU	we	have
only	one	space	and	it	is	memory	space	and	it	can	be	as	high	as	4	Giga	bytes.	The	ARM
uses	this	4	Giga	bytes	for	both	memory	and	I/O	space.	This	mapping	of	the	I/O	ports	to
memory	space	is	called	memory	mapped	I/O	and	was	discussed	in	Chapter	0.

Review	Questions

1.							True	or	false.	The	GPR	registers	are	used	for	storing	data.

2.							The	R0-R12	registers	are	called______.



3.							The	GPR	registers	in	ARM	are	_____-bit.

4.							The	R13-R15	registers	are	called	_____.

5.							The	SFR	registers	in	ARM	are	______	-bit.





Section	2.3:	Load	and	Store	Instructions	in	ARM
The	instructions	we	have	used	so	far	worked	with	the	immediate	(constant)	value	of

K	and	the	GPRs.	They	also	used	the	GPRs	as	their	destination.	We	saw	simple	examples
of	 using	 MOV	 and	 ADD	 earlier	 in	 Section	 2.1.	 The	 ARM	 allows	 direct	 access	 to	 all
locations	 in	 the	 memory.	 In	 this	 section	 we	 show	 the	 instructions	 accessing	 various
locations	 of	 the	 memory.	 This	 is	 one	 of	 the	 most	 important	 sections	 in	 the	 book	 for
mastering	 the	 topic	 of	 ARM	 Assembly	 language	 programming.	 Before	 we	 embark	 on
studying	 the	 load	 and	 store	 instructions	 of	 the	ARM,	we	must	 note	 the	 fact	 that	 all	 the
instructions	 of	 the	ARM	 are	 32-bit	 wide.	 In	 other	 words,	 every	 instruction	 of	 ARM	 is
fixed	at	32-bit.	As	we	will	see	in	later	section,	the	fixed	size	instruction	is	one	of	the	most
important	characteristics	of	RISC	architecture.	In	cases	where	there	is	no	need	for	all	the
32-bit,	the	ARM	has	added	zero	to	make	the	instruction	fixed	at	32-bit.

LDR						Rd,	[Rx]	instruction

LDR								Rd,[Rx]	;load	Rd	with	the	contents	of	location	pointed

																																																;to	by	Rx	register.	Rx	is	an	address	between							

																																;0x00000000	to	0xFFFFFFFF

The	LDR	instruction	 tells	 the	CPU	to	 load	(bring	 in)	one	word	(32-bit	or	4	bytes)
from	a	base	address	pointed	to	by	Rx	into	the	GPR.	After	this	instruction	is	executed,	the
Rd	will	have	the	same	value	as	four	consecutive	locations	in	the	memory.	Obviously	since
each	memory	location	can	hold	only	one	byte	(ARM	is	a	byte	addressable	CPU),	and	our
GPR	 is	 32-bit,	 the	 LDR	 will	 bring	 in	 4	 bytes	 of	 data	 from	 4	 consecutive	 memory
locations.	The	locations	can	be	in	the	SRAM	or	a	Flash	memory.	For	example,	the	“LDR
R2,[R5]”	 instruction	will	 copy	 the	 contents	 of	memory	 locations	 pointed	 to	 by	R5	 into
register	R2.	Since	the	R2	register	is	32-bit	wide,	it	expects	a	32-bit	operand	in	the	range	of
0x00000000	 to	 0xFFFFFFFF.	That	means	 the	R5	 register	 gives	 the	 base	 address	 of	 the
memory	 in	which	 it	 holds	 the	 data.	 Therefore	 if	 R5=0x80000,	 the	CPU	will	 fetch	 into
register	R2,	the	contents	of	memory	locations	0x80000,	0x80001,0x80002,	and	0x80003.

The	following	 instruction	 loads	R7	with	 the	contents	of	 location	0x40000200.	See
Figure	2-5.

																																;assume	R5	=	0x40000200												

LDR								R7,[R5]	;load	R7	with	the	contents	of	locations

																																;0x40000200-0x40000203



Figure	2-5:	Executing	the	LDR	Instruction

STR	Rx,[Rd]	instruction

STR									Rx,[Rd]	;store	register	Rx	into	locations	pointed	to	by	Rd	

The	STR	instruction	tells	the	CPU	to	store	(copy)	the	contents	of	the	GPR	to	a	base
address	 location	 pointed	 to	 by	 the	 Rd	 register.	 Notice	 that	 the	 source	 register	 of	 STR
instruction	 is	placed	before	 the	destination	 register.	Obviously	since	GPR	is	32-bit	wide
(4-byte)	we	need	 four	 consecutive	memory	 locations	 to	 store	 the	 contents	 of	GPR.	The
memory	locations	must	be	writable	such	as	SRAM.	See	Figure	2-6.	The	“STR	R3,[R6]”
instruction	 will	 copy	 the	 contents	 of	 R3	 into	 locations	 pointed	 to	 by	 R6.	 Locations
0x40000200	 through	 0x40000203	 of	 the	 SRAM	memory	 will	 have	 the	 contents	 of	 R3
since	R6	=	0x40000200.

Figure	2-6:	Executing	the	STR	Instruction

The	following	instruction	stores	the	contents	of	R5	into	locations	pointed	to	by	R1.
Assume	0x40000340	is	an	address	of	internal	RAM	locations	and	held	by	register	R1.

																																																;assume	R1	=	0x40000340												

STR									R5,	[R1]																;store	R5	into	locations	pointed	to	by	R1.

LDRB	Rd,	[Rx]	instruction

LDRB						Rd,	[Rx]																;load	Rd	with	the	contents	of	the	location											

																																																;	pointed	to	by	Rx	register.

The	 LDRB	 instruction	 tells	 the	 CPU	 to	 load	 (copy)	 one	 byte	 from	 an	 address
pointed	 to	by	Rx	into	 the	 lower	byte	of	Rd.	After	 this	 instruction	 is	executed,	 the	 lower



byte	 of	Rd	will	 have	 the	 same	 value	 as	memory	 location	 pointed	 to	 by	Rx.	 It	must	 be
noted	 that	 the	unused	portion	 (the	upper	24	bits)	of	 the	Rd	 register	will	be	all	 zeros,	 as
shown	in	Figure	2-7.

Figure	2-	7

LDR	vs.	LDRB

As	we	mentioned	 earlier,	we	 can	use	 the	LDR	 instruction	 to	 copy	 the	 contents	of
four	consecutive	memory	locations	into	a	32-bit	GPR.	There	are	situations	that	we	do	not
need	 to	 bring	 4	 bytes	 of	 data	 into	GPR.	An	UART	 register	 is	 such	 a	 case.	 The	UART
registers	are	generally	8-bit	and	 take	only	one	memory	space	 location	(memory	mapped
I/O).	Using	LDRB,	we	 can	bring	 into	GPR	a	 single	 byte	 of	 data	 from	UART	 registers.
This	is	a	widely	used	instruction	for	accessing	the	8-bit	I/O	and	peripheral	ports.

STRB	Rx,[Rd]	instruction

STRB						Rx,	[Rd]																;store	the	byte	in	register	Rx	into												

																																																;location	pointed	to	by	Rd

The	 STRB	 instruction	 tells	 the	 CPU	 to	 store	 (copy)	 the	 byte	 value	 in	 Rx	 to	 an
address	 location	 pointed	 to	 by	 the	 Rd	 register.	 After	 this	 instruction	 is	 executed,	 the
memory	locations	pointed	to	by	the	Rd	will	have	the	same	byte	as	the	lower	byte	of	the
Rx,	as	shown	in	Figure	2-8.

Figure	2-	8

The	following	program	first	loads	the	R1	register	with	value	0x55,	then	stores	this
value	into	location	0x40000100:

																																;assume	R5	=	0x40000100												



MOV					R1,#0x55														;R1	=	55	(in	hex)															

STRB						R1,[R5]																	;copy	R1	location	pointed	to	by	R5

General	purpose	I/O	(GPIO)	are	part	of	the	special	function	registers	in	the	memory-
mapped	 I/O.	 They	 are	 connected	 to	 the	 I/O	 pins	 of	 the	 ARM	microcontroller.	 See	 the
datasheet	of	your	ARM	microcontroller.	We	can	also	store	the	contents	of	a	GPR	into	any
location	in	the	SRAM	region	of	the	data	space.	See	Examples	2-3	and	2-4.

Example	2-3

State	the	contents	of	RAM	locations	0x92	to	0x96	after	the	following	program	is
executed:

MOV					R1,#0x99														;R1	=	0x99

MOV					R6,#0x92														;R6	=	0x92

STRB						R1,[R6]																	;store	R1	into	location	pointed	to	by	R6

;(location	0x92)

ADD							R6,R6,#1														;R6	=	R6	+	1

MOV					R1,#0x85														;R1	=	0x85

STRB						R1,[R6]																	;store	R1	into	location	pointed	to	by	R6

;(location	0x93)

ADD							R6,R6,#1														;R6	=	R6	+	1

MOV					R1,#0x3F														;R1	=	0x3F

STRB						R1,[R6]																	;store	R1	into	location	pointed	to	by	R6

ADD							R6,R6,#1														;R6	=	R6	+	1

MOV					R1,#0x63														;R1	=	0x63

STRB						R1,[R6]																	;store	R1	into	location	pointed	to	by	R6

ADD							R6,R6,#1														;R6	=	R6	+	1

MOV					R1,#0x12														;R1	=	0x12

STRB						R1,[R6]

Solution:

After	the	execution	of	STRB	R1,[R6]	data	memory	location	0x92	has	value	0x99;

after	the	execution	of	STRB	R1,[R6]	data	memory	location	0x93	has	value	0x85;

after	the	execution	of	STRB	R1,[R6]	data	memory	location	0x94	has	value	0x3F;	and	so
on,	as	shown	in	the	chart.

Address Data



0x92 0x99

0x93 0x85

0x94 0x3F

0x95 0x63

0x96 0x12

	

	

Example	2-4

State	the	contents	of	R2,	R1,	and	memory	location	0x20	after	the	following	program:

MOV					R2,#0x5																;load	R2	with	5		(R2	=	0x05)

MOV					R1,#0x2																;load	R1	with	2	(R1	=	0x02)

ADD							R2,	R1,R2													;R2	=	R1	+	R2

ADD							R2,R1,R2														;R2	=	R1	+	R2

MOV					R5,#0x20														;R5	=	0x20

STRB						R2,[R5]																	;store	R2	into	location	pointed	to	by	R5

Solution:

The	program	loads	R2	with	value	5.	Then	it	loads	R1	with	value	2.	Then	it	adds	the	R1
register	to	R2	twice.	At	the	end,	it	stores	the	result	in	location	0x20	of	memory.

After	MOV	R2,#0x05

Location Data

R2 5

R1 	

0x20 	

	

After	MOV	R1,#0x02

Location Data

R2 5

R1 2



0x20 	

	

After	ADD	R2,R1,R1

Location Data

R2 7

R1 2

0x20 	

	

After	ADD	R2,R1,R1

Location Data

R2 9

R1 2

0x20 	

	

After	STRB	[R5],R2

Location Data

R2 9

R1 2

0x20 9

	

	

STR	vs.	STRB

As	we	mentioned	earlier,	we	can	use	the	STR	instruction	to	copy	the	contents	of	32-
bit	GPR	 into	 four	 consecutive	memory	 locations.	 The	 I/O	 ports	 are	 generally	 8-bit	 and
take	only	one	memory	space	location	(memory	mapped	I/O).	Using	STRB,	we	can	send	a
byte	of	data	 from	GPR	 to	memory	 location	such	as	an	 I/O	port.	Again,	 this	 is	a	widely
used	instruction	for	accessing	the	8-bit	I/O	and	peripheral	ports.

LDRH	Rd,	[Rx]	instruction



LDRH					Rd,	[Rx]																;load	Rd	with	the	half-word	pointed

;	to	by	Rx	register

The	LDRH	 instruction	 tells	 the	CPU	 to	 load	 (copy)	 half-word	 (16-bit	 or	 2	 bytes)
from	 a	 base	 address	 pointed	 to	 by	Rx	 into	 the	 lower	 16-bits	 of	Rd	Register.	After	 this
instruction	is	executed,	the	lower	16-bit	of	Rd	will	have	the	same	value	as	two	consecutive
locations	 in	 the	 memory	 pointed	 to	 by	 base	 address	 of	 Rx.	 	 It	 must	 be	 noted	 that	 the
unused	portion	(the	upper	16	bits)	of	the	Rd	register	will	be	all	zeros,	as	shown	in	Figure
2-9.

Figure	2-	9

Table	2-3	compares	LDRB,	LDRH,	and	LDR.

Data	Size Bits Decimal Hexadecimal Load	instruction
used

Byte 8 0	–	255 0	-	0xFF LDRB

Half-word 16 0	–	65535 0	-	0xFFFF LDRH

Word 32 0	–	232-1 0	-	0xFFFFFFFF LDR

Table	2-	3:	Unsigned	Data	Range	in	ARM	and	associated	Load	Instructions

STRH	Rx,[Rd]	instruction

STRH						Rx,	[Rd]																;store	half-word	(2-byte)	in	register	Rx	

																																																;into	locations	pointed	to	by	Rd

The	STRH	instruction	tells	the	CPU	to	store	(copy)	the	lower	16-bit	contents	of	the	Rx	to
an	address	location	pointed	to	by	the	Rd	register.	After	this	instruction	is	executed,	the
memory	locations	pointed	to	by	the	Rd	will	have	the	same	value	as	the	lower	16-bit	of	Rx
Register.	The	locations	are	part	of	the	data	read/write	memory	space	such	as	on-chip
SRAM.	For	example,	the	“STRH			R3,[R6]”	instruction	will	copy	the	16-bit	lower
contents	of	R3	into	two	consecutive	locations	pointed	to	by	base	register	R6.	As	you	can
see	in	Figure	2-10,	locations	0x2000	and	0x2001	of	the	SRAM	memory	will	have	the
contents	of	the	lower	half	word	of	R3	since	R6	=	0x2000.



Figure	2-	10

In	Table	2-4	you	see	a	comparison	between	STRB,	STRH,	and	STR.

Data	Size Bits Decimal Hexadecimal Load	instruction
used

Byte 8 0	–	255 0	-	0xFF STRB

Half-word 16 0	–	65535 0	-	0xFFFF STRH

Word 32 0	–	232-1 0	-	0xFFFFFFFF STR

Table	2-4:	Unsigned	Data	Range	in	ARM	and	associated	Store	Instructions

Review	Questions

1.							True	or	false.	No	32-bit	value	can	be	loaded	directly	into	internal	R0-R12.

2.							Write	instructions	to	load	value	0x95	into	location	with	address	0x20.

3.							Write	instructions	to	move	the	contents	of	R2	to	memory	location	pointed	to	by
R8.

4.							Write	instructions	to	load	values	from	memory	locations	0x20–0x23	to	R4	register.

5.							What	is	the	largest	hex	value	that	can	be	moved	into	a	single	location	in	the	data
memory?		What	is	the	decimal	equivalent	of	the	hex	value?

6.							“LDR	R6,	[R3]”	puts	the	result	in	_____	.

7.							What	does	“STRB	R1,	[R2]”	do?

8.							What	is	the	largest	hex	value	that	can	be	moved	into	four	consecutive	locations	in
the	data	memory?		What	is	the	decimal	equivalent	of	the	hex	value?





Section	2.4:	ARM	CPSR	(Current	Program	Status	Register)
Like	all	other	microprocessors,	 the	ARM	has	a	 flag	 register	 to	 indicate	 arithmetic

conditions	 such	 as	 the	 carry	 bit.	 The	 flag	 register	 in	 the	 ARM	 is	 called	 the	 current
program	status	register	(CPSR).	In	this	section,	we	discuss	various	bits	of	this	register	and
provide	some	examples	of	how	it	is	altered.	Chapters	3	and	4	show	how	the	flag	bits	of	the
status	register	are	used.

ARM	current	program	status	register

The	 status	 register	 is	 a	 32-bit	 register.	 See	 Figure	 2-11	 for	 the	 bits	 of	 the	 status
register.	The	bits	C,	Z,	N,	and	V	are	called	conditional	flags,	meaning	that	 they	indicate
some	conditions	that	result	after	an	instruction	is	executed.	Each	of	the	conditional	flags
can	be	used	to	perform	a	conditional	branch	(jump),	as	we	will	see	in	Chapter	4.

Figure	2-	11:	CPSR	(Current	Program	Status	Register)

The	 following	 is	 a	 brief	 explanation	of	 the	 flag	bits	 of	 the	 current	 program	 status
register	(CPSR).	The	impact	of	instructions	on	this	register	is	then	discussed.

C,	the	carry	flag

This	 flag	 is	 set	 whenever	 there	 is	 a	 carry	 out	 from	 the	 D31	 bit.	 This	 flag	 bit	 is
affected	after	a	32-bit	addition	or	subtraction.	Chapter	4	shows	how	the	carry	flag	is	used.

Z,	the	zero	flag

The	zero	flag	reflects	 the	result	of	an	arithmetic	or	 logic	operation.	 If	 the	result	 is
zero,	then	Z	=	1.	Therefore,	Z	=	0	if	the	result	is	not	zero.	See	Chapter	4	to	see	how	we	use
the	Z	flag	for	looping.

N,	the	negative	flag

Binary	representation	of	signed	numbers	uses	D31	as	the	sign	bit.	The	negative	flag
reflects	the	result	of	an	arithmetic	operation.	If	the	D31	bit	of	the	result	is	zero,	then	N	=	0
and	the	result	is	positive.	If	the	D31	bit	is	one,	then	N	=	1	and	the	result	is	negative.	The
negative	 and	 V	 flag	 bits	 are	 used	 for	 the	 signed	 number	 arithmetic	 operations	 and	 are
discussed	in	Chapter	5.

V,	the	overflow	flag

This	 flag	 is	 set	 whenever	 the	 result	 of	 a	 signed	 number	 operation	 is	 too	 large,
causing	the	high-order	bit	to	overflow	into	the	sign	bit.	In	general,	the	carry	flag	is	used	to
detect	 errors	 in	unsigned	arithmetic	operations	while	 the	overflow	 flag	 is	used	 to	detect
errors	in	signed	arithmetic	operations.	The	V	and	N	flag	bits	are	used	for	signed	number
arithmetic	operations	and	are	discussed	in	Chapter	5.

The	T	flag	bit	is	used	to	indicate	the	ARM	is	in	Thumb	state.	The	I	and	F	flags	are
used	to	enable	or	disable	the	interrupt.	See	the	ARM	manual.



S	suffix	and	the	status	register

Most	of	ARM	instructions	can	affect	the	status	bits	of	CPSR	according	to	the	result.
If	we	 need	 an	 instruction	 to	 update	 the	 value	 of	 status	 bits	 in	CPSR,	we	 have	 to	 put	 S
suffix	at	the	end	of	instructions.	That	means,	for	example,	ADDS	instead	of	ADD	is	used.

ADD	instruction	and	the	status	register

Next	we	examine	the	impact	of	the	SUBS	and	ADDS	instructions	on	the	flag	bits	C
and	Z	of	the	status	register.	Some	examples	should	clarify	their	meanings.	Although	all	the
flag	bits	C,	Z,	V,	and	N	are	affected	by	the	ADDS	and	SUBS	instruction,	we	will	focus	on
flags	C	and	Z	for	now.	The	other	flag	bits	are	discussed	in	Chapter	5,	because	they	relate
only	to	signed	number	operations.	Examine	Example	2-5	to	see	the	impact	of	the	ADDS
instruction	 on	 selected	 flag	 bits.	 See	 also	 Example	 2-6	 to	 see	 the	 impact	 of	 the	 SUBS
instruction	on	selected	flag	bits.

Example	2-5

Show	the	status	of	the	C	and	Z	flags	after	the	addition	of

a)		0x0000009C	and	0xFFFFFF64	in	the	following	instruction:

;assume	R1	=	0x0000009C	and	R2	=	0xFFFFFF64																	

ADDS					R2,R1,R2														;add	R1	to	R2	and	place	the	result	in	R2

	

b)		0x0000009C	and	0xFFFFFF69	in	the	following	instruction:

	

;assume	R1	=	0x0000009C	and	R2	=	0xFFFFFF69																	

ADDS					R2,R1,R2														;add	R1	to	R2	and	place	the	result	in	R2

	

Solution:

	

a)											

0x0000009C 					0000	0000	0000	0000	0000	0000	1001
1100

+	
0xFFFFFF64

		+			1111	1111	1111	1111	1111	1111	0110
0100

0x100000000 						1	0000	0000	0000	0000	0000	0000
0000	0000

	



C	=	1	because	there	is	a	carry	beyond	the	D31	bit.

Z	=	1	because	the	R2	(the	result)	has	value	0	in	it	after	the	addition.

	

b)											

0x0000009C 0000	0000	0000	0000	0000	0000	1001
1100

+	
0xFFFFFF69

	+	1111	1111	1111	1111	1111	1111	0110
1001

0x100000005 		1	0000	0000	0000	0000	0000	0000	0000
0101

		

C	=	1	because	there	is	a	carry	beyond	the	D31	bit.

Z	=	0	because	the	R2	(the	result)	does	not	have	value	0	in	it	after	the	addition.
(R2=0x00000005)

	

	

Example	2-6

Show	the	status	of	the	Z	flag	during	the	execution	of	the	following	program:

MOV					R2,#4																					;R2	=	4

MOV					R3,#2																					;R3	=	2

MOV					R4,#4																					;R4	=	4

SUBS					R5,R2,R3														;R5	=	R2	-	R3	(R5	=	4	-	2	=	2)

SUBS					R5,R2,R4														;R5	=	R2	-	R4	(R5	=	4	-	4	=	0)

Solution:

The	Z	flag	is	raised	when	the	result	is	zero.	Otherwise,	it	is	cleared	(zero).	Thus:

After Value	of	R5 Z	flag

SUBS		R5,R2,R3 2 0

SUBS		R5,R2,R4 0 1

	

Not	all	instructions	affect	the	flags



Some	instructions	affect	all	the	four	flag	bits	C,	Z,	V,	and	N	(e.g.,	ADDS).	But	some
instructions	 affect	no	 flag	bits	 at	 all.	The	branch	 instructions	 are	 in	 this	 category.	Some
instructions	affect	only	some	of	 the	flag	bits.	The	 logic	 instructions	(e.g.,	ANDS)	are	 in
this	category.

Table	 2-5	 shows	 the	 instructions	 and	 the	 flag	 bits	 affected	 by	 them.	Appendix	A
provides	a	complete	list	of	all	the	instructions	and	their	associated	flag	bits.

Instruction Flags	Affected

ANDS C,	Z,	N

ORRS C,	Z,	N

MOVS C,	Z,	N

ADDS C,	Z,	N,	V

SUBS C,	Z,	N,	V

B No	flags

Note	that	we	cannot	put	S	after	B	instruction.

Table	2-	5:	Flag	Bits	Affected	by	Different	Instructions

Flag	bits	and	decision	making

There	are	instructions	that	will	make	a	conditional	jump	(branch)	based	on	the	status
of	 the	 flag	 bits.	 Table	 2-6	 provides	 some	 of	 these	 instructions.	 Chapter	 4	 discusses	 the
conditional	branch	instructions	and	how	they	are	used.

Instruction Flags	Affected

BCS																	 Branch	if	C	=	1

BCC Branch	if	C	=	0

BEQ Branch	if	Z	=	1

BNE Branch	if	Z	=	0

BMI																							 Branch	if	N	=	1

BPL																								 Branch	if	N	=	0

BVS																							 Branch	if	V	=	1

BVC																							 Branch	if	V	=	0

Table	2-	6:	ARM	Branch	(Jump)	Instructions	Using	Flag	Bits

Review	Questions



1.							The	flag	register	in	the	ARM	is	called	the	________.

2.							What	is	the	size	of	the	flag	register	in	the	ARM?

3.							Find	the	C	and	Z	flag	bits	for	the	following	code:

;assume	R2	=	0xFFFFFF9F

;assume	R1	=	0x00000061

ADDS					R2,	R1,	R2

4.							Find	the	Z	flag	bit	for	the	following	code:

;assume	R7	=	0x22

;assume	R3	=	0x22

ADDS					R7,	R3,	R7

5.							Find	the	C	and	Z	flag	bits	for	the	following	code:

;assume	R2	=	0x67

;assume	R1	=	0x99

ADDS					R2,	R1,	R2





Section	2.5:	ARM	Data	Format	and	Directives
In	this	section	we	look	at	some	widely	used	data	formats	and	directives	supported	by

the	ARM	assembler.

ARM	data	type

ARM	has	four	data	types.	They	are	bit,	byte	(8-bit),	half-word	(16-bit)	and	word	(32
bit).	Due	to	the	fact	that	ARM	registers	are	32-bit	it	is	the	job	of	programmer/compiler	to
break	down	data	larger	than	32	bits	to	be	processed	by	the	CPU.	The	data	types	used	by
the	ARM	can	be	positive	or	negative.	A	discussion	of	signed	numbers	is	given	in	Chapter
5.

Data	format	representation

There	 are	 several	 ways	 to	 represent	 a	 byte	 of	 data	 in	 the	 ARM	 assembler.	 The
numbers	can	be	in	hex,	binary,	decimal,	or	ASCII	formats.	The	following	are	examples	of
how	each	works.

Hex	numbers

To	represent	Hex	numbers	in	an	ARM	assembler	we	put	0x	(or	0X)	in	front	of	the
number	like	this:

MOV					R1,#0x99

Here	are	a	few	lines	of	code	that	use	the	hex	format:

MOV					R2,#0x75														;R2	=	0x75											

MOV					R1,#0x11													

ADD							R2,R1,R2														;R2	=	R1	+	R2	=	0x75	+	0x11	=	0x86

Decimal	numbers

To	indicate	decimal	numbers	in	some	ARM	assemblers	such	as	Keil	we	simply	use
the	decimal	(e.g.,	12)	and	nothing	before	or	after	it.	Here	are	some	examples	of	how	to	use
it:

MOV			R7,#12					;R7	=	00001100	or	0C	in	hex									

MOV			R1,#32					;R1	=	32	=	0x20

Binary	numbers

To	 represent	 binary	 numbers	 in	 an	 ARM	 assembler	 we	 put	 2_	 	 in	 front	 of	 the
number.	It	is	as	follows:

MOV				R6,#2_10011001	;R6	=	10011001	in	binary	or	99	in	hex

Numbers	in	any	base	between	2	and	9

To	 indicate	 a	 number	 in	 any	 base	 n	 between	 2	 and	 9	 in	 an	 ARM	 assembler	 we
simply	use	the	n_	in	front	of	it.	Here	are	some	examples	of	how	to	use	it:



MOV				R7,#8_33															;R7	=	33	in	base	8	or	011011	in	binary	format							

MOV				R6,#2_10011001	;R6	=	10011001	in	base	2	or	99	in	hex

ASCII	characters

To	represent	ASCII	data	in	an	ARM	assembler	we	use	single	quotes	as	follows:	

LDR				R3,#‘2’							;R3	=	00110010	or	32	in	hex	(See	Appendix	F)				

This	 is	 the	 same	 as	 other	 assemblers	 such	 as	 the	 8051	 and	 x86.	 Here	 is	 another
example:

LDR				R2,#‘9’							;R2	=	0x39,	which	is	hex	number	for	ASCII	‘9’

To	represent	a	string,	double	quotes	are	used;	and	for	defining	ASCII	strings	(more
than	one	character),	we	use	the	DCB	directive.

Assembler	directives

While	 instructions	 tell	 the	 CPU	 what	 to	 do,	 directives	 (also	 called	 pseudo-
instructions)	 give	 directions	 to	 the	 assembler.	 For	 example,	 the	 MOV	 and	 ADD
instructions	are	commands	to	the	CPU,	but	EQU,	END,	and	ENTRY	are	directives	to	the
assembler.	The	 following	section	presents	some	widely	used	directives	of	 the	ARM	and
how	 they	 are	 used.	 The	 directives	 help	 us	 develop	 our	 program	 easier	 and	 make	 our
program	legible	(more	readable).	Table	2-7	shows	some	assembler	directives.

Directive Description

AREA Instructs	the	assembler	to	assemble	a	new	code	or	data	section

END Informs	the	assembler	that	it	has	reached	the	end	of	a	source	file.

ENTRY Declares	an	entry	point	to	a	program.

EQU Gives	a	symbolic	name	to	a	numeric	constant,	a	register-relative	value	or	a	PC-
relative	value.

INCLUDE It	adds	the	contents	of	a	file	to	our	program.

Table	2-	7:	Some	Widely	Used	ARM	Directive

AREA

The	AREA	 directive	 tells	 the	 assembler	 to	 define	 a	 new	 section	 of	memory.	 The
memory	 can	 be	 code	 (instruction)	 or	 data	 and	 can	 have	 attributes	 such	 as	 ReadOnly,
ReadWrite,	 and	 so	 on.	 This	 is	widely	 used	 to	 define	 one	 or	more	 blocks	 of	 indivisible
memory	for	code	or	data	to	be	used	by	the	linker.	Every	Assembly	language	program	has
at	least	one	AREA.	The	following	is	the	format:

AREA					sectionname,	attribute,	attribute,	…

The	following	line	defines	a	new	area	named	MY_ASM_PROG1	which	has	CODE
and	READONLY	attributes:



AREA					MY_ASM_PROG1,	CODE,	READONLY

Among	 widely	 used	 attributes	 are	 CODE,	 DATA,	 READONLY,	 READWRITE,
COMMON,	and	ALIGN.	The	following	describes	these	widely	used	attributes.

READWRITE	 is	an	attribute	given	 to	an	area	of	memory	which	can	be	read	from
and	written	to.	Since	it	is	READWRITE	section	of	the	program	it	is	by	default	for	DATA.	
In	ARM	Assembly	language	we	use	this	area	to	set	aside	SRAM	memory	for	scratch	pad
and	stack.	The	Assembler	puts	the	READWRITE	sections	next	to	each	other	in	the	SRAM
memory.

READONLY	 is	 an	 attribute	 given	 to	 an	 area	 of	memory	which	 can	 only	 be	 read
from.	Since	it	is	READONLY	section	of	the	program	it	is	by	default	for	CODE.	In	ARM
Assembly	language	we	use	this	area	to	write	our	instructions	for	machine	code	execution.
The	READONLY	sections	are	put	next	to	each	other	in	the	flash	memory.

Note

In	Keil,	The	memory	space	of	READONLY	and	READWRITE	are	defined	in	the
Linker	and	Target	tabs	of	the	Project\Options.	Keil	sets	the	values	according	to	the
memory	map	of	the	chosen	chip.

CODE	 is	 an	 attribute	 given	 to	 an	 area	 of	 memory	 used	 for	 executable	 machine
instruction.	Since	it	is	used	for	code	section	of	the	program	it	is	by	default	READONLY
memory.	 In	 ARM	 Assembly	 language	 we	 use	 this	 area	 to	 write	 our	 instructions.	 The
following	line	defines	a	new	area	for	writing	programs:

AREA					OUR_ASM_PROG,	CODE,	READONLY

DATA	 is	an	attribute	given	 to	an	area	of	memory	used	for	data	and	no	 instruction
(machine	 instructions)	can	be	placed	 in	 this	area.	Since	 it	 is	used	for	data	section	of	 the
program	 it	 is	 by	default	 a	READWRITE	memory.	 In	ARM	Assembly	 language	we	use
this	area	to	set	aside	SRAM	memory	for	scratch	pad	and	stack.	The	following	line	defines
a	new	area	for	defining	variables:

AREA					OUR_VARIABLES,	DATA,	READWRITE

To	define	constant	values	in	the	flash	memory	we	write	the	following:

AREA					OUR_CONSTS,	DATA,	READONLY

COMMON	is	an	attribute	given	to	an	area	of	DATA	memory	section	which	can	be
used	commonly	by	several	program	codes.	We	do	not	initialize	the	COMMON	section	of
the	 memory	 since	 it	 is	 used	 by	 compiler	 exclusively.	 The	 compiler	 initializes	 the
COMMON	memory	area	with	all	zeros.

ALIGN	 is	 another	 attribute	 given	 to	 an	 area	 of	memory	 to	 indicate	 how	memory
should	be	allocated	according	to	the	addresses.	When	the	ALIGN	is	used	for	CODE	and
READONLY	it	aligned	in	4-bytes	address	boundary	by	default	since	the	ARM	instructions
are	 all	 32-bit	 (4-bytes)	 word.	 The	 ALIGN	 attribute	 of	 AREA	 has	 a	 number	 after	 like
ALIGN=3	which	indicates	the	information	should	be	placed	in	memory	with	addresses	of



23,	that	is	0x50000,	0x50008,	0x50010,	0x50020,	and	so	on.	We	will	see	more	about	that
soon.	The	usage	and	importance	of	ALIGN	attribute	is	discussed	in	Chapter	6.

ENTRY

Another	 important	 pseudocode	 is	 the	 ENTRY	 directive.	 This	 indicates	 to	 the
assembler	the	beginning	of	the	executable	code.	The	ENTRY	directive	is	the	first	line	of
the	ARM	Assembly	language	code	section	of	the	program,	meaning	that	anything	after	the
ENTRY	 directive	 in	 the	 source	 code	 is	 considered	 actual	 machine	 instruction	 to	 be
executed	by	the	CPU.	For	a	given	ARM	Assembly	language	program	we	can	have	only
one	ENTRY	point.		Having	multiple	ENTRY	directive	in	an	Assembly	language	program
will	give	you	an	error	by	assembler.

END	directive

Another	important	pseudocode	is	the	END	directive.	This	indicates	to	the	assembler
the	end	of	the	source	(asm)	file.	The	END	directive	is	the	last	line	of	the	ARM	Assembly
language	program,	meaning	 that	 anything	 after	 the	END	directive	 in	 the	 source	 code	 is
ignored	 by	 the	 assembler.	 Program	 2-1	 shows	 how	 the	 AREA,	 ENTRY	 and	 END
directives	are	used.

Program	2-1

;ARM	Assembly	Language	Program	To	Add	Some	Data	and	Store	the	SUM	in	R3.

	

												AREA			PROG_2_1,	CODE,	READONLY

ENTRY																		

MOV					R1,	#0x25													;R1	=	0x25

MOV					R2,	#0x34													;R2	=	0x34

ADD							R3,	R2,R1													;R3	=	R2	+	R1

HERE						B													HERE																						;stay	here	forever

												END

LDR

In	the	last	section,	we	stated	that	one	cannot	 load	values	larger	 than	0xFF	into	the
32-bit	 registers	 of	ARM	 since	 only	 8	 bits	 are	 used	 for	 the	 immediate	 value.	The	ARM
assembler	provide	us	a	pseudo-instruction	of	“LDR	Rd,=32-bit_immidiate_vlaue”	to	load
value	greater	than	0xFF.	We	will	examine	how	this	pseudo-instruction	works	in	Chapter 6.
For	now,	just	notice	the	=	sign	used	in	the	syntax.	The	following	pseudo-instruction	loads
R7	with	0x112233.

LDR								R7,=0x112233

	We	will	 use	 this	 pseudo-instruction	 to	 load	 32-bit	 value	 into	 register	 extensively
throughout	 the	 book.	 To	 load	 values	 less	 than	 0xFF,	 we	 still	 use	 the	 “MOV	 Rd,#8-



bit_immidiate_value”	 instruction	 since	 it	 is	 a	 real	 instruction	 of	 ARM,	 therefore	 more
efficient	in	code	size.

EQU	(equate)

This	is	used	to	define	a	constant	value	or	a	fixed	address.	The	EQU	directive	does
not	set	aside	storage	for	a	data	 item,	but	associates	a	constant	number	with	a	data	or	an
address	label	so	that	when	the	label	appears	in	the	program,	its	constant	will	be	substituted
for	 the	 label.	The	following	uses	EQU	for	 the	counter	constant,	and	 then	 the	constant	 is
used	to	load	the	R2	register:

COUNT																	EQU							0x25						

…												…												….										

MOV					R2,	#COUNT							;R2	=	0x25

When	executing	the	above	instruction	“MOV	R2,	#COUNT”,	the	register	R2	will	be
loaded	with	the	value	0x25.	What	is	the	advantage	of	using	EQU?	Assume	that	a	constant
(a	fixed	value)	is	used	throughout	the	program,	and	the	programmer	wants	to	change	its
value	 everywhere.	 By	 the	 use	 of	 EQU,	 the	 programmer	 can	 change	 it	 once	 and	 the
assembler	 will	 change	 all	 of	 its	 occurrences	 throughout	 the	 program.	 This	 allows	 the
programmer	to	avoid	searching	the	entire	program	trying	to	find	every	occurrence.

Using	EQU	for	fixed	data	assignment

To	get	more	practice	using	EQU	to	assign	fixed	data,	examine	the	following:

DATA1		EQU							0x39																							;the	way	to	define	hex	value																					

DATA2		EQU							2_00110101								;the	way	to	define	binary	value	(35	in	hex)

DATA3		EQU							39																											;decimal	numbers	(27	in	hex)				

DATA4		EQU							‘2’																												;ASCII	characters

Using	EQU	for	SFR	address	assignment

EQU	is	also	widely	used	to	assign	SFR	addresses.	Examine	the	following	code:

PORTB		EQU							0xF0018																;SFR	Port	B	address								

MOV					R6,#0x01														;R6	=	0x01											

LDR								R2,=PORTB									;R2	=	0xF0018

STRB						R6,[R2]																	;Port	B	now	has	0x01					

Using	EQU	for	RAM	address	assignment

Another	common	usage	of	EQU	is	for	the	address	assignment	of	the	internal	SRAM.
It	is	exactly	like	using	EQU	for	SFR	address	assignment.	Examine	the	following	code:

SUM						EQU							0x40000120									;assign	RAM	loc	to	SUM															

MOV					R2,#5																					;load	R2	with	5		



MOV					R1,#2																					;load	R1	with	2		

ADD							R2,	R2,R1													;R2	=	R2	+	R1					

LDR								R3,=SUM													;load	R3	with	0x40000120

STRB						R2,[R3]																	;store	the	result	SUM

This	 is	 especially	helpful	when	 the	address	needs	 to	be	changed	 in	order	 to	use	a
different	ARM	chip	for	a	given	project.	It	is	much	easier	to	refer	to	a	name	than	a	number
when	accessing	RAM	address	locations.

RN	(equate)

This	is	used	to	define	a	name	for	a	register.	The	RN	directive	does	not	set	aside	a
seperate	 storage	 for	 the	 name,	 but	 associates	 a	 register	with	 that	 name.	 It	 improves	 the
clarity.	Program	2-2	shows	how	we	use	SUM	name	for	R3.

Program	2-2:	An	ARM	Assembly	Language	Program	Using	RN	Directive

	;ARM	Assembly	Language	Program	To	Add	Some	Data

;and	store	the	SUM	in	R3.

	

VAL1						RN										R1											;define	VAL1	as	a	name	for	R1

VAL2						RN										R2											;define	VAL2	as	a	name	for	R2

SUM						RN										R3											;define	SUM	as	a	name	for	R3

	

												AREA					PROG_2_2,	CODE,	READONLY

ENTRY																		

MOV					VAL1,	#0x25																							;R1	=	0x25

MOV					VAL2,	#0x34																							;R2	=	0x34

ADD							SUM,	VAL1,VAL2														;R3	=	R2	+	R1

HERE						B													HERE

												END

INCLUDE	directive

The	 include	directive	 tells	 the	ARM assembler	 to	add	 the	contents	of	a	 file	 to	our
program	(like	the	#include	directive	in	C	language).

Assembler	data	allocation	directives

In	 most	 Assembly	 languages	 there	 are	 some	 directives	 to	 allocate	 memory	 and
initialize	its	value.	In	ARM	Assembly	language	DCB,	DCD,	and	DCW	allocate	memory
and	initialize	them.	The	SPACE	directive	allocates	memory	without	initializing	it.



DCB	directive	(define	constant	byte)

The	DCB	directive	allocates	a	byte	size	memory	and	initializes	the	values.

MYVALUE												DCB								5														;MYVALUE	=	5		

MYMSAGE										DCB								“HELLO	WORLD”															;string

DCW	directive	(define	constant	half-word)

The	DCW	directive	allocates	a	half-word	size	memory	and	initializes	the	values.

MYDATA														DCW						0x20,	0xF230,	5000,	0x9CD7

DCD	directive	(define	constant	word)

The	DCD	directive	allocates	a	word	size	memory	and	initializes	the	values.

MYDATA														DCD							0x200000,	0xF30F5,	5000000,	0xFFFF9CD7

See	Tables	2-8	and	2-9.

Directive Description

DCB Allocates	one	or	more	bytes	of	memory,	and	defines	the	initial	runtime	contents	of
the	memory

DCW Allocates	one	or	more	halfwords	of	memory,	 aligned	on	 two-byte	boundaries,	 and
defines	the	initial	runtime	contents	of	the	memory.

DCWU Allocates	one	or	more	halfwords	of	memory,	and	defines	the	initial	runtime	contents
of	the	memory.	The	data	is	not	aligned.

DCD Allocates	 one	 or	 more	 words	 of	 memory,	 aligned	 on	 four-byte	 boundaries,	 and
defines	the	initial	runtime	contents	of	the	memory.

DCDU Allocates	one	or	more	words	of	memory	and	defines	the	initial	runtime	contents	of
the	memory.	The	data	is	not	aligned.

Table	2-	8:	Some	Widely	Used	ARM	Memory	Allocation	Directives

Data	Size Bits Decimal Hexadecimal Directive Instruction

Byte 8 0	–	255 0	-	0xFF DCB STRB/LDRB

Half-word 16 0	–	65535 0	-	0xFFFF DCW STRH/LDRH

Word 32 0	–	232-1 0	-	0xFFFFFFFF DCD STR/LDR

Table	2-	9:	Unsigned	Data	Range	in	ARM	and	associated	Instructions

In	 Program	 2-3A	 you	 see	 an	 example	 of	 storing	 constant	 values	 in	 the	 program
memory	using	the	directives.	Figure	2-12	shows	how	the	data	is	stored	in	memory.	In	the
example,	 the	program	goes	 to	 locations	0x00	 to	0x0F.	The	DCB	directive	stores	data	 in
addresses	0x10–0x17.	As	you	see	one	byte	is	allocated	for	each	data.	The	DCD	allocates	4



bytes	for	each	data.	As	a	result	the	lowest	byte	of	0x23222120	(which	is	0x20)	is	stored	in
location	0x18	and	the	next	bytes	are	stored	in	the	next	locations.

Program	2-3A:	Sample	of	Storing	Fixed	Data	in	Program	Memory

;storing	data	in	program	memory.

AREA					LOOKUP_EXAMPLE,READONLY,CODE

ENTRY

LDR								R2,=OUR_FIXED_DATA	;point	to	OUR_FIXED_DATA

LDRB						R0,[R2]																	;load	R0	with	the	contents

;of	memory	pointed	to	by	R2

ADD							R1,R1,R0														;add	R0	to	R1

HERE						B													HERE																						;stay	here	forever

OUR_FIXED_DATA

DCB								0x55,0x33,1,2,3,4,5,6

DCD							0x23222120,0x30

DCW						0x4540,0x50

END

	

Figure	2-	12:	Memory	Dump	for	Program	2-3A

The	DCW	directive	 allocates	 2	 bytes	 for	 each	data.	For	 example,	 the	 low	byte	 of
0x4540	is	located	in	address	0x20	and	the	high	byte	of	it	goes	to	address	0x21.	Similarly
the	low	byte	of	0x50	is	located	in	address	0x22	and	the	high	byte	of	it	in	address	0x23.

In	the	program	to	access	the	data,	first	the	R2	register	is	loaded	with	the	address	of
OUR_FIXED_DATA.	In	this	example,	OUR_FIXED_DATA	has	address	0x10. So,	R2	is
loaded	with	0x10.	Then,	the	contents	of	location	0x10	is	loaded	into	register	R0,	using	the
LDRB	instruction.

SPACE	directive

Using	 the	 SPACE	 directive	we	 can	 allocate	memory	 for	 variables.	 The	 following
lines	allocate	4	and	2	bytes	of	memory	and	name	them	as	LONG_VAR	and	OUR_ALFA:



LONG_VAR									SPACE			4														;Allocate	4	bytes														

OUR_ALFA										SPACE			2														;Allocate	2	bytes

In	 the	 following	program	3	variables	are	defined:	A,	B,	and	C.	Then	A	and	B	are
initialized	with	5	and	4,	respectively.	In	the	next	step	A	and	B	are	added	together	and	the
result	is	put	in	C:

Program	2-3B

AREA	OUR_PROG,CODE,READONLY

ENTRY

;A	=	5

LDR								R0,=A				;R0	=	Addr.	of	A

									MOV					R1,#5					;R1	=	5

									STR									R1,[R0]	;init.	A	with	5

;B	=	4

LDR								R0,=B				;R0	=	Addr.	of	B

MOV					R1,#4					;R1	=	4

STR									R1,[R0]																	;init.	B	with	4

;R1	=	A

LDR								R0,=A				;R0	=	Addr.	of	A

									LDR								R1,[R0]																	;R1	=	value	of	A

;R2	=	B

LDR								R0,=B				;R0	=	Addr.	of	A

									LDR								R2,[R0]																	;R2	=	value	of	A

;C	=	R1	+	R2	(C	=	A	+	B)

ADD							R3,R1,R2	;R3	=	A	+	B

LDR								R0,=C				;R0	=	Addr.	of	C

									STR									R3,[R0]																	;C	=	R3

	

loop							B			loop

	

AREA					OUR_DATA,DATA,READWRITE

;Allocates	the	followings	in	SRAM	memory

A													SPACE			4



B													SPACE			4

C													SPACE			4

END	

	

ADR	directive

To	load	registers	with	the	addresses	of	memory	locations	we	can	also	use	the	ADR
pseudo-instruction	which	has	a	better	performance.	See	Chapter	6	for	more.	ADR	has	the
following	syntax:

ADR							Rn,label

For	 example,	 in	 Program	 2-3A	 we	 can	 load	 R2	 with	 the	 address	 of
OUR_FIXED_DATA	using	the	following	pseudo-instruction:

ADR							R2,	OUR_FIXED_DATA			;point	to	OUR_FIXED_DATA

ALIGN

This	is	used	to	make	sure	data	is	aligned	in	32-bit	word	or	16-bit	half	word	memory
address.	The	following	uses	ALIGN	to	make	the	data	32-bit	word	aligned:

ALIGN			4														;the	next	instruction	is	word	(4	bytes)	aligned			

…

ALIGN			2														;the	next	instruction	is	half-word	(2	bytes)	aligned										

…

Example	2-7	shows	the	result	of	using	the	ALIGN	directive.

Example	2-7

Compare	the	result	of	using	ALIGN	in	the	following	programs:

a)

AREA					E2_7A,READONLY,CODE

ENTRY

ADR							R2,DTA

LDRB						R0,[R2]

ADD							R1,R1,R0

H1											B													H1										

	

DTA								DCB								0x55



DCB								0x22

END

b)

AREA					E2_7B,READONLY,CODE

ENTRY

ADR							R2,DTA

LDRB						R0,[R2]

ADD							R1,R1,R0

H1											B													H1										

	

DTA								DCB								0x55

ALIGN			2

DCB								0x22

END

c)

AREA					E2_7C,READONLY,CODE

ENTRY

ADR							R2,DTA

LDRB						R0,[R2]

ADD							R1,R1,R0

H1											B													H1										

	

DTA								DCB								0x55

ALIGN			4

DCB								0x22

END

Solution:

a)

When	there	is	no	ALIGN	directive	the	DCB	directive	allocates	the	first	empty	location	for
its	data.	In	this	example,	address	0x10	is	allocated	for	0x55.	So	0x22	goes	to	address	0x11.



b)

In	the	example	the	ALIGN	is	set	to	2	which	means	the	data	should	be	put	in	a	location
with	even	address.	The	0x55	goes	to	the	first	empty	location	which	is	0x10.	The	next
empty	location	is	0x11	which	is	not	a	multiple	of	2.	So,	it	is	filled	with	0	and	the	next	data
goes	to	location	0x12.

c)

In	the	example	the	ALIGN	is	set	to	4	which	means	the	data	should	go	to	locations	whose
address	is	multiple	of	4.	The	0x55	goes	to	the	first	empty	location	which	is	0x10.	The	next
empty	locations	are	0x11,	0x12,	and	0x13	which	are	not	a	multiple	of	4.	So,	they	are	filled
with	0s	and	the	next	data	goes	to	location	0x14.

	

Rules	for	labels	in	Assembly	language

By	choosing	 label	names	 that	 are	meaningful,	 a	programmer	can	make	a	program
much	easier	 to	 read	and	maintain.	There	are	several	 rules	 that	names	must	 follow.	First,
each	 label	 name	 must	 be	 unique.	 The	 names	 used	 for	 labels	 in	 Assembly	 language
programming	 consist	 of	 alphabetic	 letters	 in	 both	 uppercase	 and	 lowercase,	 the	 digits	 0
through	9,	and	the	special	characters	question	mark	(?),	period	(.),	at	(@),	underline	(_),
and	 dollar	 sign	 ($).	 The	 first	 character	 of	 the	 label	must	 be	 an	 alphabetic	 character.	 In
other	words,	it	cannot	be	a	number.	Every	assembler	has	some	reserved	words	that	must
not	 be	 used	 as	 labels	 in	 the	 program.	 Foremost	 among	 the	 reserved	 words	 are	 the
mnemonics	 for	 the	 instructions.	For	example,	“MOV”	and	“ADD”	are	 reserved	because
they	 are	 instruction	 mnemonics.	 In	 addition	 to	 the	 mnemonics	 there	 are	 some	 other



reserved	words.	Check	your	assembler	for	the	list	of	reserved	words.

Review	Questions

1.							Give	an	example	of	hex	data	representation	in	the	ARM	assembler.

2.	 	 	 	 	 	 	Show	how	 to	 represent	 decimal	 20	 in	 formats	 of	 (a)	 hex,	 (b)	 decimal,	 and	 (c)
binary	in	the	ARM	assembler.

3.							What	is	the	advantage	in	using	the	EQU	directive	to	define	a	constant	value?

4.							Show	the	hex	number	value	used	by	the	following	directives:

(a)	ASC_DATA	EQU	‘4’						(b)	MY_DATA	EQU	2_00011111

5.							Give	the	value	in	R2	for	the	following:

MYCOUNT										EQU							15

MOV					R2,	#MYCOUNT

6.							Give	the	value	in	data	memory	location	0x200000	for	the	following:

MYCOUNT										EQU							0x95						

MYMEM														EQU							0x200000												

MOV					R0,	#MYCOUNT															

LDR								R2,	=MYMEM			

STRB						R0,	[R2]

7.							Give	the	value	in	data	memory	0x630000	for	the	following:

MYDATA														EQU							12										

MYMEM														EQU							0x00630000								

FACTOR																EQU							0x10						

MOV					R1,	#MYDATA			

MOV					R2,	#FACTOR					

LDR								R3,	=MYMEM																			

ADD							R1	R2,R1																																														

STRB						R1,[R3]





Section	2.6:	Introduction	to	ARM	Assembly	Programming
In	this	section	we	discuss	Assembly	language	format	and	define	some	widely	used

terminology	associated	with	Assembly	language	programming.

While	the	CPU	can	work	only	in	binary,	it	can	do	so	at	a	very	high	speed.	It	is	quite
tedious	 and	 slow	 for	 humans,	 however,	 to	 deal	with	 0s	 and	 1s	 in	 order	 to	 program	 the
computer.	A	program	that	consists	of	0s	and	1s	 is	called	machine	 language.	 In	 the	early
days	of	 the	computer,	programmers	coded	programs	 in	machine	 language.	Although	 the
hexadecimal	 system	was	used	 as	 a	more	 efficient	way	 to	 represent	 binary	numbers,	 the
process	 of	 working	 in	 machine	 code	 was	 still	 cumbersome	 for	 humans.	 Eventually,
Assembly	 languages	were	developed,	which	provided	mnemonics	 for	 the	machine	 code
instructions,	plus	other	features	that	made	programming	faster	and	less	prone	to	error.	The
term	mnemonic	is	frequently	used	in	computer	science	and	engineering	literature	to	refer
to	 codes	 and	 abbreviations	 that	 are	 relatively	 easy	 to	 remember.	 Assembly	 language
programs	 must	 be	 translated	 into	 machine	 code	 by	 a	 program	 called	 an	 assembler.
Assembly	language	is	referred	to	as	a	low-level	language	because	it	deals	directly	with	the
internal	 structure	of	 the	CPU.	To	program	 in	Assembly	 language,	 the	programmer	must
know	all	the	registers	of	the	CPU	and	the	size	of	each,	as	well	as	other	details.

Today,	one	can	use	many	different	programming	languages,	such	as	BASIC,	Pascal,
C,	 C++,	 Java,	 and	 numerous	 others.	 These	 languages	 are	 called	 high-level	 languages
because	 the	 programmer	 does	 not	 have	 to	 be	 concerned	with	 the	 internal	 details	 of	 the
CPU.	 Whereas	 an	 assembler	 is	 used	 to	 translate	 an	 Assembly	 language	 program	 into
machine	 code	 (sometimes	 also	 called	 object	 code	 or	 opcode	 for	 operation	 code),	 high-
level	 languages	 are	 translated	 into	 machine	 code	 by	 a	 program	 called	 a	 compiler.	 For
instance,	to	write	a	program	in	C,	one	must	use	a	C	compiler	to	translate	the	program	into
machine	language.	Next	we	look	at	ARM	Assembly	language	format.

Structure	of	Assembly	language

An	Assembly	language	program	consists	of,	among	other	things,	a	series	of	lines	of
Assembly	 language	 instructions.	 An	 Assembly	 language	 instruction	 consists	 of	 a
mnemonic,	optionally	followed	by	two	or	three	operands.	The	operands	are	the	data	items
being	manipulated,	and	the	mnemonics	are	the	commands	to	the	CPU,	telling	it	what	to	do
with	those	items.	See	Program	2-4.

Program	2-4:	Sample	of	an	ARM	Assembly	Language	Program

;ARM	Assembly	language	program	to	add	some	data	and	store	the	SUM	in	R3.

	

AREA					PROG_2_4,	CODE,	READONLY

ENTRY																		

MOV					R1,	#0x25													;R1	=	0x25

MOV					R2,	#0x34													;R2	=	0x34



ADD							R3,	R2,R1													;R3	=	R2	+	R1

HERE						B													HERE

												END					

An	Assembly	language	program	is	a	series	of	statements,	or	lines,	which	are	either
Assembly	language	instructions,	such	as	ADD	and	MOV,	or	statements	called	directives.
While	 instructions	 tell	 the	 CPU	what	 to	 do,	 directives	 (also	 called	 pseudo-instructions)
give	directions	to	the	assembler.	For	example,	in	Program	2-4,	while	the	MOV	and	ADD
instructions	are	commands	to	the	CPU,	ENTRY	and	END	are	directives	to	the	assembler.
The	 directive	 END	 tells	 the	 assembler	 that	 it	 is	 the	 end	 of	 the	 code,	 while	 ENTRY	 is
beginning	of	the	code.

An	Assembly	language	instruction	consists	of	four	fields:

[label]			mnemonic		[operands]		[;comment]

Brackets	indicate	that	a	field	is	optional	and	not	all	lines	have	them.	Brackets	should
not	be	typed	in.	Regarding	the	above	format,	the	following	points	should	be	noted:

1.							The	label	field	allows	the	program	to	refer	to	a	line	of	code	by	name.	The	label
field	cannot	exceed	a	certain	number	of	characters.	Check	your	assembler	for	the
rule.

2.							The	Assembly	language	mnemonic	(instruction)	and	operand(s)	fields	together
perform	 the	 real	 work	 of	 the	 program	 and	 accomplish	 the	 tasks	 for	which	 the
program	was	written.	In	Assembly	language	statements	such	as

MOV					R3,#0x55													

MOV					R2,#0x67													

ADD							R2,R2,R3														;R2	=	R2	+	R3

ADD	and	MOV	are	the	mnemonics	that	produce	opcodes;	the	“0x55”	and	“0x67”	are
the	 operands.	 Instead	 of	 a	 mnemonic	 and	 an	 operand,	 these	 two	 fields	 could	 contain
assembler	 pseudo-instructions,	 or	 directives.	 Remember	 that	 directives	 do	 not	 generate
any	machine	code	(opcode)	and	are	used	only	by	the	assembler,	as	opposed	to	instructions
that	are	translated	into	machine	code	(opcode)	for	the	CPU	to	execute.	In	Program	2-4	the
commands	 END	 and	 ENTRY	 are	 examples	 of	 directives.	 Many	 of	 these	 pseudo-
instructions	were	discussed	in	the	last	section.

3.							The	comment	field	begins	with	a	semicolon	comment	indicator	“;”.	Comments
may	be	 at	 the	 end	of	 a	 line	or	on	 a	 line	by	 themselves.	The	 assembler	 ignores
comments,	but	 they	are	 indispensable	 to	programmers.	Although	comments	are
optional,	 it	 is	recommended	that	they	be	used	to	describe	the	program	in	a	way
that	makes	it	easier	for	someone	else	to	read	and	understand.

4.	 	 	 	 	 	 	Notice	the	label	“HERE”	in	the	label	field	in	Program	2-4.	In	the	B	(Branch)
statement	the	ARM	is	told	to	stay	in	this	loop	indefinitely.	If	your	system	has	a
monitor	 program	 you	 do	 not	 need	 this	 line	 and	 should	 delete	 it	 from	 your



program.	In	the	next	section	we	will	see	how	to	create	a	ready-to-run	program.

Note!

The	first	column	of	each	line	is	always	considered	as	label.	Thus,	be	careful	to	press	a
Tab	at	the	beginning	of	each	line	that	does	not	have	label;	otherwise,	your	instruction	is
considered	as	a	label	and	an	error	message	will	appear	when	compiling.

Review	Questions

1.							What	is	the	purpose	of	pseudo-instructions?

2.							_____________	are	translated	by	the	assembler	into	machine	code,	whereas
__________________	are	not.

3.							True	or	false.	Assembly	language	is	a	high-level	language.

4.							Which	of	the	following	instructions	produces	opcode?	List	all	that	do.

(a)				MOV	R6,#0x25		(b)	ADD	R2,R1,R3		(c)	END		(d)	HERE	B	HERE

5.							Pseudo-instructions	are	also	called	___________.

6.							True	or	false.	Assembler	directives	are	not	used	by	the	CPU	itself.	They	are	simply
a	guide	to	the	assembler.

7.							In	Question	4,	which	one	is	an	assembler	directive?





Section	2.7:	Assembling	an	ARM	Program
Now	that	the	basic	form	of	an	Assembly	language	program	has	been	given,	the	next

question	is:	How	it	is	created,	assembled,	and	made	ready	to	run?	The	steps	to	create	an
executable	Assembly	language	program	(Figure	2-13)	are	outlined	as	follows:

Figure	2-	13:	Steps	to	Create	a	Program

1.	 	 	 	 	 	 	First	we	use	a	text	editor	to	type	in	a	program	similar	to	Program	2-4.	In	the
case	 of	 ARM,	 we	 can	 use	 the	 Keil	 IDE,	 which	 has	 a	 text	 editor,	 assembler,
simulator,	 and	 much	 more	 all	 in	 one	 software	 package.	 It	 is	 an	 excellent
development	software	that	supports	all	the	ARM	chips	and	is	free	for	university
students.	See	www.keil.com	for	evaluation	version	of	 the	software	for	students.
Many	editors	or	word	processors	are	also	available	that	can	be	used	to	create	or
edit	the	program.	A	widely	used	editor	is	the	Notepad	in	Windows,	which	comes
with	 all	 Microsoft	 operating	 systems.	 Notice	 that	 the	 editor	 must	 be	 able	 to
produce	 an	 ASCII	 file.	 For	 assemblers,	 the	 file	 names	 follow	 the	 usual	 DOS
conventions,	 but	 the	 source	 file	 has	 the	 extension	 “.a”	 or	 “.asm”.	 The	 “a”
extension	for	the	source	file	is	used	by	an	assembler	in	the	next	step.

2.	 	 	 	 	 	 	The	“a”	source	file	containing	the	program	code	created	in	step	1	is	fed	to	the
ARM	assembler.	The	assembler	produces	an	object	file,	and	a	list	file.	The	object
file	has	the	extension	“.o”,	and	the	list	file	has	“.lst”	extension.	

3.							The	object	file	plus	a	script	file	are	used	by	the	linker	to	produce	map	file	and
hex	 file.	 The	 map	 file	 has	 the	 extension	 “.map”,	 and	 the	 hex	 file	 has	 “.hex”
extension.	The	 script	 file	 is	 optional	 and	 can	 be	 replaced	with	 some	 command
line	options.	After	a	 successful	 link,	 the	hex	 file	 is	 ready	 to	be	burned	 into	 the
ARM’s	program	ROM	and	is	downloaded	into	the	ARM	chip.

More	about	asm	and	object	files

The	asm	file	is	also	called	the	source	file	and	must	have	the	“a”	or	“asm”	extension.
As	mentioned	 earlier,	 this	 file	 is	 created	 with	 a	 text	 editor	 such	 as	Windows	Notepad.



Many	assemblers	come	with	a	text	editor.	The	assembler	converts	the	asm	file’s	Assembly
language	 instructions	 into	machine	 language	and	provides	 the	o	 (object)	 file.	The	object
file,	as	mentioned	earlier,	has	an	“o”	as	its	extension.	The	object	file	is	used	as	input	to	a
simulator	or	an	emulator.

Before	we	can	assemble	a	program	to	create	a	ready-to-run	program,	we	must	make
sure	that	it	is	error	free.	The	Keil	uVision	IDE	provides	us	error	messages	and	we	examine
them	to	see	the	nature	of	syntax	errors.	The	assembler	will	not	assemble	the	program	until
all	the	syntax	errors	are	fixed.	A	sample	of	an	error	message	is	shown	in	Figure	2-14.

Build	target	‘Target	1’

assembling	a1.asm…a1.asm(7):	error:	A1163E:	Unknown	opcode	MOVE,	expecting	opcode	or	Macro

Target	not	created

Figure	2-	14:	Sample	of	an	Error	Message

“lst”	and	“map”	files

The	map	 file	 shows	 the	 labels	 defined	 in	 the	 program	 together	with	 their	 values.
Examine	Figure	2-15.	It	shows	the	Map	file	of	Program	2-4.

Memory	Map	of	the	image

	

		Image	Entry	point	:	0x00000000

	

		Load	Region	LR_1	(Base:	0x00000000,	Size:	0x00000010,	Max:	0xffffffff,	ABSOLUTE)

	

		Execution	Region	ER_RO	(Base:	0x00000000,	Size:	0x00000010,	Max:	0xffffffff,	ABSOLUTE)

	

Base	Addr				Size									Type			Attr						Idx				E	Section	Name								Object

0x00000000			0x00000010			Code			RO												1		*	PROG_2_1												a2.o

	

Execution	Region	ER_RW	(Base:	0x40000000,	Size:	0x00000000,	Max:	0xffffffff,	ABSOLUTE)

****	No	section	assigned	to	this	execution	region	****

	

	

Execution	Region	ER_ZI	(Base:	0x40000000,	Size:	0x00000000,	Max:	0xffffffff,	ABSOLUTE)

****	No	section	assigned	to	this	execution	region	****

Figure	2-	15:	Sample	of	a	Map	File

The	lst	(list)	file,	which	is	optional,	is	very	useful	to	the	programmer.	The	list	shows
the	binary	and	source	code;	it	also	shows	which	instructions	are	used	in	the	source	code,
and	the	amount	of	memory	the	program	uses.	See	Figure	2-16.

ARM	Macro	Assembler Page	1

1	00000000 	 ;ARM	Assembly	Language	Program	To	Add	Some	Data	and	Store	the	SUM	in	R3.

2



00000000							 	 	 	

3	00000000 	 	 AREA			PROG_2_4,	CODE,	READONLY

4	00000000 	 	 ENTRY

5	00000000 E3A01025 	 MOV				R1,	#0x25					;R1	=	0x25

6	00000004 E3A02034 	 MOV				R2,	#0x34					;R2	=	0x34

7	00000008 E0823001 	 ADD				R3,	R2,R1					;R3	=	R2	+	R1

8	0000000C EAFFFFFE HERE			 B						HERE

9	00000010 	 	 END

Figure	2-	16:	Sample	of	a	List	File	for	ARM

Many	assemblers	assume	that	the	list	file	is	not	wanted	unless	you	indicate	that	you
want	 to	 produce	 it.	 These	 files	 can	 be	 accessed	 by	 a	 text	 editor	 such	 as	 Notepad	 and
displayed	on	the	monitor,	or	sent	to	the	printer	to	get	a	hard	copy.	The	programmer	uses
the	list	and	map	files	to	locate	syntax	error.

There	 are	 many	 different	 ARM	 assemblers	 available	 for	 evaluation	 nowadays.	 If
you	 use	 the	Windows	 operating	 system,	ARM	 IAR	 IDE	 and	Keil	 uVision	 can	 be	 used.
They	have	great	features	and	nice	environments.

Review	Questions

1.							True	or	false.	The	ARM	uVision	IDE	and	Windows	Notepad	text	editor	both
produce	an	ASCII	file.

2.							True	or	false.	The	extension	for	the	source	file	is	“a”.

3.							Which	of	the	following	files	can	be	produced	by	a	text	editor?

(a)	myprog.a		(b)	myprog.obj		(c)	myprog.hex		(d)	myprog.lst

4.							Which	of	the	following	files	is	produced	by	an	assembler?

(a)				myprog.asm		(b)	myprog.obj		(c)	myprog.hex		(d)	myprog.lst





Section	2.8:	The	Program	Counter	and	Program	ROM	Space	in	the	ARM
In	 this	 section	 we	 discuss	 the	 role	 of	 the	 program	 counter	 (PC)	 in	 executing	 a

program	and	show	how	the	code	is	fetched	from	ROM	and	executed.	We	will	also	discuss
the	program	(code)	ROM	space	for	various	ARM	family	members.	Finally,	we	examine
the	Harvard	architecture	of	the	ARM.

Program	counter	in	the	ARM

The	most	important	register	in	ARM	is	the	PC	(program	counter).	As	we	mentioned
earlier	the	R15	is	the	program	counter	in	ARM.	The	program	counter	is	used	by	the	CPU
to	 point	 to	 the	 address	 of	 the	 next	 instruction	 to	 be	 executed.	 As	 the	 CPU	 fetches	 the
opcode	 from	 the	 program	 ROM,	 the	 program	 counter	 is	 incremented	 automatically	 to
point	to	the	next	instruction.	The	wider	the	program	counter,	the	more	memory	locations	a
CPU	can	access.	That	means	that	a	32-bit	program	counter	can	access	a	maximum	of	4G
(232	=	4G)	bytes	program	memory	locations.

In	most	microcontrollers	each	memory	location	is	1	byte	wide.	In	the	case	of	a	32-
bit	 program	 counter,	 the	 memory	 space	 is	 4G	 (232	 =	 4G)	 bytes,	 which	 occupies	 the
0x00000000	 –0xFFFFFFFF	 address	 range	 since	 it	 is	 byte-addressable.	 The	 program
counter	in	the	ARM	family	is	32	bits	wide.	This	means	that	the	ARM	family	can	access
addresses	00000000	to	0xFFFFFFFF,	a	total	of	4G	byte	of	memory	space	locations.	The
4G	bytes	of	memory	space	locations	are	allocated	among	the	I/O	peripherals,	SRAM,	and
Flash	ROM.	However,	at	the	time	of	this	writing,	none	of	the	members	of	the	ARM	family
have	the	entire	4G	bytes	of	memory	space	populated	with	on-chip	peripherals,	SRAM,	and
Flash.	

Power	up	location	for	ARM

One	question	that	we	must	ask	about	any	microcontroller	(or	microprocessor)	is:	“At
what	 address	 does	 the	 CPU	wake	 up	when	 power	 is	 applied?”	 Each	microprocessor	 is
different.	In	the	case	of	the	ARM	microcontrollers	(that	is,	all	members	regardless	of	the
family	and	variation),	the	microcontroller	wakes	up	at	memory	address	0x00000000	when
it	 is	powered	up.	By	powering	up	we	mean	applying	VCC	or	activating	RESET	pin.	 In
other	words,	when	 the	ARM	 is	powered	up,	 the	PC	 (program	counter)	has	 the	value	of
0x00000000	in	it.	This	means	that	it	expects	the	first	opcode	to	be	stored	at	ROM	address
0x00000000.	For	 this	 reason,	 in	 the	ARM	system,	 the	 first	 opcode	must	be	burned	 into
memory	location	0x00000000	of	program	ROM	because	this	is	where	it	looks	for	the	first
instruction	 when	 it	 is	 booted.	 Next	 we	 discuss	 the	 step-by-step	 action	 of	 the	 program
counter	in	fetching	and	executing	a	sample	program.

Placing	code	in	program	ROM

To	 get	 a	 better	 understanding	 of	 the	 role	 of	 the	 program	 counter	 in	 fetching	 and
executing	a	program,	we	examine	the	action	of	the	program	counter	as	each	instruction	is
fetched	and	executed.	First,	we	examine	once	more	the	list	file	of	the	sample	program	and
show	how	 the	 code	 is	 placed	 into	 the	Flash	ROM	of	 the	ARM	chip.	As	we	 can	 see	 in
Figure	2-16,	the	opcode	and	operand	for	each	instruction	are	listed	on	the	left	side	of	the



list	file.

After	the	program	is	burned	into	ROM	of	an	ARM	chip,	the	opcode	and	operand	are
placed	in	ROM	memory	locations	starting	at	0x00000000	as	shown	in	the	Program	2-4	list
file.

The	list	shows	that	address	00000000	contains	E3A01025,	which	is	the	opcode	for
moving	a	value	into	register,	and	the	operand	(in	this	case	0x25)	to	be	moved	to	another
operand	 (in	 this	 case	R1).	 Therefore,	 the	 instruction	 “MOV	R1,	 #0x25”	 has	 a	machine
code	of	“E3A01025”,	where	E3A	is	the	opcode	and	01025	is	the	operands.	See	Figure	2-
16.	 Similarly,	 the	 machine	 code	 “E3A02034”	 is	 located	 in	 ROM	 memory	 location
00000004	 and	 represents	 the	 opcode	 and	 the	 operands	 for	 the	 instruction	 “MOV	 R2,
#0x34”.	 In	 the	 same	 way,	 machine	 code	 “E0813002”	 is	 located	 in	 memory	 location
00000008	 and	 represents	 the	 opcode	 and	 the	 operand	 for	 the	 instruction	 “ADD
R3,R1,R2”.	 The	 opcode	 for	 “HERE	 B	 HERE”	 and	 its	 target	 address	 are	 located	 in
locations	 0000000C.	 Notice	 that	 all	 the	 instructions	 in	 this	 program	 are	 4-byte
instructions.

Executing	a	program	instruction	by	instruction

Assuming	 that	 the	 above	 program	 is	 burned	 into	 the	 ROM	 of	 an	ARM	 chip,	 the
following	is	a	step-by-step	description	of	the	action	of	the	ARM	upon	applying	power	to
it:

1.	 	 	 	 	 	 	When	the	ARM	is	powered	up,	the	PC	(program	counter)	has	00000000	and
starts	to	fetch	the	first	instruction	from	location	00000000	of	the	program	ROM.
In	the	case	of	the	above	program	the	first	code	is	E3A01025,	which	is	the	code
for	moving	operand	0x25	 to	R1.	Upon	executing	 the	code,	 the	CPU	places	 the
value	of	25	in	R1.	Now	one	instruction	is	finished.	The	program	counter	is	now
incremented	 to	 point	 to	 00000004	 (PC	 =	 00000004),	 which	 contains	 code
E3A02034,	the	machine	code	for	the	instruction	“MOV	R2,	#0x34”.

2.	 	 	 	 	 	 	Upon	executing	the	machine	code	E3A02034,	the	value	0x34	is	loaded	to	R2.
The	program	counter	is	incremented	to	00000008.

3.	 	 	 	 	 	 	 ROM	 location	 00000008	 has	 the	 machine	 code	 for	 instruction	 “ADD	
R3,R2,R1”.	This	instruction	is	executed	and	now	PC	=	0000000C.

4.	 	 	 	 	 	 	Now	 PC	 =	 0000000C	 points	 to	 the	 next	 instruction,	 which	 is	 “HERE	 B
HERE”.		After	the	execution	of	this	instruction,	PC	=	0000000C.	This	keeps	the
program	in	an	infinite	loop.

The	 fact	 that	 the	 program	 counter	 points	 at	 the	 next	 instruction	 to	 be	 executed
explains	 why	 some	 microprocessors	 (notably	 the	 x86)	 call	 the	 program	 counter	 the
instruction	pointer.

The	 steps	 of	 running	 a	 code	 in	 ARM	 is	 slightly	 different	 from	 what	 mentioned
above	because	of	the	use	of	pipeline	in	ARM	architecture.	We	will	examine	pipelines	later
in	Chapter 7.	Also	in	ARM	Cortex	M	chips	the	power-on	Reset	location	value	is	different
as	we	will	see	in	Chapter	8.



Instruction	formation	of	the	ARM

Recall	that	the	ARM	instructions	are	always	4-byte.	Next	we	explore	the	instruction
formation	for	a	few	of	the	instructions	we	have	used	in	this	chapter.	This	should	give	you
some	insight	into	the	instructions	of	the	ARM.

ADD	instruction	formation

The	ADD	is	a	4-byte	(32-bit)	instruction.	See	Figure	2-17.	Of	the	32	bits,	the	first	4
bits	are	set	aside	for	the	condition	field	which	will	be	discussed	more	in	Chapter	4.	Bits	26
and	27	are	always	0	in	ADD	instruction.	Bit	25	which	is	indicated	by	I	defines	the	type	of
second	operand.	As	we	mentioned	before,	the	second	operand	can	be	either	a	register	or	an
immediate	 value	 between	 0–255.	 If	 I	 =	 1,	 the	 second	 operand	 is	 an	 immediate	 value
otherwise	it	should	be	a	register.	Bits	24	to	21	are	the	operation	code	of	ADD	instruction.
When	these	bits	are	0100	the	CPU	knows	that	it	should	run	the	ADD	instruction.	Bit	20
which	is	indicated	by	S	defines	either	the	instruction	should	update	the	flag	bits	or	not.	In
ADD	instruction	this	bit	is	zero	while	in	ADDS	instruction	it	is	one.	Bits	19	to	16	define
the	first	operand	(Rn).	It	can	be	a	register	number	between	R0	to	R15.	Likewise,	bits	15	to
12	define	the	destination	register	(Rd).	Finally,	bits	11	to	0	define	the	second	operand.	As
we	mentioned	before,	bit	25	(I)	defines	that	either	the	second	operand	should	be	a	register
or	an	immediate	value.	We	will	discuss	the	bits	of	Operand	2	in	more	detail	in	Chapter	3.

Figure	2-	17:	ADD	Instruction	Formation

SUB	instruction	formation

The	SUB	is	a	4-byte	(32-bit)	instruction.	Of	the	32	bits,	the	first	4	bits	are	set	aside
for	 the	condition	field.	Bits	26	and	27	are	always	0	 in	SUB	instruction.	Bit	25	which	 is
indicated	 by	 I	 defines	 the	 type	 of	 second	 operand.	 If	 I	 =	 1,	 the	 second	 operand	 is	 an
immediate	value	otherwise	it	should	be	a	register.	Bits	24	to	21	are	the	operation	code	of
SUB	 instruction.	When	 these	 bits	 are	 0010	 the	CPU	knows	 that	 it	 should	 run	 the	SUB
instruction.	Bit	20	which	is	indicated	by	S	defines	either	the	instruction	should	update	the
flag	bits	or	not.	In	SUB	instruction	this	bit	is	zero	while	in	SUBS	instruction	it	is	one.	Bits
19	 to	16	define	 the	 first	 operand	 (Rn).	 It	 can	be	 a	 register	number	between	R0	 to	R15.
Likewise,	bits	15	to	12	define	the	destination	register	(Rd).	Finally,	bits	11	to	0	define	the
second	operand.	As	we	mentioned	before,	bit	25	(I)	defines	that	either	the	second	operand
should	be	a	register	or	an	immediate	value.	The	formation	of	SUB	instruction	is	shown	in
Figure	2-18.

Figure	2-	18:	SUB	Instruction	Formation

General	formation	of	data	processing	instructions

As	you	may	have	noticed,	the	formation	of	ADD	and	SUB	instructions	are	the	same



except	bits	24	to	21	which	are	called	the	operation	code	and	tells	the	CPU what	instruction
it	should	execute.	In	ARM,	all	of	the	data	processing	instructions	have	the	same	format.
Figure	2-19	shows	the	general	formation	of	data	processing	instructions.	Each	of	the	data
processing	 instruction	has	a	unique	operation	code.	 In	Table	2-10	you	 see	 the	 list	of	 all
data	processing	instructions	and	their	opcodes.

Figure	2-	19:	General	Formation	of	Data	Processing	Instructions

Branch	instruction	formation

The	B	is	a	4-byte	(32-bit)	instruction.	See	Figure	2-20.	Of	the	32	bits,	the	first	4	bits
are	set	aside	for	the	condition	field	which	will	be	discussed	more	in	Chapter	4.	Bits	27	to
25	are	always	101	in	B	instruction.	Bit	24	which	is	indicated	by	L	is	zero	in	B	instruction
and	one	in	BL	instruction.	Bits	23	to	0	give	us	branch	target	location	relative	to	the	current
address.	These	will	be	discussed	further	in	Chapter	4.

Figure	2-	20:	Branch	Instruction	Formation

ROM	width	in	the	ARM

As	we	have	seen	so	 far	 in	 this	 section,	each	 location	of	 the	address	space	holds	1
byte.	 If	we	 have	 32	 address	 lines,	 this	will	 give	 us	 232	 locations,	which	 is	 4G	bytes	 of
memory	 location	with	 an	 address	map	 of	 0x00000000–0xFFFFFFFF.	 To	 bring	 in	more
information	(code	or	data)	 into	the	CPU	in	each	bus	cycle,	ARM	increased	the	width	of
the	data	bus	to	32	bits.	In	other	words,	the	ARM	is	word-addressable.	In	contrast,	the	8051
CPU	is	byte-addressable	only.	In	a	sense,	the	data	bus	is	like	traffic	lanes	on	the	highway
where	each	lane	is	8	bits	wide.	The	more	lanes,	the	more	information	we	can	bring	into	the
CPU	for	processing.	For	the	ARM,	the	internal	data	bus	between	the	code	memory	and	the
CPU	is	32	bits	wide,	as	shown	in	Figure	2-21.	Therefore,	the	4G	memory	space	is	shown
as	1G	×	32	using	a	32-bit	word	data	bus	size.	The	widening	of	the	data	path	between	the
program	ROM	and	 the	CPU	 is	 another	way	 in	which	 the	ARM	designers	 increased	 the
processing	power	of	the	ARM	family.	Another	reason	to	make	the	code	memory	32	bits
wide	is	to	match	it	with	the	instruction	width	of	the	ARM	because	all	of	the	instructions
are	4-byte	wide.	This	way,	 the	CPU	brings	 in	an	 instruction	from	memory	every	 time	 it
makes	a	trip	to	the	program	memory.	That	will	make	instruction	fetch	a	single	cycle,	as	we
will	see	in	the	Chapter	4	when	instruction	timing	is	discussed.

The	ARM	designers	have	made	all	instructions	fixed	at	4-byte;	there	are	no	1-byte,
2-byte,	or	3-byte	instructions,	as	is	the	case	with	the	x86	and	8051	chips.	This	is	part	of
the	RISC	architectural	philosophy,	which	will	 be	discussed	 later	 in	 this	 chapter.	 It	must
also	be	noted	that	the	data	memory	SRAM	in	the	ARM	microcontroller	are	also	4-byte.

Harvard	and	von	Neumann	architectures	in	the	ARM



In	 Chapter	 0,	we	 discussed	Harvard	 and	Von	Neumann	 architecture.	ARM	 9	 and
newer	architectures	use	Harvard	architecture,	which	means	 that	 there	are	 separate	buses
for	the	code	and	the	data	memory.	See	Figure	2-21.	The	program	bus	provides	access	to
the	program	memory	whereas	the	data	bus	is	used	for	bringing	data	to	the	CPU.

Figure	2-	21:	Harvard	vs.	Von	Neumann	Architecture

As	we	can	see	in	Figure	2-21,	in	the	program	bus,	the	data	bus	is	32	bits	wide	and
the	 address	 bus	 is	 as	 wide	 as	 the	 PC	 register	 to	 enable	 the	 CPU	 to	 address	 the	 entire
program	memory.

In	Sections	2-2	and	2-3,	we	 learned	about	data	memory	space	and	how	to	use	 the
STR	 and	 LDR	 instructions.	 When	 the	 CPU	 wants	 to	 execute	 the	 “LDR	 Rd,[Rx]”
instruction,	 it	puts	Rx	on	 the	address	bus	of	 the	data	bus,	and	 receives	data	 through	 the
data	bus.	For	example,	to	execute	“LDR	R2,[R5]”,	assuming	that	R5	=	0x40000200,	the
CPU	puts	the	value	of	R5	on	the	address	bus.	The	location	0x40000200	is	in	the	SRAM
(see	Figure	2-4).	Thus,	 the	SRAM	puts	 the	contents	of	 location	0x40000200	on	the	data
bus.	The	CPU	gets	the	contents	of	location	0x40000200	through	the	data	bus	and	brings
into	CPU	and	puts	it	in	R2.

The	 “STR	 Rx,[Rd]”	 instruction	 is	 executed	 similarly.	 The	 CPU	 puts	 Rd	 on	 the
address	bus	and	the	contents	of	Rx	on	the	data	bus.	The	memory	location	whose	address	is
on	the	address	bus	receives	the	contents	of	data	bus.

Little	endian	vs.	big	endian	war

Examine	the	placing	of	the	code	in	the	ARM	program	memory,	shown	in	Figure	2-
22.	The	 low	byte	 goes	 to	 the	 low	memory	 location,	 and	 the	 high	byte	 goes	 to	 the	 high
memory	 address.	 This	 convention	 is	 called	 little	 endian	 to	 contrast	 it	 with	 big	 endian.
Figure	2-23	shows	storing	 the	same	data	using	big	endian	convention.	The	origin	of	 the
terms	big	endian	and	little	endian	is	from	an	argument	in	a	Gulliver’s	Travels	story	over
how	an	egg	should	be	opened:	from	the	big	end	or	the	little	end.	In	the	big	endian	method,
the	high	byte	goes	to	the	low	address,	whereas	in	the	little	endian	method,	the	high	byte
goes	to	the	high	address	and	the	low	byte	to	the	low	address.	All	Intel	microprocessors	and



many	 microcontrollers	 use	 the	 little	 endian	 convention.	 Freescale	 (formerly	 Motorola)
microprocessors,	along	with	some	mainframes,	use	big	endian.	The	difference	might	seem
as	trivial	as	whether	to	break	an	egg	from	the	big	end	or	the	little	end,	but	it	is	a	nuisance
in	converting	software	from	one	camp	to	be	run	on	a	computer	of	the	other	camp.	Many
microprocessors,	including	the	ARM,	let	the	software	designer	choose	little	endian	or	big
endian	convention.

Figure	2-	22:	ARM	Program	Memory	Contents	for	Program	2-4	List	File	(Little	Endian)

Figure	2-	23:	Big	Endian	Convention

Review	Questions	

1.							In	the	ARM,	the	program	counter	is	______	bits	wide.

2.							True	or	false.	Every	member	of	the	ARM	family	wakes	up	at	memory	0x00000000
when	it	is	powered	up.

3.							At	what	ROM	location	do	we	store	the	first	opcode	of	an	ARM	program?

4.							True	or	false.	All	the	instructions	in	the	ARM	are	4-byte	instructions.



5.							True	or	false.	ARM9	and	newer	architectures	use	von	Neumann	architecture.

6.							True	or	false.	ARM7	and	older	architectures	use	von	Neumann	architecture.





Section	2.9:	Some	ARM	Addressing	Modes
The	CPU	can	access	operands	(data)	in	various	ways,	called	addressing	modes.		The

number	 of	 addressing	 modes	 is	 determined	 when	 the	 microprocessor	 is	 designed	 and
cannot	be	changed.	Using	advanced	addressing	modes	the	accessing	of	different	data	types
and	data	structures	(e.g.	arrays,	pointers,	classes)	are	discussed	in	Chapter	6.	Some	of	the
simple	ARM	addressing	modes	are:

1.							register

2.							immediate

3.							register	indirect		(indexed	addressing	mode)

Register	addressing	mode

The	 register	 addressing	mode	 involves	 the	 use	 of	 registers	 to	 hold	 the	 data	 to	 be
manipulated.	Memory	is	not	accessed	when	this	addressing	mode	is	executed;	therefore,	it
is	relatively	fast.	See	Figure	2-24.

Figure	2-	24:	Register	Addressing	Mode

Examples	of	register	addressing	mode	are	as	follow:

MOV					R6,R2																					;copy	the	contents	of	R2	into	R6

ADD							R1,R1,R3														;add	the	contents	of	R3	to	contents	of	R1

SUB								R7,R7,R2														;subtract	R2	from	R7

Immediate	addressing	mode

In	the	immediate	addressing	mode,	 the	source	operand	is	a	constant.	In	 immediate
addressing	mode,	 as	 the	 name	 implies,	 when	 the	 instruction	 is	 assembled,	 the	 operand
comes	 immediately	 after	 the	 opcode.	 For	 this	 reason,	 this	 addressing	 mode	 executes
quickly.	See	Figure	2-25.	Examples:	

MOV					R9,#0x25														;move	0x25	into	R9

MOV					R3,#62																		;load	the	decimal	value	62	into	R3

ADD							R6,R6,#0x40							;add	0x40	to	R6

Figure	2-	25:	Immediate	Addressing	Mode

In	the	first	two	addressing	modes,	the	operands	are	either	inside	the	microprocessor



or	tagged	along	with	the	instruction.	In	most	programs,	the	data	to	be	processed	is	often	in
some	memory	location	outside	the	CPU.	There	are	many	ways	of	accessing	the	data	in	the
data	memory	space.	The	following	describes	one	of	the	methods.

Register	Indirect	Addressing	Mode	(Indexed	addressing	mode)

In	the	register	indirect	addressing	mode,	the	address	of	the	memory	location	where
the	operand	resides	is	held	by	a	register.	See	Figure	2-26.	For	example:

STR									R5,[R6]																	;move	R5	into	the	memory	location

;pointed	to	by	R6	

LDR								R10,[R3]															;move	into	R10	the	contents	of	the

																																																;memory	location	pointed	to	by	R3.	

Figure	2-	26:	Register	Indirect	Addressing	Mode

	Sample	Usage:	Register	indirect	addressing	mode					

Using	register	indirect	addressing	mode	we	can	implement	the	different	pointers.	Since
the	registers	are	32-bit	they	can	address	the	entire	memory	space.	Here	you	see	a	simple
code	in	C	and	its	equivalent	in	Assembly:

C	Language:
char	*ourPointer;

ourPointer	=	(char*)	0x12456;	//Point	to	location	12456

*ourPointer	=	25;			//store	25	in	location	0x12456

ourPointer	++;					//point	to	next	location

Assembly	Language:
LDR									R2,=0x12456		;point	to	location	0x12456

MOV							R0,#25					;R0	=	25

STRB							R0,[R2]					;store	R0	in	location	0x12456

ADD								R2,R2,#1		;increment	R2	to	point	to	next	location

Depending	on	the	data	type	that	the	pointer	points	to,	STR/LDR,
STRH/LDRH,	or	STRB/LDRB	might	be	used.	In	the	above	example,	since	it
points	to	char	(which	is	8-bit)	STRB	is	used.



See	Chapter	6	for	more	advanced	addressing	modes.

Review	Questions

1.							Can	the	ARM	programmer	make	up	new	addressing	modes?

2.							Which	registers	can	be	used	for	the	register	indirect	addressing	mode?

3.							Where	is	the	data	located	in	immediate	addressing	mode?





Section	2.10:	RISC	Architecture	in	ARM
There	 are	 three	 ways	 available	 to	 microprocessor	 designers	 to	 increase	 the

processing	power	of	the	CPU:

1.	 	 	 	 	 	 	Increase	the	clock	frequency	of	 the	chip.	One	drawback	of	 this	method	is
that	the	higher	the	frequency,	the	more	power	and	heat	dissipation.	Power	and
heat	dissipation	is	especially	a	problem	for	hand-held	devices.

2.	 	 	 	 	 	 	Use	Harvard	architecture	by	increasing	the	number	of	buses	to	bring	more
information	(code	and	data)	into	the	CPU	to	be	processed.	While	in	the	case	of
x86	 and	 other	 general	 purpose	 microprocessors	 this	 architecture	 is	 very
expensive	and	unrealistic,	in	today’s	microcontrollers	this	is	not	a	problem.	As
we	saw	in	Section	2.8,	some	of	the	ARM	chips	have	Harvard	architecture.

3.	 	 	 	 	 	 	Change	 the	 internal	architecture	of	 the	CPU	and	use	what	 is	called	RISC
architecture.

ARM	has	used	all	 three	methods	 to	 increase	 the	processing	power	of	 the	ARM
microcontrollers.	In	this	section	we	discuss	the	merits	of	RISC	architecture.

In	 the	early	1980s,	a	controversy	broke	out	 in	 the	computer	design	community,
but	unlike	most	controversies,	 it	did	not	go	away.	Since	 the	1960s,	 in	all	mainframes
and	minicomputers,	designers	put	as	many	instructions	as	they	could	think	of	into	the
CPU.	Some	of	these	instructions	performed	complex	tasks.	An	example	is	adding	data
memory	 locations	 and	 storing	 the	 sum	 into	 memory.	 Naturally,	 microprocessor
designers	followed	the	lead	of	minicomputer	and	mainframe	designers.	Because	these
microprocessors	used	 such	a	 large	number	of	 instructions,	many	of	which	performed
highly	 complex	 activities,	 they	 came	 to	 be	 known	 as	 CISC	 (complex	 instruction	 set
computer)	 processors.	 According	 to	 several	 studies	 in	 the	 1970s,	 many	 of	 these
complex	 instructions	 etched	 into	 CPUs	 were	 never	 used	 by	 programmers	 and
compilers.	 The	 huge	 cost	 of	 implementing	 a	 large	 number	 of	 instructions	 (some	 of
them	 complex)	 into	 the	 microprocessor,	 plus	 the	 fact	 that	 a	 good	 portion	 of	 the
transistors	on	the	chip	are	used	by	the	instruction	decoder,	made	some	designers	think
of	simplifying	and	reducing	the	number	of	instructions.	As	this	concept	developed,	the
resulting	processors	came	to	be	known	as	RISC	(reduced	instruction	set	computer).

Features	of	RISC

The	 following	 are	 some	 of	 the	 features	 of	RISC	 as	 implemented	 by	 the	ARM
microcontroller.

Feature	1

RISC	processors	have	a	fixed	instruction	size.	In	a	CISC	microprocessors	such	as
the	x86,	instructions	can	be	1,	2,	3,	or	even	5	bytes.	For	example,	look	at	the	following
instructions	in	the	x86:

CLR									C																													;clear	Carry	flag,	a	1-byte	instruction

ADD							Accumulator,	#mybyte		;a	2-byte	instruction						



LJMP					target_address	;a	5-byte	instruction

This	 variable	 instruction	 size	 makes	 the	 task	 of	 the	 instruction	 decoder	 very
difficult	 because	 the	 size	 of	 the	 incoming	 instruction	 is	 never	 known.	 In	 a	 RISC
architecture,	 the	 size	 of	 all	 instructions	 is	 fixed.	 Therefore,	 the	CPU	 can	 decode	 the
instructions	quickly.	This	 is	 like	a	bricklayer	working	with	bricks	of	 the	same	size	as
opposed	 to	using	bricks	of	variable	sizes.	Of	course,	 it	 is	much	more	efficient	 to	use
bricks	 of	 the	 same	 size.	 In	 the	 last	 section	 we	 saw	 how	 the	 ARM	 uses	 4-byte
instructions	 and	 if	 not	 all	 the	 32	 bits	 are	 needed	 to	 form	 the	 instruction	 it	 fills	with
zeros.

Feature	2

One	 of	 the	 major	 characteristics	 of	 RISC	 architecture	 is	 a	 large	 number	 of
registers.	All	RISC	architectures	have	at	 least	8	or	16	registers.	Of	these	16	registers,
only	a	 few	are	assigned	 to	a	dedicated	function.	One	advantage	of	a	 large	number	of
registers	is	that	it	avoids	the	need	for	a	large	stack	to	store	parameters.	Although	a	stack
is	implemented	on	a	RISC	processor,	it	is	not	as	essential	as	in	CISC	because	so	many
registers	are	available.	In	ARM	the	use	of	a	large	number	of	general	purpose	registers
(GPRs)	satisfies	this	RISC	feature.	The	stack	for	the	ARM	is	covered	in	Chapter	6.

Feature	3

RISC	processors	have	a	 small	 instruction	 set.	RISC	processors	have	only	basic
instructions	 such	 as	 ADD,	 SUB,	 MUL,	 LOAD,	 STORE,	 AND,	 OR,	 EOR,	 CALL,
JUMP,	and	so	on.	The	limited	number	of	instructions	is	one	of	the	criticisms	leveled	at
the	RISC	processor	because	it	makes	the	job	of	Assembly	language	programmers	much
more	tedious	and	difficult	compared	to	CISC	Assembly	language	programming.	This	is
one	 reason	 that	 RISC	 is	 used	 more	 commonly	 in	 high-level	 language	 environments
such	as	the	C	programming	language	rather	than	Assembly	language	environments.	It
is	interesting	to	note	that	some	defenders	of	CISC	have	called	it	“complete	instruction
set	computer”	instead	of	“complex	instruction	set	computer”	because	it	has	a	complete
set	of	every	kind	of	instruction.	How	many	of	these	instructions	are	used	and	how	often
is	another	matter.	The	 limited	number	of	 instructions	 in	RISC	 leads	 to	programs	 that
are	 large.	 Although	 these	 programs	 can	 use	 more	 memory,	 this	 is	 not	 a	 problem
because	memory	is	cheap.	Before	the	advent	of	semiconductor	memory	in	the	1960s,
however,	 CISC	 designers	 had	 to	 pack	 as	 much	 action	 as	 possible	 into	 a	 single
instruction	 to	get	 the	maximum	bang	for	 their	buck.	 In	 the	ARM	we	have	around	50
instructions.	 We	 will	 examine	 more	 of	 the	 instruction	 set	 for	 the	 ARM	 in	 future
chapters.

Feature	4

At	 this	 point,	 one	 might	 ask,	 with	 all	 the	 difficulties	 associated	 with	 RISC
programming,	 what	 is	 the	 gain?	 	 The	 most	 important	 characteristic	 of	 the	 RISC
processor	is	that	more	than	99%	of	instructions	are	executed	with	only	one	clock	cycle,
in	contrast	to	CISC	instructions.	Even	some	of	the	1%	of	the	RISC	instructions	that	are
executed	 with	 two	 clock	 cycles	 can	 be	 executed	 with	 one	 clock	 cycle	 by	 juggling



instructions	around	(code	scheduling).	Code	scheduling	is	discussed	in	Chapter	7.	We
will	examine	the	instruction	cycle	time	and	pipelining	of	the	ARM	in	Chapter	7.

Feature	5

RISC	processors	have	separate	buses	for	data	and	code.	In	all	the	x86	processors,
like	all	other	CISC	computers,	there	is	one	set	of	buses	for	the	address	(e.g.,	A0–A31	in
the	 80386)	 and	 another	 set	 of	 buses	 for	 data	 (e.g.,	 D0–D31	 in	 the	 80386)	 carrying
opcodes	 and	 operands	 in	 and	 out	 of	 the	 CPU.	 To	 access	 any	 section	 of	 memory,
regardless	of	whether	it	contains	code	or	data	operands,	the	same	address	bus	and	data
bus	are	used.	In	many	RISC	processors,	 there	are	four	sets	of	buses:	(1)	a	set	of	data
buses	for	carrying	data	(operands)	in	and	out	of	the	CPU,	(2)	a	set	of	address	buses	for
accessing	the	data,	(3)	a	set	of	buses	to	carry	the	opcodes,	and	(4)	a	set	of	address	buses
to	 access	 the	 opcodes.	 The	 use	 of	 separate	 buses	 for	 code	 and	 data	 operands	 is
commonly	referred	 to	as	Harvard	architecture.	We	examined	the	Harvard	architecture
of	the	ARM	in	the	previous	section.

Feature	6

Because	 CISC	 has	 such	 a	 large	 number	 of	 instructions,	 each	 with	 so	 many
different	addressing	modes,	microinstructions	(microcode)	are	used	to	implement	them.
The	implementation	of	microinstructions	inside	the	CPU	employs	more	than	40–60%
of	transistors	 in	many	CISC	processors.	RISC	instructions,	however,	due	to	 the	small
set	of	 instructions,	 are	 implemented	using	 the	hardwire	method.	Hardwiring	of	RISC
instructions	takes	no	more	than	10%	of	the	transistors.

Feature	7

RISC	 uses	 load/store	 architecture.	 In	 CISC	 microprocessors,	 data	 can	 be
manipulated	while	 it	 is	 still	 in	memory.	 For	 example,	 in	 instructions	 such	 as	 “ADD
Reg,	Memory”,	 the	microprocessor	must	 bring	 the	 contents	 of	 the	 external	 memory
location	into	the	CPU,	add	it	to	the	contents	of	the	register,	then	move	the	result	back	to
the	external	memory	location.	The	problem	is	there	might	be	a	delay	in	accessing	the
data	from	external	memory.	Then	the	whole	process	would	be	stalled,	preventing	other
instructions	 from	proceeding	 in	 the	pipeline.	 In	RISC,	designers	did	away	with	 these
kinds	of	 instructions.	 In	RISC,	 instructions	can	only	 load	 from	external	memory	 into
registers	 or	 store	 registers	 into	 external	memory	 locations.	There	 is	 no	direct	way	of
doing	arithmetic	and	 logic	operations	between	a	 register	 and	 the	contents	of	external
memory	 locations.	 All	 these	 instructions	 must	 be	 performed	 by	 first	 bringing	 both
operands	 into	 the	 registers	 inside	 the	 CPU,	 then	 performing	 the	 arithmetic	 or	 logic
operation,	and	then	sending	the	result	back	to	memory.	This	idea	was	first	implemented
by	 the	 Cray	 1	 supercomputer	 in	 1976	 and	 is	 commonly	 referred	 to	 as	 load/store
architecture.	 In	 the	 last	 section,	 we	 saw	 that	 the	 arithmetic	 and	 logic	 operations	 are
between	the	GPRs	registers,	but	none	involves	a	memory	location.	For	example,	there
is	no	“ADD	R1,	RAM-Loc”	instruction	in	ARM.

In	 concluding	 this	 discussion	 of	 RISC	 processors,	 it	 is	 interesting	 to	 note	 that
RISC	 technology	was	explored	by	 the	scientists	at	 IBM	in	 the	mid-1970s,	but	 it	was



David	Patterson	of	 the	University	of	California	at	Berkeley	who	 in	1980	brought	 the
merits	of	RISC	concepts	 to	the	attention	of	computer	scientists.	It	must	also	be	noted
that	 in	 recent	 years	 CISC	 processors	 such	 as	 the	 Pentium	 have	 used	 some	 RISC
features	 in	 their	 design.	 This	 was	 the	 only	 way	 they	 could	 enhance	 the	 processing
power	of	 the	x86	processors	and	stay	competitive.	Of	course,	 they	had	 to	use	 lots	of
transistors	to	do	the	job,	because	they	had	to	deal	with	all	the	CISC	instructions	of	the
x86	processors	and	the	legacy	software	of	DOS/Windows.

Review	Questions	

1.							What	do	RISC	and	CISC	stand	for?

2.							True	or	false.	The	CISC	architecture	executes	the	vast	majority	of	its	instructions
in	2,	3,	or	more	clock	cycles,	while	RISC	executes	them	in	one	clock.

3.							RISC	processors	normally	have	a	_____	(large,	small)	number	of	general-purpose
registers.

4.							True	or	false.	Instructions	such	as	“ADD	R16,	ROMmemory”	do	not	exist	in	RISC
microprocessors	such	as	the	ARM.

5.							How	many	instructions	of	ARM	are	32-bit	wide?

6.							True	or	false.	While	CISC	instructions	are	of	variable	sizes,	RISC	instructions	are
all	the	same	size.

7.							Which	of	the	following	operations	do	not	exist	for	the	ADD	instruction	in	RISC?

(a)	register	to	register		(b)	immediate	to	register		(c)	memory	to	memory

8.	 	 	 	 	 	 	True	or	false.	Harvard	architecture	uses	the	same	address	and	data	buses	to	fetch
both	code	and	data.





Section	2.11:	Viewing	Registers	and	Memory	with	ARM	Keil	IDE
The	ARM	microprocessor	has	great	tools	and	support	systems,	many	of	them	free

or	inexpensive.	ARM	Keil	uVision	is	an	assembler	and	simulator	provided	for	free	by
Keil	 Corporation	 and	 can	 be	 downloaded	 from	 the	 www.keil.com	 website.	 See
http://www.MicroDigitalEd.com	 for	 tutorials	 on	 how	 to	 use	 the	 Keil	 ARM	 uVision
assembler	and	simulator.

Many	assemblers	and	C	compilers	come	with	a	simulator.	Simulators	allow	us	to
view	 the	 contents	 of	 registers	 and	 memory	 after	 executing	 each	 instruction (single-
stepping).	 It	 is	 strongly	 recommended	 to	 use	 a	 simulator	 to	 single-step	 some	 of	 the
programs	 in	 this	 chapter	 and	 future	 chapters.	 Single-stepping	 a	 program	 with	 a
simulator	gives	us	a	deeper	understanding	of	microcontroller	architecture,	in	addition	to
the	fact	that	we	can	use	it	to	find	the	errors	in	our	programs.

	Figures	2-27	and	2-28	show	screenshots	 for	ARM	simulators	 from	ARM	Keil
uVision.

Figure	2-	27:	Keil	uVision	Screenshot

http://www.MicroDigitalEd.com


Figure	2-	28:	Keil	uVision	Screenshot



Problems
Section	2.1:	The	General	Purpose	Registers	in	the	ARM

	

1.							ARM	is	a(n)	_____-bit	microprocessor.

2.							The	general	purpose	registers	are	_____	bits	wide.

3.							The	value	in	MOV	R2,#value	is	_____	bits	wide.

4.							The	largest	number	that	an	ARM	GPR	register	can	have	is		_____	in	hex.

5.							What	is	the	result	of	the	following	code	and	where	is	it	kept?

MOV					R2,#0x15

MOV					R1,#0x13

ADD							R2,R1,R2

6.							Which	of	the	followings	is	(are)	illegal?

(a)	MOV		R2,#0x50000		(b)	MOV		R2,#0x50										(c)	MOV		R1,#0x00										

(d)	MOV		R1,255															(e)	MOV		R17,#25												(f)	MOV	R23,#0xF5

(g)	MOV		123,0x50										

7.							Which	of	the	following	is	(are)	illegal?

(a)	ADD	R2,#20,R1											(b)	ADD	R1,R1,R2												(c)	ADD	R5,R16,R3											

8.							What	is	the	result	of	the	following	code	and	where	is	it	kept?

MOV		R9,#0x25

ADD		R8,R9,#0x1F

9.							What	is	the	result	of	the	following	code	and	where	is	it	kept?

MOV		R1,#0x15

ADD		R6,R1,#0xEA

10.			True	or	false.	We	have	32	general	purpose	registers	in	the	ARM.

Section	2.2:	The	ARM	Memory	Map

11.			True	or	false.	R13	and	R14	are	special	function	registers.

12.			True	or	false.	The	peripheral	registers	are	mapped	to	memory	space.

13.			True	or	false.	The	On-chip	Flash	is	the	same	size	in	all	members	of	ARM.

14.			True	or	false.	The	On-chip	data	SRAM	is	the	same	size	in	all	members	of	ARM.

15.			What	is	the	difference	between	the	EEPROM	and	data	SRAM	space	in	the	ARM?

16.			Can	we	have	an	ARM	chip	with	no	EEPROM?



17.			Can	we	have	an	ARM	chip	with	no	data	RAM?

18.			What	is	the	maximum	number	of	bytes	that	the	ARM	can	access?

19.			Find	the	address	of	the	last	location	of	on-chip	Flash	for	each	of	the	following,
assuming	the	first	location	is	0:

(a)	ARM	with	32	KB																									(b)	ARM	with	8	KB

(c)	ARM	with	64	KB																										(d)	ARM	with	16	KB

(e)	ARM	with	128	KB																							(f)	ARM	with	256	KB

20.			Show	the	lowest	and	highest	values	(in	hex)	that	the	ARM	program	counter	can
take.

21.			A	given	ARM	has	0x7FFF	as	the	address	of	the	last	location	of	its	on-chip	ROM.
What	is	the	size	of	on-chip	Flash	for	this	ARM?

22.			Repeat	Question	21	for	0x3FFF.

23.			Find	the	on-chip	program	memory	size	in	K	for	the	ARM	chip	with	the	following
address	ranges:

(a)	0x0000–0x1FFF											(b)	0x0000–0x3FFF

(c)	0x0000–0x7FFF											(d)	0x0000–0xFFFF

(e)	0x0000–0x1FFFF								(f)	0x00000–0x3FFFF

24.			Find	the	on-chip	program	memory	size	in	K	for	the	ARM	chips	with	the	following
address	ranges:

(a)	0x00000–0xFFFFFF				(b)	0x00000–0x7FFFF

(c)	0x00000–0x7FFFFF				(d)	0x00000–0xFFFFF

(e)	0x00000–0x1FFFFF			(f)	0x00000–0x3FFFFF

	

Section	2.3:	Load	and	Store	Instructions	in	ARM

	

25.			Show	a	simple	code	to	store	values	0x30	and	0x97	into	locations	0x20000015	and
0x20000016,	respectively.

26.			Show	a	simple	code	to	load	the	value	0x55	into	locations	0x20000030–
0x20000038.

27.			True	or	false.	We	cannot	load	immediate	values	into	the	data	SRAM	directly.

28.			Show	a	simple	code	to	load	the	value	0x11	into	locations	0x20000010–
0x20000015.

29.			Repeat	Problem	28,	except	load	the	value	into	locations	0x20000034–
0x2000003C.



Section	2.4:	ARM	CPSR	(Current	Program	Status	Register)

30.			The	status	register	is	a(n)	______	-bit	register.

31.			Which	bits	of	the	status	register	are	used	for	the	C	and	Z	flag	bits,	respectively?

32.			Which	bits	of	the	status	register	are	used	for	the	V	and	N	flag	bits,	respectively?

33.			In	the	ADD	instruction,	when	is	C	raised?

34.			In	the	ADD	instruction,	when	is	Z	raised?

35.			What	is	the	status	of	the	C	and	Z	flags	after	the	following	code?

LDR								R0,=0xFFFFFFFF

LDR								R1,=0xFFFFFFF1

ADDS					R1,R0,R1																													

36.			Find	the	C	flag	value	after	each	of	the	following	codes:

		(a)	LDR	R0,=0xFFFFFF54

LDR	R5,=0xFFFFFFC4

ADDS	R2,R5,R0

(b)	MOV	R3,#0

LDR	R6,=0xFFFFFFFF

ADDS	R3,R3,R6

(c)	LDR	R3,=0xFFFFFFFF

LDR	R8,=0xFFFFFF05

ADDS	R2,R3,R8

	

37.			Write	a	simple	program	in	which	the	value	0x55	is	added	5	times.

Section	2.5:	ARM	Data	Format	and	Directives

	

38.			State	the	value	(in	hex)	used	for	each	of	the	following	data:

MYDAT_1	EQU	55

MYDAT_2	EQU	98

MYDAT_3	EQU	‘G’

MYDAT_4	EQU	0x50

MYDAT_5	EQU	200

MYDAT_6	EQU	‘A’

MYDAT_7	EQU	0xAA

MYDAT_8	EQU	255

MYDAT_9	EQU	2_10010000

MYDAT_10	EQU	2_01111110

MYDAT_11	EQU	10

MYDAT_12	EQU	15



39.			State	the	value	(in	hex)	for	each	of	the	following	data:

DAT_1	EQU	22

DAT_2	EQU	0x56

DAT_3	EQU	2_10011001

DAT_4	EQU	32

DAT_5	EQU	0xF6

DAT_6	EQU	2_11111011

40.			Show	a	simple	code	to	load	the	value	0x10102265	into	locations	0x40000030–
0x4000003F.

41.			Show	a	simple	code	to	(a)	load	the	value	0x23456789	into	locations	0x40000060–
0x4000006F,	and	(b)	add	them	together	and	place	the	result	in	R9	as	the	values	are
added.	Use	EQU	to	assign	the	names	TEMP0–TEMP3	to	locations	0x40000060–
0x4000006F.

Section	2.6:	Introduction	to	ARM	Assembly	Programming	and

Section	2.7:	Assembling	an	ARM	Program

	

42.			Assembly	language	is	a	________	(low,	high)-level	language	while	C	is	a
________	(low,	high)-level	language.	

43.			Of	C	and	Assembly	language,	which	is	more	efficient	in	terms	of	code	generation
(i.e.,	the	amount	of	program	memory	space	it	uses)?

44.			Which	program	produces	the	obj	file?

45.			True	or	false.	The	source	file	has	the	extension	“asm”.

46.			True	or	false.	The	source	code	file	can	be	a	non-ASCII	file.

47.			True	or	false.	Every	source	file	must	have	EQU	directive.

48.			Do	the	EQU	and	END	directives	produce	opcodes?

49.			Why	are	the	directives	also	called	pseudocode?

50.			The	file	with	the	_______	extension	is	downloaded	into	ARM	Flash	ROM.

51.			Give	three	file	extensions	produced	by	ARM	Keil.

Section	2.8:	The	Program	Counter	and	Program	ROM	Space	in	the	ARM

	

52.			Every	ARM	family	member	wakes	up	at	address	_________	when	it	is	powered
up.

53.			A	programmer	puts	the	first	opcode	at	address	0x100.	What	happens	when	the



microcontroller	is	powered	up?

54.			ARM	instructions	are	_______	bytes.

55.			Write	a	program	to	add	each	of	your	5-digit	ID	to	a	register	and	place	the	result
into	memory	location	0x4000100.	Use	the	program	listing	to	show	the	Flash
memory	addresses	and	their	contents.

56.			Show	the	placement	of	data	in	following	code:

LDR	R1,=0x22334455

LDR	R2,=0x20000000

STR	R1,[R2]

Use	a)	little	endian	and	b)	big	endian.

57.			Show	the	placement	of	data	in	following	code:

LDR	R1,=0xFFEEDDCC

LDR	R2,=0x2000002C

STR	R1,[R2]

Use	a)	little	endian	and	b)	big	endian.

58.			How	wide	is	the	memory	in	the	ARM	chip?

59.			How	wide	is	the	data	bus	between	the	CPU	and	the	program	memory	in	the	ARM7
chip?

60.			In	“ADD	Rd,Rn,operand2”,	explain	how	many	bits	are	set	aside	for	Rd	and	how	it
covers	the	entire	GPRs	in	the	ARM	chip.

Section	2.9:	Some	ARM	Addressing	Modes

	

61.			Give	the	addressing	mode	for	each	of	the	following:

(a)	MOV	R5,R3 (b)	MOV	R0,#56

(c)	LDR	R5,[R3] (d)	ADD	R9,R1,R2

(e)	LDR	R7,[R2] (f)	LDRB	R1,[R4]

62.			Show	the	contents	of	the	memory	locations	after	the	execution	of	each	instruction.

(a)	LDR	R2,=0x129F

LDR	R1,=0x1450

LDR	R2,[R1]

(b)	LDR	R4,=0x8C63

LDR	R1,=0x2400

LDRH	R4,[R1]

0x1450	=	(		…….			) 0x2400	=	(		…….			)



0x1451	=	(		…….			) 0x2401	=	(		…….			)

Section	2.10:	RISC	Architecture	in	ARM

	

63.			What	do	RISC	and	CISC	stand	for?

64.			In	______	(RISC,	CISC)	architecture	we	can	have	1-,	2-,	3-,	or	4-byte	instructions.

65.			In	______	(RISC,	CISC)	architecture	instructions	are	fixed	in	size.

66.			In	______	(RISC,	CISC)	architecture	instructions	are	mostly	executed	in	one	or
two	cycles.

67.			In	______	(RISC,	CISC)	architecture	we	can	have	an	instruction	to	ADD	a	register
to	external	memory.

68.			True	or	false.	Most	instructions	in	CISC	are	executed	in	one	or	two	cycles.



Answers	to	Review	Questions
Section	2.1

1.							MOV					R2,#0x34

2.								

MOV					R1,#0x16

MOV					R2,#0xCD

ADD							R1,R1,R2

or

MOV					R1,#0x16

ADD							R1,R1,#0xCD

3.							False																					

4.							FF	in	hex	and	255	in	decimal							

5.							32

Section	2.2

1.							True

2.							general-purpose	registers

3.							32

4.							Special	function	registers	(SFRs)

5.							32

Section	2.3

1.							True

2.								

MOV					R1,#0x20

MOV					R2,#0x95

STRB						R2,[R1]

3.							STR									R2,[R8]

4.								

MOV					R1,#0x20

LDR								R4,[R1]

5.							FF	in	hex	or	255	in	decimal

6.							R6



7.							It	copies	the	lower	8	bits	of	R1	into	location	pointed	to	by	R2.

8.							FFFFFFFF	in	hex	or	4,294,967,295	in	decimal	(232-1)

Section	2.4

1.							CPSR	(current	program	status	register)

2.							32	bits

3.								

Hex Binary

FFFFFF9F 1111	1111	1111	1111	1111	1111	1001	1111

+00000061 +	0000	0000	0000	0000	0000	0000	0110	0001

1	00000000 1	0000	0000	0000	0000	0000	0000	0000	0000

This	leads	to	C	=	1	and	Z	=	1.

4.								

Hex Binary

00000022 0000	0000	0000	0000	0000	0000	0010
0010

+00000022 +	0000	0000	0000	0000	0000	0000	0010
0010

		0	00000000 0000	0000	0000	0000	0000	0000	0100
0100

This	leads	to	Z	=	0.

5.																											

Hex Binary

0000	0067 0000	0000	0000	0000	0000	0000	0110	0111

+	0000	0099 +	0000	0000	0000	0000	0000	0000	1001	1001

0000	0100 0000	0000	0000	0000	0000	0001	0000	0000

	

This	leads	to	C	=	0	and	Z	=	0.

Section	2.5

1.							MOV	R1,#0x20



2.							(a)	MOV	R2,#0x14											(b)	MOV	R2,#20																(c)	MOV	R2,#2_00010100

3.							If	the	value	is	to	be	changed	later,	it	can	be	done	once	in	one	place	instead	of	at
every	occurrence	and	the	code	becomes	more	readable,	as	well.

4.							(a)	0x34																																(b)	0x1F

5.							15	in	decimal	(0x0F	in	hex)

6.							Value	of	location	0x00000200	=	0x95

7.							0x0C	+	0x10	=	0x1C	will	be	in	data	memory	location	0x00000630.

Section	2.6

1.							The	real	work	is	performed	by	instructions	such	as	MOV	and	ADD.	Pseudo-
instructions,	also	called	Assembly	directives,	direct	the	assembler	in	doing	its	job.

2.							The	instruction	mnemonics,	pseudo-instructions

3.							False

4.							All	except	(c)

5.							Assembler	directives

6.							True

7.							(c)

Section	2.7

1.							True																						

2.							True																						

3.							(a)																									

4.								(b)	and	(d)

Section	2.8

1.							32

2.							True																						

3.							0x00000000

4.							True

5.							False

6.							True

Section	2.9

1.							No

2.							The	general	purpose	registers	(R0	to	R15)



3.							It	is	a	part	of	the	instruction

Section	2.10

1.							RISC	is	reduced	instruction	set	computer;	CISC	stands	for	complex	instruction	set
computer.

2.							True

3.							Large

4.							True

5.							All	of	them

6.							True

7.							(c)

8.							False



	





Chapter	3:	Arithmetic	and	Logic	Instructions	and	Programs
In	 this	 chapter,	 most	 of	 the	 arithmetic	 and	 logic	 instructions	 are	 discussed	 and

program	examples	 are	 given	 to	 illustrate	 the	 application	of	 these	 instructions.	Unsigned
numbers	are	used	in	this	discussion	of	arithmetic	and	logic	instructions.	In	Section	3.1	we
examine	 the	 arithmetic	 instructions	 for	 unsigned	 numbers.	 The	 logic	 instructions	 and
programs	 are	 covered	 in	 Section	 3.2.	 Section	 3.3	 is	 dedicated	 to	 rotate	 and	 shift
operations.	We	examine	loading	fixed	(constant)	values	into	registers	using	rotate	options,
as	 well.	 In	 Section	 3.4	 we	 discuss	 the	 ARM	 Cortex	 instructions	 for	 rotate	 and	 shift.
Section	3.5	is	dedicated	to	BCD	and	ASCII	data	conversion.





Section	3.1:	Arithmetic	Instructions
Unsigned	numbers	are	defined	as	data	in	which	all	the	bits	are	used	to	represent	data

and	no	bits	are	set	aside	for	the	positive	or	negative	sign.	This	means	that	the	operand	can
be	 between	 00	 and	 0xFF	 (0	 to	 255	 decimal)	 for	 8-bit	 data	 and	 between	 0x0000	 and
0xFFFF	(0	to	65535	decimal)	for	16-bit	data.	For	the	32-bit	operand	it	can	be	between	0
and	0xFFFFFFFF	 (0	 to	232	 -1).	See	Table	3-1.	This	 section	covers	 the	ADD,	SUB,	and
multiply	instructions	for	unsigned	number.

Data	Size Bits Decimal Hexadecimal Load	instruction	used

Byte 8 0	–	255 0	-	0xFF STRB

Half-word 16 0	–	65535 0	-	0xFFFF STRH

Word 32 0	–	232-1 0	–	0xFFFFFFFF STR

Table	3‑1:	Unsigned	Data	Range	Summary	in	ARM

Affecting	flags	in	ARM	instructions

A	unique	feature	of	the	execution	of	ARM	arithmetic	instructions	is	that	it	does	not
affect	(updates)	the	flags	unless	we	specify	it.	This	is	different	from	other	microcontrollers
and	 CPUs	 such	 as	 8051	 and	 x86.	 In	 the	 x86	 and	 8051	 the	 arithmetic	 instructions
automatically	change	the	Z	and	C	flags	regardless	of	we	want	it	or	not.	This	is	not	the	case
with	 ARM.	 The	 default	 for	 the	 ARM	 instruction	 is	 not	 to	 affect	 these	 flags	 after	 the
execution	of	arithmetic	instructions	such	as	ADD	and	SUB.	The	ARM	assembler	gives	us
the	option	of	 telling	 the	CPU	 to	update	 the	 flag	bits	 in	 the	CSPR	 register	 to	 reflect	 the
result.	We	override	the	default	by	having	letter	S	in	the	instruction.	For	example,	we	must
use	SUBS	instead	of	SUB	since	the	SUB	instruction	will	not	update	the	flags.	The	SUBS
means	subtract	and	set	the	flags,	while	the	SUB	simply	subtracts	without	having	any	effect
on	the	flags.	See	Table	3-2	and	Figure	3-1.

Figure	3-	1:	General	Formation	of	Data	Processing	Instruction

Instruction	(Flags	unchanged) Instruction	(Flags	updated)										

ADD Add							 ADDS Add	and	set	flags

ADC Add	with	carry ADCS Add	with	carry	and	set	flags

SUB SUBS SUBS Subtract	and	set	flags

SBC Subtract	with	carry SBCS Subtract	with	carry	and	set	flags

MUL Multiply MULS Multiply	and	set	flags



UMULL Multiply	long					 UMULLS Multiply	Long	and	set	flags

RSB Reverse	subtract RSBS Reverse	subtract	and	set	flags

RSC Reverse	subtract	with	carry RSCS Reverse	subtract	with	carry	and	set
flags

Note:	The	above	instruction	affect	all	the	Z,	C,	V	and	N	flag	bits	of	CPSR	(current	program	status	register)	but	the	N	and	V	flags	are
for	signed	data	and	are	discussed	in	Chapter	5.

Table	3-2:	Arithmetic	Instructions	and	Flag	Bits	for	Unsigned	Data

Addition	of	unsigned	numbers	

The	form	of	the	ADD	instruction	is

ADD							Rd,Rn,Op2										;Rd	=	Rn	+	Op2

The	 instructions	 ADD	 and	 ADC	 are	 used	 to	 add	 two	 operands.	 The	 destination
operand	must	be	a	register.	The	Op2	operand	can	be	a	register	or	immediate.	Remember
that	memory-to-register	or	memory-to-memory	arithmetic	and	logic	operations	are	never
allowed	in	ARM	Assembly	 language	since	 it	 is	a	RISC	processor.	The	 instruction	could
change	any	of	the	Z,	C,	N,	or	V	bits	of	the	status	flag	register,	as	long	as	we	use	the	ADDS
instead	of	ADD.	The	effect	of	the	ADDS	instruction	on	the	overflow	(V)	and	N	(negative)
flags	is	discussed	in	Chapter	5	since	they	are	used	in	signed	number	operations.	Look	at
Examples	3-1	and	3-2	for	the	effect	of	ADDS	instruction	on	Z	and	C	flags.

Example	3-1

Show	the	flag	bits	of	status	register	for	the	following	cases:

	

a)												LDR								R2,=0xFFFFFFF5																;R2=0xFFFFFFF5	(notice	the	=	sign)

MOV					R3,#0x0B

ADDS					R1,R2,R3																														;R1=R2	+	R3	and	update	the	flags

	

b)												LDR								R2,=0xFFFFFFFF

ADDS					R1,R2,#0x95																							;R1=R2	+	95	and	update	the	flags

	

Solution:

	

a)

0xFFFFFFF5 1111	1111	1111	1111	1111	1111	1111
0101



+		
0x0000000B

+		0000	0000	0000	0000	0000	0000
0000	1011

0x100000000 1		0000	0000	0000	0000	0000	0000
0000	0000

	

First,	notice	how	the	“LDR	R2,=0xFFFFFFF5”	pseudo-instruction	loads	the	32-bit	value
into	R2	register.	Also	notice	the	use	of	ADDS	instruction	instead	of	ADD	since	the	ADD
instruction	does	not	update	the	flags.	Now,	after	the	addition,	the	R1	register	(destination)
contains	0	and	the	flags	are	as	follows:

C	=	1,	since	there	is	a	carry	out	from	D31

Z	=	1,	the	result	of	the	action	is	zero	(for	the	32	bits)

	

b)

0xFFFFFFFF 1111	1111	1111	1111	1111	1111	1111	1111

+
	0x00000095

+		0000	0000	0000	0000	0000	0000	1001
0101

0x100000094 1		0000	0000	0000	0000	0000	0000	1001
0100

After	the	addition,	the	R1	register	(destination)	contains	0x94	and	the	flags	are	as	follows:

C	=	1,	since	there	is	a	carry	out	from	D31

Z	=	0,	the	result	of	the	action	is	not	zero	(for	the	32	bits)

	

Example	3-2

Show	the	flag	bits	of	status	register	for	the	following	case:

LDR								R2,=0xFFFFFFF1																;R2	=	0xFFFFFFF1

MOV					R3,#0x0F

ADDS					R3,R3,R2														;R3	=	R3	+	R2	and	update	the	flags

ADD							R3,R3,#0x7										;R3	=	R3	+	0x7	and	flags	unchanged

MOV					R1,R3

Solution:

0xFFFFFFF1 1111	1111	1111	1111	1111	1111	1111	0001



+			0x0000000F		 +		0000	0000	0000	0000	0000	0000	0000
1111

0x100000000 1		0000	0000	0000	0000	0000	0000	0000
0000

	

After	the	ADDS	addition,	the	R3	register	(destination)	contains	0	and	the	flags	are	as
follows:

C	=	1,	since	there	is	a	carry	out	from	D31

Z	=	1,	the	result	of	the	action	is	zero	(for	the	32	bits)

	

After	the	“ADD	R3,R3,#0x7”	addition,	the	R3	register	(destination)	contains	0x7	(0x	+	07
=	07)	and	the	flags	are	unchanged	from	previous	instruction	since	we	used	ADD	instead	of
ADDS.	Therefore,	the	Z	=	1	and	C	=	1.	If	we	use	“ADDS	R3,R3,#0x7”	instruction	instead
of	“ADD	R3,R3,#0x7”,	we	will	have	Z	=	0	and	C	=	0.	Use	the	Keil	ARM	simulator	to
verify	this.

	

	

Comment

Microsoft	Windows	comes	with	a	calculator.	Use	 it	 to	verify	 the	calculations	 in	 this
and	future	chapters.	The	calculator	supports	data	size	of	up	to	64-bit

No	increment	instruction	in	ARM

There	 is	 no	 increment	 instruction	 in	 the	ARM	processor.	 Instead	we	 use	ADD	 to
perform	this	action.	The	instruction	“ADDS	R4,R4,#1”	will	increment	the	R4	and	places
the	result	in	R4	register.	The	RISC	processors	eliminate	the	unnecessary	instructions	and
use	an	existing	instruction	to	perform	the	operation.

	ADC	(add	with	carry)

This	instruction	is	used	for	multiword	(data	larger	than	32-bit)	numbers.	The	form	of
the	ADC	instruction	is

ADC							Rd,Rn,Op2										;Rd	=	Rn	+	Op2	+	C

In	discussing	addition,	the	following	two	cases	will	be	examined:

1.							Addition	of	individual	word	data

2.							Addition	of	multiword	data

CASE	1:	Addition	of	individual	word	data



In	previous	examples,	in	programs	regarding	addition,	the	total	sum	was	purposely
kept	less	than	0xFFFFFFFF,	the	maximum	value	a	32-bit	register	can	hold.	In	real	world
to	 calculate	 the	 total	 sum	of	 any	number	of	 operands,	 the	 carry	 flag	 should	be	 checked
after	the	addition	of	each	operand	to	see	if	the	total	sum	is	greater	than	0xFFFFFFFF.	See
Example	3-3	and	Program	3-1.

Example	3-3

Show	the	flag	bits	of	status	register	for	the	following	case:

	

LDR								R2,=0xFFFFFFF1																;R2	=	0xFFFFFFF1

MOV					R3,#0x0F

ADDS					R3,R3,R2																														;R3	=	R3	+	R2	and	update	the	flags

ADD							R3,R3,#0x7																										;R3	=	R3	+	0x7	and	flags	unchanged

MOV					R1,R3

Solution:

0xFFFFFFF1 1111	1111	1111	1111	1111	1111	1111
0001

+		0x0000000F +		0000	0000	0000	0000	0000	0000	0000
1111

0x100000000 1		0000	0000	0000	0000	0000	0000	0000
0000

																																					

	

After	the	ADDS	addition,	the	R3	register	(destination)	contains	0	and	the	flags	are	as
follows:

C	=	1,	since	there	is	a	carry	out	from	D31

Z	=	1,	the	result	of	the	action	is	zero	(for	the	32	bits)

	

After	the	“ADD	R3,R3,#0x7”	addition,	the	R3	register	(destination)	contains	0x7	(0x0	+
0x7	=	0x7)	and	the	flags	are	unchanged	from	previous	instruction	since	we	used	ADD
instead	of	ADDS.	Therefore,	the	Z	=	1	and	C	=	1.	If	we	use	“ADDS	R3,R3,#0x7”
instruction	instead	of	“ADD	R3,R3,#0x7”,	we	will	have	Z	=	0	and	C	=	0.	Use	the	Keil
ARM	simulator	to	verify	this.

	



	

Program	3-1
Write	a	program	to	calculate	the	total	sum	of	five	words	of	data.	Each	data	value	represents	the	mass	of	a
planet	in	integer.	The	decimal	data	are	as	follow:	1000000000,	2000000000,	3000000000,	4000000000,	and

4100000000.

AREA					PROG3_1,	CODE,	READONLY																												

ENTRY																		

	

LDR				R1,	=1000000000																		

LDR				R2,	=2000000000																		

LDR				R3,	=3000000000																		

LDR				R4,	=4000000000																		

LDR				R5,	=4100000000																		

	

MOV					R8,#0																					;	R8	=	0	for	saving	the	lower	word

MOV					R9,#0																					;	R9	=	0	for	accumulating	the	carries

	

ADDS					R8,R8,R1														;	R8	=	R8	+	R1

ADC							R9,R9,#0														;	R9	=	R9	+	0	+	Carry

;(increment	R9	if	there	is	carry)

ADDS					R8,R8,R2														;	R8	=	R8	+	R2

ADC							R9,R9,#0														;	R9	=	R9	+	0	+	Carry

ADDS					R8,R8,R3														;	R8	=	R8	+	R3

ADC							R9,R9,#0														;	R9	=	R9	+	0	+	Carry

ADDS					R8,R8,R4														;	R8	=	R8	+	R4

ADC							R9,R9,#0														;	R9	=	R9	+	0	+	Carry

ADDS					R8,R8,R5														;	R8	=	R8	+	R5

ADC							R9,R9,#0														;	R9	=	R9	+	0	+	Carry

HERE						B													HERE

END																							;	Mark	end	of	file

CASE	2:	Addition	of	multiword	numbers

Assume	a	program	is	needed	that	will	add	the	total	U.S.	budget	for	the	last	100	years



or	 the	mass	 of	 all	 the	 planets	 in	 the	 solar	 system.	 In	 cases	 like	 this,	 the	 numbers	 being
added	could	be	up	to	8	bytes	wide	or	more.	Since	ARM	registers	are	only	32	bits	wide	(4
bytes),	it	is	the	job	of	the	programmer	to	write	the	code	to	break	down	these	large	numbers
into	 smaller	 chunks	 to	 be	 processed	 by	 the	 CPU.	 If	 a	 32-bit	 register	 is	 used	 and	 the
operand	 is	 8	 bytes	 wide,	 that	 would	 take	 a	 total	 of	 two	 iterations.	 See	 Example	 3-4.
However,	if	a	16-bit	register	is	used,	the	same	operands	would	require	four	iterations.	This
obviously	takes	more	time	for	 the	CPU.	This	 is	one	reason	to	have	wide	registers	 in	 the
design	of	the	CPU.

Example	3-4

Analyze	the	following	program	which	adds	0x35F62562FA	to	0x21F412963B:

	

LDR								R0,=0xF62562FA															;R0	=	0xF62562FA

LDR								R1,=0xF412963B															;R1	=	0xF412963B												

MOV					R2,#0x35														;R2	=	0x35

MOV					R3,#0x21														;R3	=	0x21

ADDS					R5,R1,R0														;R5	=	0xF62562FA	+	0xF412963B

;now	C	=	1

ADC							R6,R2,R3														;R6	=	R2	+	R3	+	C

;			=	0x35	+	21	+	1	=	0x57

Solution:

After	the	R5	=	R0	+	R1	the	carry	flag	is	one.	Since	C	=	1,	when	ADC	is	executed,	R6 = 
R2 + R3 + C =	0x35	+	0x21	+	1	=	0x57.

Microsoft	Windows	calculator	support	data	size	of	up	64-bit	(double	word).	Use	it	to
verify	the	above	calculations.

	

Subtraction	of	unsigned	numbers

SUB								Rd,Rn,Op2										;Rd	=	Rn	-	Op2

In	subtraction,	the	ARM	microprocessors	(indeed,	almost	all	modern	CPUs)	use	the
2’s	 complement	method.	Although	 every	CPU	 contains	 adder	 circuitry,	 it	would	 be	 too



cumbersome	(and	 take	 too	many	 logic	gates)	 to	design	separate	 subtractor	circuitry.	For
this	 reason,	 the	ARM	uses	 internal	 adder	 circuitry	 to	perform	 the	 subtraction	operation.
Assuming	that	the	ARM	is	executing	simple	subtract	instructions,	one	can	summarize	the
steps	of	the	hardware	of	the	CPU	in	executing	the	SUB	instruction	for	unsigned	numbers
as	follows:

1.							Take	the	2’s	complement	of	the	subtrahend	(Op2	operand).

2.							Add	it	to	the	minuend	(Rn	operand).

3.							Place	the	result	in	destination	Rd.

4.							Set	the	carry	flag	if	there	is	a	carry.

These	four	steps	are	performed	for	every	SUBS	instruction	by	the	internal	hardware
of	the	ARM	CPU.	It	is	after	these	four	steps	that	the	result	is	obtained	and	the	flags	are	set.
Examples	3-5	through	3-7	illustrates	the	four	steps.

Example	3-5

Show	the	steps	involved	for	the	following	cases:

a)											

MOV					R2,#0x4F														;R2	=	0x4F

MOV					R3,#0x39														;R3	=	0x39

SUBS					R4,R2,R3														;R4	=	R2	–	R3

	

b)											

MOV					R2,#0x4F														;R2	=	0x4F

SUBS					R4,R2,#0x05							;R4	=	R2	–	0x05

	

Solution:

	

a)

0x4F 0000004F 	

–	0x39 +	FFFFFFC7 2’s	complement	of	0x39

16 1	00000016		 (C	=	1	step	4)

The	flags	would	be	set	as	follows:	C	=	1,	and	Z	=	0.	The	programmer	must	look	at	the
carry	flag	(not	the	sign	flag)	to	determine	if	the	result	is	positive	or	negative.

	



b)											

0x4F 0000004F 	

–0x05 +		FFFFFFFB 2’s	complement	of	0x05

0x4A 		1	0000004A (C=1	step	4)

	

	

Example	3-6

Analyze	the	following	instructions:

LDR								R2,=0x88888888																;R2	=	0x88888888

LDR								R3,=0x33333333																;R3	=	0x33333333

SUBS					R4,R2,R3																														;R4	=	R2	–	R3

	

Solution:

Following	are	the	steps	for	“SUB	R4,R2,R3”:

88888888 88888888 	

–		33333333 +	CCCCCCCD (2’s	complement	of
0x33333333)

55555555 1	55555555 (C	=	1	step	4)	result	is	positive

Notice	 that,	 unlike	x86	CPUs,	ARM	does	not	 invert	 the	 carry	 flag	after	SUBS	so
C=0	 when	 there	 is	 borrow	 and	 C=1	 when	 there	 is	 no	 borrow.	 It	 means	 that	 after	 the
execution	of	SUBS,	if	C=1,	the	result	is	positive;	if	C	=	0,	the	result	is	negative	and	the
destination	 has	 the	 2’s	 complement	 of	 the	 result.	 Normally,	 the	 result	 is	 left	 in	 2’s
complement,	but	you	can	take	the	2’s	complement	of	the	result	by	inverting	it	and	adding
one	to	it.	

	

Example	3-7

Analyze	the	following	instructions:

MOV					R1,#0x4C													;R1	=	0x4C

MOV					R2,#0x6E														;R2	=	0x6E

SUBS					R0,R1,R2														;R0	=	R1	–	R2



Solution:

Following	are	the	steps	for	“SUB	R0,R1,R2”:

4C 0000004C 	

–6E +	FFFFFF92 (2’s	complement	of	0x6E)

–	22 0	FFFFFFDE (C	=	0	step	4)	result	is
negative

	

SBC	(subtract	with	borrow)

SBC								Rd,Rn,Op2										;Rd	=	Rn	–	Op2	–	1	+	C

This	 instruction	 is	 used	 for	 subtraction	 of	 multiword	 (data	 larger	 than	 32-bit)
numbers.	 Notice	 that	 in	 some	 other	 architectures,	 the	 CPU	 inverts	 the	 C	 flag	 after
subtraction	 so	 the	 content	 of	 carry	 flag	 is	 the	borrow	bit	 of	 subtract	 operation.	 In	 those
architectures	 the	 subtract	with	 borrow	 is	 implemented	 as	 “Rd	=	Rn	 –	Op2	 –	C”	 but	 in
ARM	the	carry	flag	is	not	inverted	after	subtraction	and	carry	flag	is	invert	of	borrow.	To
invert	the	carry	flag	while	running	the	subtract	with	borrow	instruction	it	is	implemented
as	“Rd = Rn – Op2 –	1	+ C”	See	Example	3-8.

Example	3-8

Analyze	the	following	program	which	subtracts	0x21F62562FA	from	0x35F412963B:

	

LDR								R0,=0xF62562FA															;R0	=	0xF62562FA,

;	notice	the	syntax	for	LDR

LDR								R1,=0xF412963B															;R1	=	0xF412963B												

MOV					R2,#0x21														;R2	=	0x21

MOV					R3,#0x35														;R3	=	0x35											

SUBS					R5,R1,R0														;R5	=	R1	–	R0

;			=	0xF412963B	–	0xF62562FA,	and	C	=	0

SBC								R6,R3,R2														;R6	=	R3	–	R2	–	1	+	C

;		=	0x35	–	0x21	–	1	+	0	=	0x13

	

Solution:

After	the	R5	=	R1	–	R0	there	is	a	borrow	so	the	carry	flag	is	cleared.	Since	C	=	0,	when
SBC	is	executed,	R6	=	R3	–	R2	–	1	+	C	=	0x35	–	0x21	–	1	+	0	=	0x35	–	0x21	–	1=	0x13.



	

No	decrement	instruction	in	ARM

There	 is	no	decrement	 	 instruction	 in	 the	ARM	processor.	 Instead	we	use	SUB	 to
perform	 the	 action.	 The	 instruction	 “SUB	 R4,R4,#1”	 will	 decrement	 one	 from	 R4	 and
places	 the	 result	 in	 R4	 register.	 The	 RISC	 processors	 eliminate	 the	 unnecessary
instructions	and	use	an	existing	instruction	to	perform	the	desired	operation.

RSB	(reverse	subtract)

The	format	for	the	RSB	instruction	is

RSB								Rd,Rn,Op2										;Rd	=	Op2	–	Rn

Notice	 the	 difference	between	 the	RSB	and	SUB	 instruction.	They	 are	 essentially
the	same	except	 the	way	the	source	operands	are	subtracted	is	reversed.	This	 instruction
can	be	used	to	get	2’s	complement	of	a	32-bit	operand.	See	Example	3-9.

Example	3-9

Find	the	result	of	R0	for	the	followings:

a)

MOV					R1,#0x6E														;R1=0x6E

RSB								R0,R1,#0														;R0=	0	–	R1

b)

MOV					R1,#0x1																;R1=1

RSB								R0,R1,#0														;R0=	0	–	R1	=	0	–	1

	

Solution:

	

a)	Following	are	the	steps	for	“RSB	R0,R1,#0”:

0 0000000 	

–6E +		FFFFFF92	 (2’s	complement)



–6E FFFFFF92 (C	=	0)	result	is	negative

b)	This	is	one	way	to	get	a	fixed	value	of	0xFFFFFFFF	in	a	register.	Therefore,	we	have
R0=0xFFFFFFFF.

RSC	(reverse	subtract	with	carry)

The	form	of	the	RSC	instruction	is

RSC								Rd,Rn,Op2										;Rd	=	Op2	–	Rn	–	1	+	C

Notice	 the	difference	between	 the	RSB	and	RSC	instructions.	They	are	essentially
the	same	except	 the	way	the	source	operands	are	subtracted	is	reversed.	This	 instruction
can	be	used	to	get	the	2’s	complement	of	the	64-bit	operand.	See	Example	3-10.

Example	3-10

Show	how	to	create	2’s	complement	of	a	64-bit	data	in	R0	and	R1	register.		The	R0	hold
the	lower	32-bit.

	

Solution:

	

LDR								R0,=0xF62562FA															;R0	=	0xF62562FA

LDR								R1,=0xF812963B															;R1	=	0xF812963B

RSB								R5,R0,#0														;R5	=	0	–	R0

;		=	0	–	0xF62562FA	=	9DA9D06		and	C = 0

RSC								R6,R1,#0														;R6	=	0	–	R1	–	1	+	C

;		=	0	–	0xF812963B – 1 + 0	=	7ED69C4

Use	Microsoft	Windows	calculator	to	verify	the	above	calculations.

Multiplication	and	division	of	unsigned	numbers

Not	 all	 CPUs	 have	 instructions	 for	 multiplication	 and	 division.	 All	 the	 ARM
processors	have	 a	multiplication	 instruction	but	 not	 the	division.	Some	 family	members
such	as	ARM	Cortex	have	both	the	division	and	multiplication	instructions.	In	this	section
we	 examine	 the	 multiplication	 of	 unsigned	 numbers.	 Signed	 numbers	 multiplication	 is
treated	in	Chapter	5.

Multiplication	of	unsigned	numbers	in	ARM

The	ARM	gives	you	 two	choices	of	unsigned	multiplication:	normal	multiply	and
long	multiply.	The	normal	multiply	instruction	(MUL)	is	used	when	the	result	is	less	than
32-bit,	while	the	long	multiply	(MULL)	must	be	used	when	the	result	is	greater	than	32-
bit.	See	Table	3-3.	In	this	section	we	examine	both	of	them.	



Instruction Source	1 Source	2 Destination Result

MUL Rn Op2 Rd	(32	bits) Rd=Rn×Op2

UMULL Rn Op2 RdLo,RdHi	(64	bits) RdLo:RdHi=Rn×Op2

Note	1:	Using	MUL	for	word	×	word	multiplication	provides	only	the	lower	32-bit	result	in	Rd	and	the	rest	are	dropped	if	the	result	is
greater	than	32-bit.		If	the	result	is	greater	than	0xFFFFFFFF,	then	we	must	use	UMULL	(unsigned	Multiply	Long)	instruction.

Note	2:	in	word-by-word	multiplication	using	MUL	instruction,	if	the	result	is	greater	than	32-bit	only	the	lower	32-bit	is	saved	by	ARM
and	the	upper	part	is	dropped	without	setting	any	flag.	In	some	CPUs	the	C	flag	is	used	to	indicate	the	result	is	greater	than	32-bit	but
this	is	not	the	case	with	ARM.	

Table	3-	3:	Unsigned	Multiplication	(UMUL	Rd,Rn,Op2)	Summary

MUL	(multiply)

MUL						Rd,Rn,Op2										;Rd	=	Rn	×	Op2

In	normal	multiplication,	the	operands	must	be	in	registers.		After	the	multiplication,
the	destination	registers	will	contain	the	result.	See	the	following	example:

MOV					R1,#0x25														;R1=0x25

MOV					R2,#0x65														;R2=0x65

MUL						R3,R1,R2														;R3	=	R1	×	R2	=	0x65	×	0x25

	 Note	 that	 in	 the	 case	 of	 half-word	 times	 half-word	 or	 smaller	 sources	 since	 the
destination	register	is	32-bit	there	is	no	problem	in	keeping	the	result	of	65,535	×	65,535,
the	 highest	 possible	 unsigned	 16-bit	 data.	 That	 is	 not	 the	 case	 in	 word	 times	 word
multiplication	because	32-bit	×	32-bit	can	produce	a	result	greater	than	32-bit.	If	the	MUL
instruction	 is	 used,	 the	 destination	 register	 will	 hold	 the	 lower	 word	 (32-bit)	 and	 the
portion	 beyond	 32-bit	 is	 dropped.	 So	 it	 is	 not	 safe	 to	 use	 MUL	 for	 multiplication	 of
numbers	greater	 than	65,536.	 In	many	microprocessors	when	 the	result	goes	beyond	 the
destination	 register	 size,	 the	 C	 flag	 is	 raised	 to	 indicate	 that.	 This	 is	 not	 the	 case	with
ARM.	See	the	following	example:

LDR								R1,=100000									;R1=100,000

LDR								R2,=150000									;R2=150,000

MUL						R3,R2,R1														;R3	is	not	15,000,000,000	because

																;it	cannot	fit	in	32	bits.

For	 this	 reason	 we	must	 use	 UMULL	 (unsigned	multiply	 long)	 instruction	 if	 the
result	is	going	to	be	greater	than	0xFFFFFFFF.

UMULL	(unsigned	multiply	long)

UMULL		RdLo,RdHi,Rn,Op2									

;RdHi:RdLoRd	=	Rn	×	Op2

In	 unsigned	 long	 multiplication,	 the	 operands	 must	 be	 in	 registers.	 After	 the
multiplication,	 the	 destination	 registers	will	 contain	 the	 result.	Notice	 that	 the	 left	most



register,	RdLo	in	our	case,	will	hold	the	lower	word	and	the	higher	portion	beyond	32-bit
is	saved	in	the	second	register,	RdHi.	See	the	following	example:

LDR								R1,=0x54000000	;R1	=	0x54000000

LDR								R2,=0x10000002	;R2	=	0x10000002

UMULL	R3,R4,R2,R1								;0x54000000	×	0x10000002

;		=	0x054000000A8000000

																																;R3	=	0xA8000000,	the	lower	32	bits

																;R4	=	0x05400000,	the	higher	32	bits

Notice	 that	 it	 is	 the	 job	 of	 programmer	 to	 choose	 the	 best	 type	 of	multiplication
depending	on	the	size	of	operands	and	the	result.	See	Example	3-11.

Example	3-11

Write	a	short	program	to	multiply	0xFFFFFFFF	by	itself.

	

Solution:

MOV					R0,#1																					;R0	=	1

RSB								R1,R0,#0														;R1	=	0	–	R0

;	=	0xFFFFFFFF

RSB								R2,R0,#0														;R2	=	0xFFFFFFFF

UMULL	R3,R4,R1,R2

Since	 0xFFFFFFFF	 ×	 0xFFFFFFFF	 =	 0xFFFFFFFE00000001,	 then	 R4=0xFFFFFFFE
and	R3=0x00000001.		If	we	had	used	MUL	instruction,	then	the	0xFFFFFFFF	would	have
been	dropped	and	only	0x00000001	would	have	been	kept	by	the	destination	register.

	

Multiply	and	Accumulate	Instructions	in	ARM

In	some	application	such	as	digital	signal	processing	(DSP)	we	need	to	multiply	two
registers	and	add	the	result	with	another	register.	The	ARM	has	an	instruction	to	do	both
jobs	 in	 a	 single	 instruction.	 The	 format	 of	 MLA	 (multiply	 and	 add)	 instruction	 is	 as
follows:

MLA							Rd,Rm,Rs,Rn						;Rd	=	Rm	×	Rs	+	Rn

In	multiplication	and	add,	the	operands	must	be	in	registers.	After	the	multiplication
and	add,	the	destination	register	will	contain	the	result.	See	the	following	example:

MOV					R1,#100																;R1	=	100

MOV					R2,#5																					;R2	=	5



MOV					R3,#40																		;R3	=	40

MLA							R4,R1,R2,R3								;R4	=	R1	×	R2	+	R3	=	100	×	5	+	40	=	540

	Notice	that	multiply	and	add	can	produce	a	result	greater	than	32-bit,	 if	 the	MLA
instruction	 is	 used,	 the	 destination	 register	 will	 hold	 the	 lower	 word	 (32-bit)	 and	 the
portion	 beyond	 32-bit	 is	 dropped.	 For	 this	 reason	 we	 must	 use	 UMLAL	 (unsigned
multiply	and	add	 long)	 instruction	 if	 the	result	 is	going	 to	be	greater	 than	0xFFFFFFFF.
The	format	of	UMLAL	instruction	is	as	follows:

UMLAL	RdLo,RdHi,Rn,Op2											;RdHi:RdLo	=	Rn	×	Op2	+	RdHi:RdLo

In	multiplication	and	add,	the	operands	must	be	in	registers.	Notice	that	the	addend
and	the	high	word	of	the	destination	use	the	same	registers,	the	two	left	most	registers	in
the	instruction.	It	means	that	the	contents	of	the	registers	which	have	the	addend	will	be
changed	after	execution	of	UMLAL	instruction.	See	the	following	example:

LDR								R1,=0x34000000																;R1	=	0x34000000

LDR								R2,=0x2000000																		;R2	=	0x2000000

EOR								R3,R3,R3																														;R3	=	0x00

LDR								R4,=0x00000BBB															;R4	=	0x00000BBB

UMLAL	R4,R3,R2,R1								;0x34000000×0x2000000+0xBBB

;		=	0x068000000000000BBB

Division	of	unsigned	numbers	in	ARM

Some	ARM	families	 do	not	 have	 an	 instruction	 for	 division	of	 unsigned	numbers
since	it	takes	too	many	gates	to	implement	it.	We	can	use	SUB	instruction	to	perform	the
division.	 In	 the	 next	 chapter,	 after	 explaining	 conditional	 branches,	 we	 will	 show	 an
example	of	unsigned	division	using	subtract	operation.

Review	Questions

1.							Explain	the	difference	between	ADDS	and	ADD	instructions.

2.							The	ADC	instruction	that	has	the	syntax	“ADC	Rd,	Rn,	Op2”	means
_____________.

3.							Explain	why	the	Z=0	for	the	following:

MOV					R2,#0x4F

MOV					R4,	#0xB1

ADDS					R2,R4,R2

4.							Explain	why	the	Z=1	for	the	following:

MOV					R2,#0x4F

LDR								R4,=0xFFFFFFB1



ADDS					R2,R4,R2

5.							Show	how	the	CPU	would	subtract	0x05	from	0x43.

6.							If	C	=	1,	R2	=	0x95,	and	R3	=	0x4F	prior	to	the	execution	of	“SBC	R2,R2,R3”,
what	will	be	the	contents	of	R2	after	the	subtraction?

7.							In	unsigned	multiplication	of	“MUL	R2,R3,R4”,	the	product	will	be	placed	in
register	__________	.

8.							In	unsigned	multiplication	of	“MUL	R1,R2,R4”,	the	R2	can	be	maximum	of
___________if	R4	=	0xFFFFFFFF.





Section	3.2:	Logic	Instructions
In	this	section	we	discuss	the	logic	instructions	AND,	OR,	and	Ex-OR	in	the	context

of	many	examples.	 Just	 like	arithmetic	 instruction,	we	must	use	 the	S	 in	 the	 instruction
syntax	if	we	want	to	update	the	flags.	If	the	S	syntax	is	used	the	Z	flag	will	be	set	if	and
only	if	the	result	is	all	zeros,	and	the	N	flag	will	be	set	to	the	logical	value	of	bit	31	of	the
result.	The	V	flag	in	the	CPSR	will	be	unaffected,	and	the	C	flag	will	be	set	to	the	carry
out	from	the	barrel	shifter	which	is	discussed	in	the	next	section.	See	Table	3-4.

Instruction

(Flags	Unchanged)
Action

Instruction	

(Flags	Changed)
Hexadecimal

AND ANDing ANDS Anding	and	set	flags

ORR ORRing ORS Oring	and	set	flags

EOR Exclusive-ORing EORS Exclusive	Oring		and		set	flags

BIC Bit	Clearing BICS Bit	clearing	and	set	flags

Table	3-4:	Logic	Instructions	and	Flag	Bits

The	instruction	format	of	logic	instructions	in	ARM	is	similar	to	the	format	of	other
data	processing	instructions.	See	Figure	3-2.

Figure	3-2:	General	Formation	of	Data	Processing	Instruction

AND

AND							Rd,	Rn,	Op2								;Rd	=	Rn	ANDed	Op2

Inputs Output Symbol

X Y X	AND	Y

0 0 0

0 1 0

1 0 0

1 1 1

	

This	instruction	will	perform	a	bitwise	logical	AND	on	the	operands	and	place	the
result	 in	 the	destination.	The	destination	and	 the	 first	 source	operands	are	 registers.	The
second	source	operand	can	be	a	register	or	an	immediate	value	of	less	than	0xFF.



If	we	use	ANDS	instead	of	AND	it	will	change	the	C	and	Z	flags	according	to	the
result.	As	seen	in	Example 3-12,	AND	can	be	used	to	mask	certain	bits	of	the	operand.

Example	3-12

Show	the	results	of	the	following	cases

a)

MOV					R1,#0x35

AND							R2,R1,#0x0F							;R2=	R1	ANDed	with	0x0F

b)

MOV					R0,#0x97

MOV					R1,#0xF0

AND							R2,R0,R1														;R2=	R0	ANDed	with	R1

	

Solution:

	

a)

0x35							0	0	1	1	0	1	0	1

AND																							0x0F							0	0	0	0	1	1	1	1

0x05							0	0	0	0	0	1	0	1		

b)

0x97							1	0	0	1	0	1	1	1

AND																							0xF0							1	1	1	1	0	0	0	0

0x90							1	0	0	1	0	0	0	0		

	

ORR

ORR							Rd,	Rn,	Op2								;Rd	=	Rn	ORed	Op2

Inputs Output Symbol

X Y X	OR	Y

0 0 0

0 1 1

1 0 1



1 1 1

	

The	operands	are	ORed	and	the	result	is	placed	in	the	destination.	ORR	can	be	used
to	set	certain	bits	of	an	operand	to	one.	The	destination	and	the	first	source	operands	are
registers.	The	second	source	operand	can	be	either	a	register	or	an	immediate	value	of	less
than	0xFF.

If	we	use	ORRS	instead	of	ORR,	the	flags	will	be	updated,	just	the	same	as	for	the
ANDS	instruction.	See	Example	3-13.

Example	3-13

Show	the	results	of	the	following	cases:

a)

MOV					R1,#0x04														;R1	=	0x04

ORRS					R2,R1,#0x68							;R2=	R1	ORed	0x68

b)

MOV					R0,#0x97

MOV					R1,#0xF0

ORR							R2,R0,R1														;R2=	R0	ORed	with	R1

Solution:

	

a)

0x04							0000	0100

OR																										0x68							0110	1000												Flag	will	be:		Z	=	0

0x6C						0110	1100											

	

b)

0x97							1001	0111

OR																										0xF0							1111	0000												Flag	will	be	unchanged

0xF7							1111	0111

	

	 The	 ORR	 instruction	 can	 also	 be	 used	 to	 test	 for	 a	 zero	 operand.	 For	 example,
“ORRS	R2,R2,#0”	will	OR	the	register	R2	with	zero	and	make	Z	=	1	if	R2	is	zero.	



EOR

EOR								Rd,Rn,Op2										;Rd	=	Rn	Ex-ORed	with	Op2

Inputs Output Symbol

X Y X	EOR	Y

0 0 0

0 1 1

1 0 1

1 1 0

	

	 The	EOR	 instruction	will	 Exclusive-OR	 the	 operands	 and	 place	 the	 result	 in	 the
destination	register.	EOR	sets	the	result	bits	to	1	if	they	are	not	equal;	otherwise,	they	are
reset	 to	 0.	 The	 flags	 are	 updated	 if	 we	 use	 EORS	 instead	 of	 EOR.	 The	 rules	 for	 the
operands	are	the	same	as	in	the	AND	and	OR	instructions.	See	Examples	3-14	and	3-15.

Example	3-14

Show	the	results	of	the	following:

MOV					R1,#0x54

EOR								R2,R1,#0x78						;R2	=	R1	ExOred	with	0x78

Solution:

0x54							0	1	0	1	0	1	0	0

XOR																							0x78							0	1	1	1	1	0	0	0

0x2C						0	0	1	0	1	1	0	0

	

	

Example	3-15

The	EOR	instruction	can	be	used	to	clear	the	contents	of	a	register	by	Ex-ORing	it	with
itself.

Show	how	“EORS	R1,R1,R1”	clears	R1,	assuming	that	R1	=	0x45.

	

Solution:

0x45							0	1	0	0	0	1	0	1



XOR																							0x45							0	1	0	0	0	1	0	1

0x00							0	0	0	0	0	0	0	0					

	

EOR	 can	 also	 be	 used	 to	 see	 if	 two	 registers	 have	 the	 same	 value.	 “EORS
R2,R3,R4”	will	make	Z	=	1	if	both	registers	R4	and	R3	have	the	same	value,	and	if	they
do,	the	result	(00000000)	is	saved	in	R2,	the	destination.

Another	 widely	 used	 application	 of	 EOR	 is	 to	 toggle	 bits	 of	 an	 operand.	 For
example,	to	toggle	bit	2	of	register	R2:

EOR								R2,R2,#0x04							;EOR	R2	with	0000	0100

This	would	cause	bit	2	of	R2	to	change	to	the	opposite	value;	all	other	bits	would
remain	unchanged.

BIC	(bit	clear)

BIC									Rd,Rn,Op2										;clear	certain	bits	of	Rn	specified	by

;the	Op2	and	place	the	result	in	Rd

Inputs Output

X Y X	AND	(NOT
Y)

0 0 0

0 1 0

1 0 1

1 1 0

The	BIC	(bit	clear)	 instruction	 is	used	 to	clear	 the	selected	bits	of	 the	Rn	register.
The	selected	bits	are	held	by	Op2.	The	bits	that	are	HIGH	in	Op2	will	be	cleared	and	bits
with	 LOW	 will	 be	 left	 unchanged.	 For	 example,	 assuming	 that	 R3	 =	 00001000	 the
instruction	 “BIC	 R2,R2,R3”	 will	 clear	 bit	 3	 of	 R2	 and	 leaves	 the	 rest	 of	 the	 bits
unchanged.	In	reality,	the	BIC	instruction	performs	AND	operation	on	Rn	register	with	the
complement	 of	Op2	 and	 places	 the	 result	 in	 destination	 register.	 Look	 at	 the	 following
example:

MOV					R1,#0x0F

MOV					R2,#0xAA

BIC									R3,R2,R1			;now	R3	=	0xAA	ANDed	with	0xF0	=	0xA0

If	we	want	the	flags	to	be	updated,	then	we	must	use	BICS	instead	of	BIC.										



MVN	(move	negative)

MVN					Rd,	Rn			;move	negative	of	Rn	to	Rd

The	MVN	(move	negative)	instruction	is	used	to	generate	one’s	complement	of	an
operand.	For	example,	the	instruction	“MVN	R2,#0”	will	make	R2=0xFFFFFFFF.	Look	at
the	following	example:

LDR								R2,=0xAAAAAAAA										;R2	=	0xAAAAAAAA							

MVN					R2,R2																																					;R2	=	0x55555555

We	can	also	use	Ex-OR	instruction	to	generate	one’s	complement	of	an	operand.	Ex-
ORing	an	operand	with	0xFFFFFFFF	will	generate	the	1’s	complement.	See	the	following
code:

LDR								R2,=0xAAAAAAAA										;R2	=	0xAAAAAAAA

MVN					R0,#0																																					;R0	=	0xFFFFFFFF

EOR								R2,R2,R0																														;R2	=	R2	ExORed	with	0xFFFFFFFF

;		=	0x55555555

It	must	be	noted	that	the	instruction	“MVN	Rd,#0”	is	widely	used	to	load	the	fixed
value	of	0xFFFFFFFF	into	destination	register.	We	can	use	the	“LDR	Rd,=0xFFFFFFFF”
pseudo-instruction	 to	 do	 the	 same	 thing,	 but	 the	ARM	assembler	will	 substitute	 several
real	ARM	instructions	in	its	place	and	therefore	it	takes	more	code	space.

Review	Questions

1.							Use	operands	0x4FCA	and	0xC237	to	perform:

(a)	AND																(b)	OR			(c)	XOR

2.							ANDing	a	word	operand	with	0xFFFFFFFF	will	result	in	what	value	for	the	word
operand?		To	set	all	bits	of	an	operand	to	0,	it	should	be	ANDed	with	______.

3.							To	set	all	bits	of	an	operand	to	1,	it	could	be	ORed	with	_______.

4.							XORing	an	operand	with	itself	results	in	what	value	for	the	operand?

5.							Write	an	instruction	that	sets	bit	4	of	R7.

6.							Write	an	instruction	that	clears	bit	3	of	R5.





Section	3.3:	Rotate	and	Barrel	Shifter
	 Although	 ARM	 Cortex	 has	 shift	 and	 rotate	 instruction,	 for	 the	 ARM7	 we	 can

perform	 the	 shift	 and	 rotate	 operations	 as	 part	 of	 other	 instructions	 such	 as	 MOV.	 In
previous	 sections	 we	 discussed	 that	 as	 the	 second	 argument	 of	 process	 instructions
(arithmetic	 and	 logic	 instructions)	 we	 can	 use	 register	 or	 immediate	 values.	 In	 other
words,	the	process	instructions	can	be	used	in	one	of	the	following	forms:

1.							opcode									Rd,	Rn,	Rs	(e.g.	ADD	R1,R2,R3)

2.							opcode									Rd,	Rn,	immediateValue	(e.g.	ADD	R2,R3,#5)

ARM	is	able	to	shift	or	rotate	the	second	argument	before	using	it	as	the	argument.
In	this	section	we	first	discuss	shifting	and	rotating	on	registers	and	then	we	cover	shifting
immediate	values.

Barrel	Shifter

There	are	two	kinds	of	shifts:	logical	and	arithmetic.	The	logical	shift	is	for	unsigned
operands	and	the	arithmetic	shift	is	for	signed	operands.	Logical	shift	will	be	discussed	in
this	 section	 and	 the	 discussion	of	 arithmetic	 shift	 is	 covered	 in	Chapter	 5.	Using	MOV
instructions	in	ARM	one	can	shift	 the	contents	of	a	register	right	or	 left.	The	number	of
times	(or	bits)	that	the	operand	is	shifted	can	be	specified	directly	or	through	a	register.

LSR

	This	is	the	logical	shift	right.	The	operand	is	shifted	right	bit	by	bit,	and	for	every
shift	 the	 LSB	 (least	 significant	 bit)	 will	 go	 to	 the	 carry	 flag	 (C)	 and	 the	 MSB	 (most
significant	bit)	is	filled	with	0.	One	can	use	an	immediate	operand	or	a	register	to	hold	the
number	of	times	it	is	to	be	shifted.	Examples	3-16	and	3-17	should	help	to	clarify	LSR.

Example	3-16

Show	the	result	of	LSR	in	the	following:

MOV					R0,#0x9A												;R0	=	0x9A

MOVS			R1,R0,LSR	#3						;shift	R0	to	right	3	times

;and	then	move	(copy)	the	result	to	R1

Solution:

	

0x9A	=		00000000	00000000	0000000	00000000	10011010

first	shift:													00000000	00000000	0000000	00000000	01001101		C	=	0																				

second	shift:						00000000	00000000	0000000	00000000	00100110		C	=	1				

third	shift:											00000000	00000000	0000000	00000000	00010011		C	=	0				



After	shifting	right	three	times,	R1	=	0x00000013	and	C	=	0.	Another	way	to	write	the
above	code	is:

MOV					R0,#0x9A

MOV					R2,#0x03

MOV					R1,R0,LSR	R2						;shift	R0	to	right	R2	times

;and	move	the	result	to	R1

	

	

Example	3-17

Show	the	results	of	LSR	in	the	following:

	

TIMES			EQU							0x4

LDR								R1,=0x777											;R1=0x777																										

MOV					R2,#TIMES										;R2=0x04

MOVS			R3,R1,LSR	R2						;shift	R1	right	R2	number	of	times

;and	place	the	result	in	R3

Solution:

After	four	shifts,	the	R3	will	contain	0x77.	The	four	LSBs	are	lost	through	the	carry,	one
by	one,	and	0s	fill	the	four	MSBs.

	

Although	LSR	does	affect	the	S	and	Z	flags,	they	are	not	important	in	this	case.	But
notice	that	if	you	want	the	flags	to	be	set,	use	the	MOVS	instruction	instead	of	MOV.

One	can	use	the	LSR	to	divide	a	number	by	2.	See	Example	3-18.

Example	3-18

Show	the	results	of	LSR	in	the	following:

LDR								R0,=0x88														;R0=0x88																													

MOVS			R1,R0,LSR	#3						;shift	R0	right	three	times	(R1	=	0x11)

Solution:

	

After	the	three	shifts,	the	R1	will	contain	0x11.	This	divides	the	number	by	8	since	2	to	the
power	3	is	8.



	

LSL

Shift	left	is	also	a	logical	shift.	It	is	the	reverse	of	LSR.	After	every	shift,	the	LSB	is
filled	with	0	and	the	MSB	goes	to	C.	All	the	rules	are	the	same	as	for	LSR.	One	can	use	an
immediate	operand	or	a	 register	 to	hold	 the	number	of	 times	 it	 is	 to	be	shifted	 left.	See
Example	3-19.	One	can	use	the	LSL	to	multiply	a	number	by	2.	See	Example	3-20.

Example	3-19

Show	the	effects	of	LSL	in	the	following:

LDR								R1,=0x0F000006

MOVS			R2,R1,LSL	#8

Solution:

	

00001111	00000000	00000000	00000110

C=0								00011110	00000000	00000000	00001100	(shifted	left	once)

C=0								00111100	00000000	00000000	00011000

C=0								01111000	00000000	00000000	00110000

C=0								11110000	00000000	00000000	01100000

C=1								11100000	00000000	00000000	11000000

C=1								11000000	00000000	00000001	10000000

C=1								10000000	00000000	00000011	00000000

C=1								00000000	00000000	00000110	00000000	(shifted	eight	times)

	

After	eight	shifts	left,	the	R2	register	has	0x00000600	and	C	=	1.		The	eight	MSBs	are	lost
through	the	carry,	one	by	one,	and	0s	fill	the	eight	LSBs.	Another	way	to	write	the	above
code	is:

LDR								R1,=0x0F000006

MOV					R0,#0x08

MOV					R2,R1,LSL	R0

	



	

Example	3-20

Show	the	results	of	LSL	in	the	following:

TIMES			EQU							0x5

LDR								R1,#0x7																;R1=0x7																															

MOV					R2,#TIMES										;R2=0x05

MOV					R1,R1,LSL	R2							;shift	R1	left	R2	number	of	times

;and	place	the	result	in	R1

Solution:

	

After	the	five	shifts,	the	R1	will	contain	0x000000E0.	0xE0	is	224	in	decimal.	Notice	that
it	multiplies	number	by	power	of	2.		7×32	=	224	=	0xE0	since	2	to	the	power	of	5	is	32.

	

Table	3-5	lists	the	logical	shift	operations	in	ARM.

Operation Destination Source Number	of	shifts

LSR	(Shift	Right) Rd Rn Immediate	value

LSR	(Shift	Right) Rd Rn register	Rm

LSL	(Shift	Left) Rd Rn Immediate	value

LSL	(Shift	Left) Rd Rn register	Rm

Note:	Number	of	shift	cannot	be	more	than	32.

Table	3-	5:	Logic	Shift	operations	for	unsigned	numbers	in	ARM

Arithmetic	shift	right	ASR

The	arithmetic	shift	ASR	is	used	for	signed	numbers	and	is	discussed	in	Chapter	5.

Rotating	the	bits	of	an	operand	right	and	left

	There	are	two	types	of	rotations.	One	is	a	simple	rotation	of	the	bits	of	the	operand,
and	the	other	is	a	rotation	through	the	carry.	Each	is	explained	below.

ROR	(rotate	right)



In	rotate	right,	as	bits	are	shifted	from	left	to	right	they	exit	from	the	right	end	(LSB)
and	enter	the	left	end	(MSB).	In	addition,	as	each	bit	exits	the	LSB,	a	copy	of	it	is	given	to
the	carry	flag.	In	other	words,	in	ROR	the	LSB	is	moved	to	the	MSB	and	is	also	copied	to
C	flag,	as	shown	in	the	diagram.	One	can	use	an	immediate	operand	or	a	register	to	hold
the	number	of	times	it	is	to	be	rotated.		

MOV					R1,#0x36													

;R1	=	0000	0000	0000	0000	0000	0000	0011	0110

MOVS			R1,R1,ROR	#1				

;R1	=	0000	0000	0000	0000	0000	0000	0001	1011		C=0

MOVS			R1,R1,ROR	#1				

;R1	=	1000	0000	0000	0000	0000	0000	0000	1101		C=1

MOVS			R1,R1,ROR	#1				

;R1	=	1100	0000	0000	0000	0000	0000	0000	0110		C=1

or:

MOV					R1,#0x36													

;R1	=	0000	0000	0000	0000	0000	0000	0011	0110

MOV					R0,#3																				

;R0	=	3	number	of	times	to	rotate

MOVS			R1,R1,ROR	R0				

;R1	=	1100	0000	0000	0000	0000	0000	0000	0110	C=1

also	look	at	the	following	case:

LDR								R2,=0xC7E5								

;R2	=	0000	0000	0000	0000	1100	0111	1110	0101

MOV					R4,#0x06													

;R4	=	6	number	of	times	to	rotate

MOVS			R3,R2,ROR	R4				

;R3	=	1001	0100	0000	0000	0000	0011	0001	1111	C=1

Rotate	left

There	is	no	rotate	left	option	in	ARM7	since	one	can	use	the	rotate	right	(ROR)	to
do	the	job.	That	means	instead	of	rotating	left	n	bits	we	can	use	rotate	right	32–n	bits	to	do
the	 job	 of	 rotate	 left.	 Using	 this	 method	 does	 not	 give	 us	 the	 proper	 carry	 if	 actual
instruction	of	ROL	was	available.	Look	at	the	following	examples:	

LDR								R0,=0x00000072															



;R0	=	0000	0000	0000	0000	0000	0000	0111	0010

MOVS			R0,R0,ROR	#31																	

;R0	=	0000	0000	0000	0000	0000	0000	1110	0100		C=0

MOVS			R0,R0,ROR	#31																	

;R0	=	0000	0000	0000	0000	0000	0001	1100	1000		C=0

MOVS			R0,R0,ROR	#31																	

;R0	=	0000	0000	0000	0000	0000	0011	1001	0000		C=0

MOVS			R0,R0,ROR	#31																	

;R0	=	0000	0000	0000	0000	0000	0111	0010	0000		C=0

or:

MOV					R0,#0x72														;R0	=	0111	0010

MOV					R1,#28																		;R1	=	32	–	4	=	28

MOVS			R0,R0,ROR	R1					;R0	=	0111	0010	0000		C=0

;assume	R2	=	0x672A

LDR								R2,=0x671A							

;R2	=	0000	0000	0000	0000	0110	0111	0010	1010

MOVS			R2,R2,ROR	#27	

;R2	=	0000	0000	0000	1100	1110	0101	0100	0000

;C	=	0

RRX	rotate	right	through	carry

In	RRX,	as	bits	are	shifted	from	left	to	right,	they	exit	from	the	right	end	(LSB)	to
the	carry	flag,	and	 the	carry	flag	enters	 the	 left	end	(MSB).	 In	other	words,	 in	RRX	the
LSB	is	moved	to	C	and	C	is	moved	to	the	MSB.	In	reality,	C	flag	acts	as	if	it	is	part	of	the
operand.	That	means	the	RRX	is	like	33-bit	register	since	the	C	flag	is	33th	bit.	The	RRX
takes	no	arguments	and	the	number	of	times	an	operand	to	be	rotated	is	fixed	at	one.

;assume	C=0

MOV					R2,#0x26													

;R2	=	0000	0000	0000	0000	0000	0000	0010	0110

MOVS			R2,R2,RRX										

;R2	=	0000	0000	0000	0000	0000	0000	0001	0011	C=0



MOVS			R2,R2,RRX										

;R2	=	0000	0000	0000	0000	0000	0000	0000	1001	C=1

MOVS			R2,R2,RRX										

;R2	=	1000	0000	0000	0000	0000	0000	0000	0100	C=1

MOV					R2,#0x0F													

;R2	=	0000	0000	0000	0000	0000	0000	0000	1111

MOVS			R2,R2,RRX										

;R2	=	0000	0000	0000	0000	0000	0000	0000	0111	C=1

MOVS			R2,R2,RRX										

;R2	=	1000	0000	0000	0000	0000	0000	0000	0011	C=1

MOVS			R2,R2,RRX										

;R2	=	1100	0000	0000	0000	0000	0000	0000	0001	C=1

Table	3-6	lists	the	rotate	instructions	of	the	ARM.

Operation Destination Source Number	of	Rotates

ROR	(Rotate	Right) Rd Rn Immediate	value

ROR	(Rotate	Right) Rd Rn register	Rm

RRX	(Rotate	Right	Through
Carry) Rd Rn 1	bit

Table	3-	6:	Rotate	operations	for	unsigned	numbers	in	ARM

Shifting	Immediate	Arguments

We	just	examined	the	rotate	and	shift	operations.	One	can	use	the	rotate	operation	to
load	fixed	(constant)	values	into	ARM	register,	as	well.	Examine	the	MOV	instruction	bit
assignment	in	Figure	3-3.	Of	the	32-bit	opcode,	the	upper	12	bits	(D31–D20)	are	used	for
the	opcode	itself.	The	lowest	8	(D7–D0)	bits	are	used	for	fixed	values	and	4	bits	(D11–
D8)	are	used	for	the	number	of	times	rotate	operation	is	performed	before	loaded	into	the
register.	The	8	bits	for	the	fixed	value	gives	us	00	to	255	(00	to	0xFF	in	hex)	range	and	the
4	bits	of	the	rotate	number	gives	us	0	to	15	(0	to	0xF	in	hex)	range.	The	MOV	instructions
can	be	constructed	to	rotate	an	8-bit	fixed	value	to	the	right	a	number	of	times	and	then
loaded	into	the	register.	The	number	of	times	rotated	right	is	always	twice	the	number	in
the	rotate	portion	of	the	instruction.	Since	rotate	value	can	be	0–15	that	gives	number	of
rotations	between	0–30.	This	means	 that	whenever	 the	 second	operand	 is	 an	 immediate
value	the	number	of	rotation	is	an	even	number.



Figure	3-	3:	MOV	Instruction

As	we	mentioned	 earlier,	 the	ARM	 supports	 the	 rotate	 right	 only	 and	 there	 is	 no
rotate	left	option.	So	to	do	rotate	left	we	must	use	32-n	for	the	number	of	rotation	right.
Therefore,	 “MOV	 R0,#0xFF,#30”	 is	 the	 same	 as	 rotating	 left	 2	 times	 and	 “MOV
R0,#0xFF,#28”	is	the	same	as	rotating	left	4	times.	See	Examples	3-21	through	3-23.

Example	3-21

Show	all	the	possible	cases	of	using	MOV	instruction	for	0xFF	value	and	rotate	options.

	

Solution:

	

MOV					R0,	#0xFF,	#0				

;R0	=	0xFF	is	rotated	right	0	times.	R0	=	0x000000FF	

MOV					R0,	#0xFF,	#2				

;R0	=	0xFF	is	rotated	right	2	times.	R0	=	0xC000003F

MOV					R0,	#0xFF,	#4				

;R0	=	0xFF	is	rotated	right	4	times.	R0	=	0xF000000F	

MOV					R0,	#0xFF,	#6				

;R0	=	0xFF	is	rotated	right	6	times.	R0	=	0xFC000003

MOV					R0,	#0xFF,	#8				

;R0	=	0xFF	is	rotated	right	8	times.	R0	=	0xFF000000	

MOV					R0,	#0xFF,	#10		

;R0	=	0xFF	is	rotated	right	10	times.	R0	=	0x3FC00000

MOV					R0,	#0xFF,	#12		

;R0	=	0xFF	is	rotated	right	12	times.	R0	=	0x0FF00000	

MOV					R0,	#0xFF,	#14		

;R0	=	0xFF	is	rotated	right	14	times.	R0	=	0x03FC0000

MOV					R0,	#0xFF,	#16		

;R0	=	0xFF	is	rotated	right	16	times.	R0	=	0x00FF0000

MOV					R0,	#0xFF,	#18		

;R0	=	0xFF	is	rotated	right	18	times.	R0	=	0x003FC000

MOV					R0,	#0xFF,	#20		

;R0	=	0xFF	is	rotated	right	20	times.	R0	=	0x000FF000



MOV					R0,	#0xFF,	#22		

;R0	=	0xFF	is	rotated	right	22	times.	R0	=	0x0003FC00	

MOV					R0,	#0xFF,	#24		

;R0	=	0xFF	is	rotated	right	24	times.	R0	=	0x0000FF00

MOV					R0,	#0xFF,	#26		

;R0	=	0xFF	is	rotated	right	26	times.	R0	=	0x00003FC0

MOV					R0,	#0xFF,	#28		

;R0	=	0xFF	is	rotated	right	28	times.	R0	=	0x00000FF0	

MOV					R0,	#0xFF,	#30		

;R0	=	0xFF	is	rotated	right	30	times.	R0	=	0x000003FC

	

	

Example	3-22

Using	MOV	instruction,	show	how	to	rotate	left	the	fixed	value	of	0x99	total	of	(a)	4,	(b)
8,	and	(c)	16	times.	Also	give	the	value	in	the	register	after	the	rotation.

	

Solution:

	

Since	we	do	not	have	rotate	left	operation	we	must	use	rotate	right	32–n	times.

MOV					R1,#0x99,#28				

;rotating	right	28	times	is	the	same	as	rotate	left	4	times

MOV					R2,#0x99,#24				

;rotating	right	24	times	is	the	same	as	rotate	left	8	times		

MOV					R3,#0x99,#16				

;rotating	right	16	times	is	the	same	as	rotate	left	16	times

	

Now,	we	have	(a)	R1	=	0x00000990,	(b)	R2	=	0x00009900,	and	(c)	R3=0x00990000		

	

	

Example	3-23



Using	the	Keil	IDE,	assemble	the	program	in	Example	3-21	and	examine	the	list	file.
Compare	and	contrast	the	count	value	in	the	instruction	with	count	value	of	the	opcodes.

	

Solution:

	

As	expected,	the	number	of	times	rotated	right	is	twice	the	number	of	rotate	field.

	

	Also	see	Example	3-24	for	further	examples	of	rotate	operation.

Example	3-24

Give	the	register	value	for	each	of	the	following	instructions	after	it	is	executed.



MOV					R0,#0xAA,#2					

MOV					R1,#0x20,#28						

MOV					R4,#0x99,#6						

MOV					R2,#0x55,#24						

MOV					R3,#0x01,#20				

MOV					R7,#0x80,#12						

MOV					R10,#0x0F,#14

MOV					R5,#0x66,#2						

Solution:

MOV					R0,#0xAA,#2					

;R0	=	0xAA	is	rotated	right	2	times.	R0	=	0x8000002A							

MOV					R1,#0x20,#28				

;R1	=	0x20	is	rotated	right	28	times.	R0	=	0x00000200	

MOV					R4,#0x99,#6						

;R4	=	0x99	is	rotated	right	6	times.	R0	=	0x64000002

MOV					R2,#0x55,#24				

;R2	=	0x55	is	rotated	right	24	times.	R0	=	0x00005500

MOV					R3,#0x01,#20				

;R3	=	0x01	is	rotated	right	20	times.	R0	=	0x00001000

MOV					R7,#0x80,#12				

;R7	=	0x80	is	rotated	right	12	times.	R0	=	0x08000000

MOV					R10,#0x0F,#14		

;R10	=	0x0F	is	rotated	right	14	times.	R0	=	0x003C0000

MOV					R5,#0x66,#2						

;R5	=	0x66	is	rotated	right	2	times.	R0	=	0x80000019

	

We	can	use	the	concept	of	rotate	with	other	data	processing	instructions	of	the	ARM
to	load	fixed	values	into	the	ARM	register.	See	Example	3-25.

Example	3-25

Give	the	register	value	for	each	of	the	following	instructions	after	it	is	executed.

	



MVN					R0,#0xAA,#2																				

MVN					R1,#0x20,#28						

MVN					R4,#0x99,#6						

MVN					R2,#0x55,#24						

MVN					R3,#0x01,#20				

MVN					R7,#0x80,#12						

MVN					R10,#0x0F,#14		

MVN					R5,#0x66,#2						

Solution:

MVN					R0,#0xAA,#2					

;0xAA	rotated	right	2	times	=	0x8000002A;	R0	=	0x7FFFFFD5

MVN					R1,#0x20,#28				

;0x20	is	rotated	right	28	times	=	0x00000200;	R1	=	0xFFFFFDFF

MVN					R4,#0x99,#6						

;0x99	is	rotated	right	6	times		=	0x64000002;	R4	=	0x9BFFFFFD

MVN					R2,#0x55,#24				

;0x55	is	rotated	right	24	times	=	0x00001A40;	R2	=	0xFFFFAAFF

MVN					R3,#0x01,#20				

;0x01	is	rotated	right	20	times	=	0x00001000;	R3	=	0xFFFFEFFF

MVN					R7,#0x80,#12				

;0x80	is	rotated	right	12	times	=	0x08000000;	R7	=	0xF7FFFFFF

MVN					R10,#0x0F,#14

;0x0F	is	rotated	right	14	times	=	0x003C0000;	R10=0xFFC3FFFF

MVN					R5,#0x66,#2						

;0x66	is	rotated	right	2	times		=	0x80000019;	R5	=	0x7FFFFFE6

	

General	Formation	of	Process	instruction

Next	we	will	show	how	the	different	operands	are	supported	by	ARM.	In	Figure	3-4
you	see	the	general	formation	of	process	instructions.



Figure	3-	4:	Data	Process	Instructions

In	all	ARM	instructions	bits	28–31	are	put	aside	for	condition	field	which	is	covered
in	Chapter	4.

Bits	26	and	27	are	0	in	process	instructions	showing	that	the	instruction	is	a	process
instruction	 and	 the	 opcode	 is	 represented	 by	 bits	 24–21.	 Using	 4	 bits	 16	 different
instructions	are	provided	as	shown	in	Figure	3-4.

	The	S	bit	 (bit	20)	 shows	 if	 the	 flags	should	be	updated.	When	we	add	an	S	 (e.g.
MOVS)	the	bit	will	be	set	which	shows	that	the	flags	should	be	updated	by	the	CPU.

Bits	12–15	contain	the	destination	register.	Using	4	bits	we	can	select	registers	R0–
R15.

Bits	16–19	represent	the	first	operand	register.

Bit	25	(I)	shows	the	type	of	second	operand.	The	bit	is	1	when	the	second	operand	is
an	immediate	value.	Whenever	the	second	operand	is	a	register	this	bit	is	zero.

Immediate	 values:	 In	 the	 case	 that	 I	 is	 1,	 bits	 0–7,	 contain	 an	 immediate	 value
which	can	be	a	number	between	0–0xFF.

Second	 register:	 In	 the	 case	 that	 I	 is	 0,	 bits	 0–11	 represent	 the	 second	 operand
register,	 together	with	 the	 amount	 of	 shift/rotate	 and	 type	 of	 shift/rotate.	As	mentioned
earlier	 the	 shift	 amount	 can	 be	 provided	 either	 by	 a	 register	 or	 an	 immediate	 value.
Whenever	the	I	bit	is	cleared,	bit	4	shows	the	way	shift	amount	is	provided.	See	Figure	3-
5.



Figure	3-	5:	Data	Process	Instructions

Example	3-26	should	help	to	clarify	this.

Example	3-26

Using	the	Keil	IDE,	assemble	the	following	program	and	compare	the	instruction	with	the
process	instruction	format.

	

AREA	EX3_26,CODE,READONLY

ENTRY

ADD							R0,R1,R5,LSR	#2

ADD							R0,R1,R5,LSR	R2

ADD							R0,R1,R5,LSL	R2

ADD							R0,R1,R5

ADD							R0,R1,#5,#2

ADD							R0,R1,#5

H1											B													H1

END



	

Solution:

In	“ADD	R0,R1,R5,LSR	#2”	the	second	operand	is	a	register.	Therefore,	the	I	bit	is
cleared.	Since	the	shift	amount	is	an	immediate	value,	the	bit	4	is	cleared,	as	well.	The
shift	type	is	set	to	01	representing	LSR.

In	“ADD	R0,R1,R5,LSR	R2”	the	second	operand	is	a	register.	Therefore,	the	I	bit	is
cleared.	As	a	register	provides	the	shift	amount,	the	bit	4	is	set.

The	“ADD	R0,R1,R5,LSL	R2”	instruction	is	the	same	as	“ADD	R0,R1,R5,LSR	R2”
except	that	the	shift	type	is	set	to	00	to	represent	LSL.

The	machine	code	represents	in	fact	the	instruction	“ADD R0,R1,R5,LSL	#0”.	But,	if	we
shift	a	number	0	bits	to	left,	the	number	remains	unchanged.	As	a	result,	it	represents
“ADD R0,R1,R5”.



	

In	“ADD																R0,R1,#5,#2”	the	second	operand	is	immediate.	Therefore,	the	I	bit	is
set.	In	immediate	operands	the	value	is	shifted	twice	the	rotate	field.	That	is	why	the	rotate
field	is	1.

In	“ADD	R0,R1,#5”,	the	immediate	value	is	rotated	0	bits.	Therefore,	the	immediate	value
remains	unchanged.

	

Loading	fixed	values	into	Registers

In	 this	 section,	 we	 examined	 loading	 fixed	 values	 into	 registers.	 However,	 as	we
have	seen	so	far,	it	is	not	possible	to	create	every	constant	value	by	using	the	rotate	option
of	the	instructions.

Another	way	is	to	use	combination	of	these	instructions	such	as	MVN,	MOV,	ADD,
AND,	OR,	and	so	on	to	load	any	value	into	a	register.	For	example	the	following	program
loads	R1	with	0x87654321:

MOV					R1,#0x21														;R1	=	0x00000021

ORR							R1,R1,#0x43,#24														

;R1	=	0x00000021	ORed	0x00004300	=	0x00004321

ORR							R1,	R1,#0x65,#16													

;R1	=	0x00004321	ORed	0x00650000	=	0x00654321

ORR							R1,	R1,#0x87,#8															

;R1	=	0x00654321	ORed	0x87000000	=	0x87654321

But	 it	 is	 very	 tedious	 and	 time	 consuming	 to	 come	 up	with	 such	 combination	 of
instructions	 to	 get	 the	 result	we	 need.	 For	 this	 reason	 the	ARM	 assembler	 has	 pseudo-
instruction	such	as	LDR.	The	LDR	is	not	a	real	instruction	like	MOV	and	ADD	since	you
will	not	find	the	opcode	for	it	in	the	ARM	manual.	When	the	ARM	assembler	assembles	a
program	with	the	LDR	it	replaces	the	LDR	with	a	group	of	instructions	to	do	the	job	of
loading	 a	 fixed	 value	 in	 the	most	 efficient	 way	 possible.	 As	we	 have	 seen	 in	 previous
chapters,	 the	LDR	uses	 =	 sign	 for	 the	 immediate	 value	 instead	 of	 #	 used	 by	 the	MOV
instruction.	 Indeed	 this	 is	 the	way	we	distinguish	between	 them.	Examine	 the	 following
codes	to	see	the	differences	in	syntaxes:																												

MOV					R1,#0x55														;R1	=	0x55

LDR								R2,=0x5555									;R2	=	0x5555

It	needs	to	be	emphasized	that	we	must	use	the	MOV	instruction	for	loading	fixed



value	of	less	than	(or	equal	to)	0xFF	and	use	the	LDR	pseudo-instruction	only	for	loading
values	 larger	 than	0xFF.	This	 is	due	 to	 the	fact	 that	MOV	is	a	real	 instruction	and	 takes
less	 memory	 space	 when	 it	 is	 compiled.	 See	 Chapter	 6	 for	 more	 on	 LDR	 and	 ADR
pseudo-instructions.

Review	Questions

1.							Find	the	contents	of	R3	after	executing	the	following	code:

MOV					R0,#0x04													

MOV					R3,R0,LSR	#2

2.							Find	the	contents	of	R4	after	executing	the	following	code:

LDR								R1,=0xA0F2

MOV					R2,#0x3

MOV					R4,R1,LSR	R2

3.							Find	the	contents	of	R3	after	executing	the	following	code:

LDR								R1,=0xA0F2

MOV					R2,#0x3

MOV					R3,R1,LSL	R2

4.							Find	the	contents	of	R5	after	executing	the	following	code:

SUBS					R0,R0,R0

MOV					R0,#0xAA																											

MOV					R5,R0,ROR	#4

5.							Find	the	contents	of	R0	after	executing	the	following	code:

LDR								R2,=0xA0F2

MOV					R1,0x4

MOV					R0,R2,RRX	R1

6.							Give	the	result	in	R1	for	the	following:

MVN					R1,#0x01,	#2	

7.							Give	the	result	in	R2	for	the	following:										

MVN					R2,#0x02,	#28	





Section	3.4:	Shift	and	Rotate	Instructions	in	ARM	Cortex	(Case	Study)
ARM	Cortex	has	new	 instructions	 specifically	 for	 shift	 and	 rotate.	 In	 this	 section,

we	discuss	these	instructions.	For	full	instruction	set	see	Appendix	A.	For	the	purpose	of
comparison	we	have	copied	this	section	from	Appendix	A.

LSL																								Logical	Shift	Left

LSL										Rd,	Rm,	Rn

Function:	As	each	bit	of	Rm	register	is	shifted	left,	the	MSB	is	removed	and	the	empty
bits	are	filled	with	zeros.	The	number	of	bits	to	be	shifted	left	is	given	by	Rn	and	the	result
is	placed	in	Rd	register.	The	LSL	does	not	updates	the	flags.

Example	1:

LDR								R2,=0x00000010

LSL										R0,R2,#8		;R0=R2	is	shifted	left	8	times

																																				;now,	R0=	0x00001000,	flags	not	updated

Example	2:

LDR								R0,=0x00000018

MOV					R1,	#12

LSL										R2,R0,R1			;R2=R0	is	shifted	left	R1	number	of	times

																					;now,	R2=	0x000018000,	flags	not	updated

Example	3:

LDR								R0,=0x0000FF18

MOV					R1,	#16

LSL										R2,R0,R1		;R2=R0	is	shifted	left	R1	number	of	times

			;now,	R2=	0xFF180000,	flags	not	updated

LSLS																					Logical	Shift	Left	(update	the	flags)

LSLS							Rd,	Rm,	Rn

Function:											As	each	bit	of	Rm	register	is	shifted	left,	the	MSB	is	copied	to	C	flag	and
the	empty	bits	are	filled	with	zeros.	The	number	of	bits	to	be	shifted	left	is	given	by	Rn
and	the	result	is	placed	in	Rd	register.	The	LSLS	updates	the	flags.

Example	1:

LDR								R2,=0x00000010

LSLS							R0,R2,#8														;R0=R2	is	shifted	left	8	times



																																																;now,	R0=	0x00001000,	C=0,	N=0,	Z=0

Example	2:

LDR								R0,=0x00000018

MOV					R1,	#12

LSLS							R2,R0,R1		;R2=R0	is	shifted	left	R1	number	of	times

																																			;now,	R2=	0x000018000,	C=0,	N=0,	Z=0

Example	3:

LDR								R0,=0x000FFF18

MOV					R1,	#16

LSLS							R2,R0,R1		;R2=R0	is	shifted	left	R1	number	of	times

																			;now,	R2=	0xFF180000,	C=1,	Z=0,	N=0

The	logical	shift	left	is	used	for	shifting	unsigned	numbers.	LSLS	essentially	multiplies
Rm	by	a	power	of	2	after	each	bit	is	shifted.

LSR																							Logical	Shift	Right

LSR									Rd,	Rm,	Rn

Function:											As	each	bit	of	Rm	register	is	shifted	right,	the	LSB	is	removed	and	the
empty	bits	are	filled	with	zeros.	The	number	of	bits	to	be	shifted	left	is	given	by	Rn	and
the	result	is	placed	in	Rd	register.		The	LSR	does	not	update	the	flags.

Example	1:

LDR								R2,=0x00001000

LSR									R0,R2,#8			;R0=R2	is	shifted	right	8	times

				;now,	R0=	0x00000010,	C=0

Example	2:

LDR								R0,=0x000018000

MOV					R1,	#12

LSR									R2,R0,R1		;R2=R0	is	shifted	right	R1	number	of	times

																																			;now,	R2=	0x00000018,	C=0

Example	3:

LDR								R0,=0x7F180000

MOV					R1,	#16



LSR									R2,R0,R1		;R2=R0	is	shifted	right	R1	number	of	times

																																			;now,	R2=0x00007F18,	C=0

The	logical	shift	right	is	used	for	shifting	unsigned	numbers.	LSR	essentially	divides	Rm
by	a	power	of	2	after	each	bit	is	shifted.

LSRS																					Logical	Shift	Right	(update	the	flags)

LSRS							Rd,	Rm,	Rn

Function:											As	each	bit	of	Rm	register	is	shifted	right,	the	LSB	is	copied	to	C	flag
and	the	empty	bits	are	filled	with	zeros.	The	number	of	bits	to	be	shifted	left	is	given	by
Rn	and	the	result	is	placed	in	Rd	register.	The	LSRS	updates	the	flags.

Example	1:

LDR								R2,=0x00001FFF

LSRS							R0,R2,#8			;R0=R2	is	shifted	right	8	times

																				;now,	R0=	0x0000001F,	C=1,	N=0,	Z=0

Example	2:

LDR								R0,=0x00000018

MOV					R1,	#12

LSRS							R2,R0,R1				;R2=R0	is	shifted	right	R1	number	of	times

					;now,	R2=	0x000000000,	C=0,	N=0,	Z=1,

Example	3:

LDR								R0,=0x000FFF18

MOV					R1,	#16

LSRS							R2,R0,R1				;R2=R0	is	shifted	right	R1	number	of	times

					;now,	R2=	0x0000000F,	C=1,	Z=0,N=0

The	 logical	 shift	 right	 is	 used	 for	 shifting	 unsigned	 numbers.	 LSRS	 essentially
divides	Rm	by	a	power	of	2	after	each	bit	is	shifted.

ROR																						Rotate	Right

ROR							Rd,Rm,Rn												;Rd=rotate	Rm	right	Rn	bit	positions

Function:											As	each	bit	of	Rm	register	is	shifted	from	left	to	right,	they	exit	from	the
end	(LSB)	and	entered	from	left	end	(MSB).	The	number	of	bits	to	be	rotated	right	is
given	by	Rn	and	the	result	is	placed	in	Rd	register.	The	ROR	does	not	update	the	flags.



Example	1:

LDR								R2,=0x00000010

ROR							R0,R2,#8														;R0=R2	is	rotated	right	8	times

																																																;now,	R0	=	0x10000000,	C=0

Example	2:

LDR								R0,=0x00000018

MOV					R1,	#12

ROR							R2,R0,R1			;R2=R0	is	rotated	right	R1	number	of	times

																																					;now,	R2	=	0x01800000,	C=0

Example	3:

LDR								R0,=0x0000FF18

MOV					R1,	#16

ROR							R2,R0,R1			;R2=R0	is	rotated	right	R1	number	of	times

																				;now,	R2	=	0xFF180000,	C=0

RORS																			Rotate	Right	(update	the	flags)

RORS					Rd,Rm,Rn												;Rd=rotate	Rm	right	Rn	bit	positions

Function:											As	each	bit	of	Rm	register	shifts	from	left	to	right,	they	exit	from	the
right	end	(LSB)	and	enter	from	the	left	end	(MSB).	In	addition	as	each	bit	exits	the	LSB,	a
copy	of	it	is	given	to	C	flag.	The	number	of	bits	to	be	rotated	right	is	given	by	Rn	and	the
result	is	placed	in	Rd	register.	The	RORS	updates	the	flags.

Example	1:

LDR								R2,=0x00000010

RORS					R0,R2,#8			;R0=R2	is	rotated	right	8	times

																																				;now,	R0=	0x01000000,	C=0,	N=0,	Z=0

Example	2:

LDR								R0,=0x00000018

MOV					R1,	#12

RORS					R2,R0,R1			;R2=R0	is	rotated	right	R1	number	of	times

																																				;now,	R2=	0x01800000,	C=0,	N=0,	Z=0



Example	3:

LDR								R0,=0x0000FF18

MOV					R1,	#16

RORS					R2,R0,R1			;R2=R0	is	rotated	right	R1	number	of	times

																					;now,	R2=	0xFF180000,	C=1,	N=0,	Z=0

RRX																						Rotate	Right	with	extend

RRX								Rd,Rm																			;Rd=rotate	Rm	right	1	bit	position

Function:	Each	bit	of	Rm	register	is	shifted	from	left	to	right	one	bit.	The	RRX	does	not
update	the	flags.

Example:

LDR								R2,=0x00000002

RRX								R0,R2					;R0=R2	is	shifted	right	one	bit

;now,	R0=0x00000001

RRXS																				Rotate	Right	with	extend	(update	the	flags)

RRXS						Rd,Rm			;Rd=rotate	Rm	right	1	bit	position

Function:											Each	bit	of	Rm	register	is	shifted	from	left	to	right	one	bit.	The	RRXS
updates	the	flags.

Example	1:

LDR								R2,=0x00000002

RRXS						R0,R2					;R0=R2	is	shifted	right	one	bit

;now,	R0=0x00000001

Review	Questions

1.							True	or	false.	ARM	Cortex	has	its	own	instruction	for	rotate	and	shift.

2.							Find	the	contents	of	R3	after	executing	the	following	code:

MOV					R1,#0x08

ROR							R2,R1,#2



3.							Find	the	contents	of	R4	after	executing	the	following	code:

MOV					R2,#0x3

LSL										R5,R3,#2





Section	3.5:	BCD	and	ASCII	Conversion
This	section	covers	binary,	BCD,	and	ASCII	conversions	with	some	examples.

BCD	number	system

BCD	stands	for	binary	coded	decimal.	BCD	is	needed	because	we	use	the	digits	0	to
9	for	numbers	in	everyday	life.	BCD	system	is	widely	used	in	real-time	clock	(RTC)	of	the
embedded	systems.	Binary	representation	of	0	to	9	is	called	BCD.	In	computer	literature
one	encounters	two	terms	for	BCD	numbers:	(1)	unpacked	BCD,	and	(2)	packed	BCD.

Digit BCD

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

Table	3-9:	BCD	Codes

Unpacked	BCD

In	unpacked	BCD,	the	lower	4	bits	of	the	number	represent	the	BCD	number	and	the
rest	of	the	bits	are	0.		For	example,	“0000	1001”	and	“0000	0101”	are	unpacked	BCD	for
9	and	5,	respectively.		In	the	case	of	unpacked	BCD	it	takes	1	byte	of	memory	location	or
a	register	of	8	bits	to	hold	the	number.

Packed	BCD

In	 the	 case	of	packed	BCD,	 a	 single	byte	has	 two	BCD	numbers	 in	 it,	 one	 in	 the
lower	4	bits	and	one	in	the	upper	4	bits.	For	example,	“0101	1001”	is	packed	BCD	for	59.
It	takes	only	1	byte	of	memory	to	store	the	packed	BCD	operands.	This	is	one	reason	to
use	packed	BCD	since	it	is	twice	as	efficient	in	storing	data.

ASCII	numbers

In	ASCII	keyboards,	when	key	“0”	is	pressed,	“011	0000”	(0x30)	is	provided	to	the
computer.	In	the	same	way,	0x31	(011	0001)	is	provided	for	key	“1”,	and	so	on,	as	shown



in	the	following	list:

Key ASCII Binary(hex) BCD	(unpacked)

0 30 011	0000 0000	0000

1 31			 011	0001 0000	0001

2 32 011	0010 0000	0010

3 33 011	0011 0000	0011

4 34 011	0100 0000	0100

5 45 011	0101 0000	0101

6 36 011	0110 0000	0110

7 37 011	0111 0000	0111

8 38 011	1000 0000	1000

9 39 011	1001 0000	1001

It	must	 be	 noted	 that	 although	ASCII	 is	 standard	 in	 the	United	 States	 (and	many
other	 countries),	 BCD	 numbers	 have	 universal	 application.	 Now	 since	 the	 keyboard,
printers,	and	monitors	are	all	in	ASCII,	how	does	data	get	converted	from	ASCII	to	BCD,
and	vice	versa?	These	are	the	subjects	covered	next.

ASCII	to	unpacked	BCD	conversion

To	convert	ASCII	data	to	unpacked	BCD,	the	programmer	must	get	rid	of	the	tagged
“011”	 in	 the	upper	4	bits	of	 the	ASCII.	To	do	 that,	each	ASCII	number	 is	ANDed	with
“0000	1111”	(0x0F).															

ASCII	to	packed	BCD	conversion

To	convert	ASCII	to	packed	BCD,	it	is	first	converted	to	unpacked	BCD	(to	get	rid
of	the	3)	and	then	combined	to	make	packed	BCD.	For	example,	for	2	and	7	the	keyboard
gives	0x32	and	0x37,	respectively.	The	goal	is	to	produce	0x27	or	“0010	0111”,	which	is
called	packed	BCD,	as	discussed	earlier.	This	process	is	illustrated	in	detail	below.

Key ASCII Unpacked	BCD Packed	BCD						

2 32 00000010 	

7 37			 00000111 00100111	(0x27)

	

MOV					R1,#0x37														;R1	=	0x37



MOV					R2,#0x32														;R2	=	0x32

AND							R1,R1,#0x0F							;mask	3	to	get	unpacked	BCD

AND							R2,R2,#0x0F							;mask	3	to	get	unpacked	BCD

MOV					R3,R2,LSL	#4							;shift	R2	4	bits	to	left	to	get	R3	=	0x20

ORR							R4,R3,R1														;OR	them	to	get	packed	BCD,	R4	=	0x27

Packed	BCD	to	ASCII	conversion

For	data	 to	be	displayed	on	 the	monitor	or	be	printed	by	 the	printer,	 it	must	be	 in
ASCII	 format.	 Conversion	 from	 packed	 BCD	 to	 ASCII	 is	 discussed	 next.	 To	 convert
packed	BCD	to	ASCII,	it	must	first	be	converted	to	unpacked	and	then	the	unpacked	BCD
is	 tagged	 with	 011	 0000	 (0x30).	 The	 following	 shows	 the	 process	 of	 converting	 from
packed	BCD	to	ASCII.	

Packed	BCD Unpacked	BCD ASCII

0x29 0x02	&	0x09 0x32	&	0x39

0010	1001 0000	0010	&	0000	1001				 011	0010	&	011	1001

	

																MOV					R0,#0x29

AND							R1,R0,#0x0F							;mask	upper	four	bits

ORR							R1,R1,#0x30							;combine	with	30	to	get	ASCII

MOV					R2,R0,LSR	#04				;shift	right	4	bits	to	get	unpacked	BCD

ORR							R2,R2,#0x30							;combine	with	30	to	get	ASCII

Review	Questions

1.							For	the	following	decimal	numbers,	give	the	packed	BCD	and	unpacked	BCD
representations	in	binary

(a)	15				(b)	99

2.							For	the	following	packed	BCD	numbers,	give	the	decimal	and	unpacked	BCD
representations.

(a)	0x41															(b)	0x09

3.							Repeat	question	2	for	ASCII.



Problems
Section	3.1:	Arithmetic	Instructions

1.							Find	C	and	Z	flags	for	each	of	the	following.	Also	indicate	the	result	of	the
addition	and	where	the	result	is	saved.

(a)

MOV					R1,#0x3F	

MOV					R2,#0x45

ADDS					R3,R1,R2

(b)									

LDR								R0,=0x95999999

LDR								R1,=0x94FFFF58

ADDS					R1,R1,R0

	

(c)

LDR									R0,=0xFFFFFFFF

ADDS					R0,R0,#1

	

(d)

LDR								R2,=0x00000001

LDR								R1,=0xFFFFFFFF

ADDS					R0,R1,R2

ADCS					R0,R0,#0

(e)									

LDR								R0,=0xFFFFFFFE

ADDS					R0,R0,#2

ADC							R1,R0,#0x0

	

	

2.							State	the	three	steps	involved	in	a	SUB	and	show	the	steps	for	the	following	data.	

(a)		0x23	–	0x12		(b)		0x43	–	0x51		(c)		0x99	–	0x99

Section	3.2:	Logic	Instructions

3.							Assume	that	the	following	registers	contain	these	hex	contents:	R0	=	0xF000,	R1	=
0x3456,	and	R2	=	0xE390.		Perform	the	following	operations.		Indicate	the	result
and	the	register	where	it	is	stored.		

Note:	the	operations	are	independent	of	each	other.

(a)	AND	R3,R2,R0					 (b)	ORR	R3,R2,R1			

(c)	EOR	R0,R0,#0x76 (d)	AND	R3,R2,R2

(e)	EOR	R0,R0,R0 (f)	ORR	R3,R0,R2

(g)	AND		R3,R0,#0xFF	 (h)	ORR		R3,R0,#0x99

(i)	EOR		R3,R1,R0	 (j)	EOR	R3,R1,R1



4.							Give	the	value	in	R2	after	the	following	code	is	executed:

MOV					R0,#0xF0

MOV					R1,#0x55

BIC									R2,R1,R0

5.							Give	the	value	in	R2	after	the	following	code	is	executed:

LDR								R1,=0x55555555

MVN					R0,#0																																				

EOR								R2,R1,R0																													

Section	3.3:	Rotate	and	Barrel	Shifter

6.							Assuming	C	=	0,	what	is	the	value	of	R1	after	the	following?

MOV					R1,#0x25

MOVS		R1,R1,ROR	#4

7.							Assuming	C	=	0,	what	are	the	values	of	R0	and	C	after	the	following?

LDR			R0,=0x3FA2

MOV			R2,#8

MOVS		R0,R0,ROR	R2

8.							Assuming	C	=	0	what	is	the	value	of	R2	and	C	after	the	following?

MOV			R2,#0x55

																MOVS		R2,R2,RRX

9.							Assuming	C	=	0	what	is	the	value	of	R1	after	the	following?

MOV			R1,#0xFF

MOV			R3,#5

MOVS			R1,R1,	ROR	R3

10.			Give	the	register	value	for	each	of	the	following	instructions	after	it	is	executed.

a)	MOV	R1,#0x88,#4 b)	MOV	R0,#0x22,#22

c)	MOV	R2,#0x77,#8 d)	MOV	R4,#0x5F,#28

e)	MOV	R6,#0x88,#22 f)	MOV	R5,#0x8F,#16

g)	MOV	R7,#0xF0,#20 h)	MOV	R1,#0x33,#28

11.			Give	the	register	value	for	each	of	the	following	instructions	after	it	is	executed.

a)	MVN	R2,#0x1 b)	MVN	R2,#0xAA,#20



c)	MVN	R1,0x55,#4 d)	MVN	R0,#0x66,#28

e)	MVN	R1,#0x80,#24 f)	MVN	R6,#0x10,#20	

g)	MVN	R7,#0xF0,#24 h)	MVN	R4,#0x99,#4

12.			Find	the	contents	of	registers	and	C	flag	after	executing	each	of	the	following
codes:

a)											

MOV	R0,#0x04	

MOVS	R1,R0,LSR	#2

MOVS	R3,R0,LSR	R1

b)

LDR	R1,=0xA0F2

MOV	R2,#0x3

MOVS	R3,R1,LSL	R2

	

c)											

LDR	R1,=0xB085

MOV	R2,#3

MOVS	R4,R1,LSR	R2

	

13.			Find	the	contents	of	registers	and	C	flag	after	executing	each	of	the	following
codes:

a)											

SUBS	R2,R2,R2		

MOV	R0,#0xAA

MOVS	R1,R0,ROR	#4

b)											

MOV	R2,#0xAA,#4									

MOV	R0,#1

MOVS	R1,R2,ROR	R0

	

c)											

LDR				R1,=0x1234

MOV		R2,#0x010,#2

MOVS	R1,R0,ROR	R2

	

d)											

MOV			R0,#0xAA

MOVS	R1,R0,RRX

	

14.			Using	MOV	instruction,	show	how	you	rotate	left	the	fixed	value	of	0x33	total	of
a)	4,	b)	8,	and	c)	12	times.	Also	give	the	value	in	the	register	after	the	rotation.

Section	3.5:	BCD	and	ASCII	Conversion

15.			Write	a	program	to	convert	0x76	from	packed	BCD	number	to	ASCII.	Place	the
ASCII	codes	into	R1	and	R2.

16.			For	3	and	2	the	keyboard	gives	0x33	and	0x32,	respectively.	Write	a	program	to
convert	0x33	and	0x32	to	packed	BCD	and	store	the	result	in	R2.



Answers	to	Review	Questions
Section	3.1:	Arithmetic	Instructions

1.							The	ADDS	instruction	updates	the	flag	bits	while	ADD	does	not	do	that.

2.							Rd	=	Rn	+	Op2	+	C

3.							0x4F	+	0xB1	=	0x100,	since	it	is	a	byte	addition	and	result	is	less	than	32-bit	the	C
=	0	and	Z	=	0.

4.							0x4F	+	0xFFFFFFB1	=	00000000,	since	it	is	a	word	addition	and	result	is	greater
than	32-bit,	the	C	=	1	and	Z	=	1.

5.								

		0x43 0100	0011					 	 00000000000000000000000001000011

–0x05 0000	0101 2’s	complement	= +11111111111111111111111111111011

0x3E 	 	 	1		00000000000000000000000000111110

C	=	1;	therefore,	the	result	is	positive

6.							R2	=	R2	–	R3	–	C		+	1	=	0x95	–	0x4F	–	1	+	1	=	0x46

7.							R2

8.							R2	=	1

Section	3.2:	Logic	Instructions

1.								(a)	0x4202										(b)	0xCFFF											(c)	0x8DFD

2.							The	operand	will	remain	unchanged;	all	zeros	

3.							All	ones

4.							All	zeros

5.							ORR		R7,R7,#0x10													;R7	=	R7	ORed	0001	0000

6.							AND		R5,R5,#0x8														;R5	=	R5	ORed	0000	1000

Section	3.3:	Rotate	and	Barrel	Shifter	Operation

1.							R3	=	1

2.							R4	=	0x0000141E

3.							R3	=	0x00050790

4.							R5	=	0xA000000A

5.							R0	=	0x00005079

6.							0xBFFFFFFF

7.							0xFFFFFFDF



Section	3.4:	Shift	and	Rotate	Instructions	in	ARM	Cortex

1.							True

2.							0x01

3.							0x0C

Section	3.5:	BCD	and	ASCII	Conversion

1.							(a)	15	=	0001	0101	packed	BCD	=	0000	0001	0000	0101	unpacked	BCD

(b)	99	=	1001	1001	packed	BCD	=	0000	1001	0000	1001	unpacked	BCD

2.								(a)	0x41	=	0000	0100	0000	0001	unpacked	BCD	=	41	in	decimal

(b)	0x09	=	0000	0000	0000	1001	unpacked	BCD	=	9	in	decimal

3.							(a)	0x34,0x31																																				

(b)	0x30,0x39



	





Chapter	4:	Branch,	Call,	and	Looping	in	ARM
In	 the	 sequence	 of	 instructions	 to	 be	 executed,	 it	 is	 often	 necessary	 to	 transfer

program	control	to	a	different	location.	(e.g.	when	a	function	is	called,	execution	of	a	loop
is	repeated,	or	an	instruction	executes	conditionally)	There	are	many	instructions	in	ARM
to	 achieve	 this.	 This	 chapter	 covers	 the	 control	 transfer	 instructions	 available	 in	 ARM
Assembly	 language.	 In	Section	4.1,	we	discuss	 instructions	used	 for	 looping,	 as	well	 as
instructions	for	conditional	and	unconditional	branches	(jumps).	In	the	second	section,	we
examine	 the	 instructions	 associated	 with	 calling	 subroutine.	 In	 Section	 4.3,	 instruction
pipelining	of	the	ARM	is	examined.	Instruction	timing	and	time	delay	subroutines	are	also
discussed	 in	 Section	 4.3.	 In	 Section	 4.4,	 we	 examine	 the	 conditional	 execution	 of	 the
ARM	instructions	which	is	a	unique	feature	of	ARM.





Section	4.1:	Looping	and	Branch	Instructions
In	this	section	we	first	discuss	how	to	perform	a	looping	action	in	ARM	and	then	the

branch	(jump)	instructions,	both	conditional	and	unconditional.

Looping	in	ARM

Repeating	 a	 sequence	of	 instructions	or	 an	operation	 a	 certain	number	of	 times	 is
called	a	 loop.	The	 loop	 is	one	of	 the	most	widely	used	programming	 techniques.	 In	 the
ARM,	there	are	several	ways	to	repeat	an	operation	many	times.	One	way	is	to	repeat	the
operation	over	and	over	until	it	is	finished,	as	shown	below:

MOV					R0,#0																					;R0	=	0

MOV					R1,#9																					;R1	=	9

ADD							R0,R0,R1														;R0	=	R0	+	R1,	add	9	to	R0	(Now	R0	is	0x09)

ADD							R0,R0,R1														;R0	=	R0	+	R1,	add	9	to	R0	(Now	R0	is	0x12)

ADD							R0,R0,R1														;R0	=	R0	+	R1,	add	9	to	R0	(Now	R0	is	0x1B)

ADD							R0,R0,R1														;R0	=	R0	+	R1,	add	9	to	R0	(Now	R0	is	0x24)

ADD							R0,R0,R1														;R0	=	0x2D

ADD							R0,R0,R1														;R0	=	0x36

In	the	above	program,	we	add	0x9	to	R0	six	times.	That	makes	6	×	9	=	54	=	0x36.
One	 problem	with	 the	 above	 program	 is	 that	 too	much	 code	 space	would	 be	 needed	 to
increase	 the	 number	 of	 repetitions	 to	 50	or	 1000.	 	A	much	better	way	 is	 to	 use	 a	 loop.
Next,	we	describe	the	method	to	do	a	loop	in	ARM.

Using	instruction	BNE	for	looping	

The	BNE	(branch	 if	not	equal)	 instruction	uses	 the	zero	 flag	 in	 the	status	 register.
The	BNE	instruction	is	used	as	follows:

BACK					………																				;start	of	the	loop

………																				;body	of	the	loop

………																				;body	of	the	loop

SUBS					Rn,Rn,#1														;Rn	=	Rn	-	1,	set	the	flag	Z	=	1	if	Rn	=	0

BNE								BACK																					;branch	if	Z	=	0	

In	the	last	two	instructions,	the	Rn	(e.g.	R2	or	R3)	is	decremented;	if	it	is	not	zero,	it
branches	(jumps)	back	to	the	target	address	referred	to	by	the	label.	Prior	to	the	start	of	the
loop,	the	Rn	is	loaded	with	the	counter	value	for	the	number	of	repetitions.	Notice	that	the
BNE	 instruction	 refers	 to	 the	 Z	 flag	 of	 the	 status	 register	 affected	 by	 the	 previous
instruction,	SUBS.	This	is	shown	in	Example	4-1.	

Example	4-1



Write	a	program	to	(a)	clear	R0,	(b)	add	9	to	R0	a	thousand	times,	then	

(c)	place	the	sum	in	R4.

Use	the	zero	flag	and	BNE	instruction.

Solution:

;–	this	program	adds	value	9	to	the	R0	a	1000	times	–

AREA					EXAMPLE4_1,	CODE,	READONLY

ENTRY

LDR								R2,=1000														;R2	=	1000	(decimal)	for	counter

MOV					R0,#0																					;R0	=	0	(sum)

AGAIN	ADD							R0,R0,#9														;R0	=	R0	+	9	(add	09	to	R1,	R1	=	sum)

SUBS					R2,R2,#1														;R2	=	R2	-	1	and	set	the	flags.	Decrement	counter

BNE								AGAIN																		;repeat	until	COUNT	=	0	(when	Z	=	1)

MOV					R4,R0																					;store	the	sum	in	R4

HERE						B													HERE																						;stay	here

END

	

In	the	program	in	Example 4-1,	register	R2	is	used	as	a	counter.	The	counter	is	first
set	 to	1000.	 In	each	 iteration,	 the	SUBS	instruction	decrements	 the	R2	and	sets	 the	 flag
bits	accordingly.	If	R2	is	not	zero	(Z	=	0),	it	jumps	to	the	target	address	associated	with	the



label	“AGAIN”.	This	looping	action	continues	until	R2	becomes	zero.	After	R2	becomes
zero	(Z	=	1),	it	falls	through	the	loop	and	executes	the	instruction	immediately	below	it,	in
this	case	“MOV	R4,R0”.

It	must	be	emphasized	again	that	we	must	use	SUBS	instead	of	SUB	since	the	SUB
instruction	will	not	change	(update)	the	flags.	Since	we	are	monitoring	the	Z	flag	for	the
loop	 counter	 we	 must	 use	 SUBS	 instruction	 for	 the	 decrementing	 the	 counter.	 As	 we
mentioned	 in	Chapter	3,	many	of	 the	ARM	instructions	have	 the	option	of	affecting	 the
flags.	In	these	instructions	the	default	is	not	to	affect	the	flags.	Therefore	to	make	them	to
effect	 the	 flag	 we	 must	 add	 letter	 S	 to	 the	 instruction.	 That	 means	 SUBS	 and	 ADDS
instructions	 are	 different	 from	 SUB	 and	 ADD,	 as	 far	 as	 the	 flags	 are	 concerned.	 As
another	example	see	Example	4-2.

Example	4-2

Write	a	program	to	place	value	0x55	into	100	bytes	of	RAM	locations.

	

Solution:

AREA					EXAMPLE4_2,	CODE,	READONLY

ENTRY

RAM_ADDR	EQU														0x40000000									;change	the	address	for	your	ARM

	

	MOV				R2,#25																		;counter	(25	times	4	=	100	byte	block	size)

	LDR							R1,=RAM_ADDR															;R1	=	RAM	Address

	LDR							R0,=0x55555555																;R0	=	0x55555555

	

OVER					STR								R0,[R1]																	;send	it	to	RAM

	ADD						R1,R1,#4														;R1	=	R1	+	4	to	increment	pointer

	SUBS				R2,R2,#1														;R2	=	R2	–	1	for	dec.	counter

	BNE							OVER																					;keep	doing	it

HERE						B												HERE					

	END

	

Looping	a	trillion	times	with	loop	inside	a	loop

As	shown	in	Example 4-3,	the	maximum	count	is	232-1.	What	happens	if	we	want	to
repeat	an	action	more	times	than	that?		To	do	that,	we	use	a	loop	inside	a	loop,	which	is



called	 a	 nested	 loop.	 In	 a	 nested	 loop,	 we	 use	 two	 registers	 to	 hold	 the	 count.	 See
Example 4-3.

Example	4-3

Explain	what	is	the	maximum	number	of	times	that	the	loop	in	Example	4-1	can	be
repeated?	Now,	write	a	program	to	(a)	load	the	R0	register	with	the	value	0x55,	and	(b)
complement	it	16,000,000,000	(16	billion)	times.

	

Solution:

	

Because	Rx	is	a	32-bit	register,	it	can	hold	a	maximum	of	0xFFFFFFFF	(232	–	1	decimal);
therefore,	the	loop	can	be	repeated	a	maximum	of	232	–	1	times.	This	example	shows	how
to	create	a	nesting	loop	to	go	beyond	4	billion	times.	Because	16,000,000,000	is	larger
than	0xFFFFFFFF	(the	maximum	capacity	of	any	R0–R12	registers),	we	use	two	registers
to	hold	the	count.	The	following	code	shows	how	to	use	R2	and	R1	as	a	register	for
counters	in	a	nesting	loop.

	

AREA					EXAMPLE4_3,				CODE,	READONLY

ENTRY

MOV					R0,#0x55														;R0	=	0x55

MOV					R2,#16																		;load	16	into	R2	(outer	loop	count)

L1												LDR								R1,=1000000000																;R1	=	1,000,000,000	(inner	loop	count)

L2												EOR								R0,R0,#0xFF							;complement	R0	(R0	=	R0	Ex-OR	0xFF)

SUBS					R1,R1,#1														;R1	=	R1	–	1,	dec.	R1	(inner	loop)

BNE								L2																												;repeat	it	until	R1	=	0

SUBS					R2,R2,#1														;R2	=	R2	–	1,	dec.	R2	(outer	loop)

BNE								L1																												;repeat	it	until	R2	=	0

HERE						B													HERE																						;stay	here

END

	

In	 this	 program,	R1	 is	 used	 to	 keep	 the	 inner	 loop	 count.	 In	 the	 instruction	 “BNE	L2”,
whenever	 R1	 becomes	 0	 it	 falls	 through	 and	 “SUBS	 R2,R2,#1”	 is	 executed.	 The	 next
instructions	 force	 the	CPU	to	 load	 the	 inner	count	with	1,000,000,000	 if	R2	 is	not	zero,
and	the	inner	loop	starts	again.	This	process	will	continue	until	R2	becomes	zero	and	the
outer	loop	is	finished.	If	you	use	the	Keil	IDE	to	verify	the	operation	of	the	above	program



use	smaller	values	for	counter	to	go	through	the	iterations.	See	Figure	4-1.

	

	

Figure	4-	1:	Flowchart	for	Example	4-3

Other	conditional	Branches

As	we	mentioned	 in	Chapter	 3,	C	 and	Z	 flags	 reflect	 the	 result	 of	 calculation	 on
unsigned	 numbers.	 Table	 4-1	 lists	 available	 conditional	 branches	 for	 unsigned	 numbers
that	use	C	and	Z	flags.	More	details	of	each	 instruction	are	provided	 in	Appendix	A.	In
Table 4-1	notice	that	the	instructions,	such	as	BEQ	(Branch	if	Z	=	1)	and	BCS	(Branch	if



carry	 set,	 C	 =	 1),	 jump	 only	 if	 a	 certain	 condition	 is	 met.	 Next,	 we	 examine	 some
conditional	branch	 instructions	with	examples.	The	other	conditional	branch	 instructions
associated	with	the	signed	numbers	are	discussed	in	Chapter	5	when	arithmetic	operations
for	signed	numbers	are	discussed.

Instruction 	 Action

BCS/BHS branch	if	carry	set/branch	if	higher	or	same								 Branch	if	C	=	1

BCC/BLO branch	if	carry	clear/branch	lower											 Branch	if	C	=	0

BEQ branch	if	equal Branch	if	Z	=	1

BNE branch	if	not	equal Branch	if	Z	=	0

BLS branch	if	less	or	same Branch	if	Z	=	1	or	C	=	0

BHI branch	if	higher															 Branch	if	Z	=	0	and	C	=	1

Table	4-1:	ARM	Conditional	Branch	Instructions	for	Unsigned	Data

BCC	(branch	if	carry	clear,	branch	if	C	=	0)	

In	 this	 instruction,	 the	carry	 flag	bit	 in	program	status	 registers	 (CPSR)	 is	used	 to
make	the	decision	whether	to	branch.	In	executing	“BCC	label”,	the	processor	looks	at	the
carry	 flag	 to	 see	 if	 it	 is	 cleared	 (C	 =	 0).	 If	 it	 is,	 the	 CPU	 starts	 to	 fetch	 and	 execute
instructions	from	the	address	of	the	label.	If	C	=	1,	 it	will	not	jump	but	will	execute	the
next	instruction	below	BCC.	See	Example	4-4.

Example	4-4

Examine	the	following	code	and	give	the	result	in	registers	R0,	R1,	and	R2.

MOV					R1,#0																					;clear	high	word	(R1	=	0)

MOV					R0,#0																					;clear	low	word	(R0	=	0)

LDR								R2,=0x99999999																;R2	=	0x99999999													

ADDS					R0,R0,R2														;R0	=	R0	+	R2	and	set	the	flags

BCC								L1																												;if	C	=	0,	jump	to	L1	and	add	next	number

ADDS					R1,R1,#1														;ELSE,	increment	(	R1	=	R1	+	1)

L1												ADDS					R0,R0,R2														;R0	=	R0	+	R2	and	set	the	flags

BCC								L2																												;if	C	=	0,	add	next	number

ADDS					R1,R1,#1														;if	C	=	1,	increment

L2												ADDS					R0,R2																					;R0	=	R0	+	R2	and	set	the	flags

BCC								L3																												;if	C	=	0,	add	next	number



ADDS					R1,R1,#1														;C	=	1,	increment

L3												ADDS					R0,R2																					;R0	=	R0	+	R2	and	set	the	flags

BCC								L4																												;if	C	=	0,	add	next	number

ADDS					R1,R1,#1														;if	C	=	1,	and	set	the	flags

L4

	

Solution:

	

This	program	adds	0x99999999	together	four	times.

	 R1	(high	byte) R0	(low	byte)

At	first 0 0

Just	before	L1 0 0x99999999

Just	before	L2 1 0x33333332

Just	before	L3 1 0xCCCCCCCB

Just	before	L4 2 0x66666664

	

Here	is	the	loop	version	of	the	above	program	that	runs	10	times.

	

AREA					EXAMPLE4_4,CODE,	READONLY

ENTRY

MOV					R1,#0																					;clear	high	word	(R1	=	0)

MOV					R0,#0																					;clear	low	word	(R0	=	0)

LDR								R2,=0x99999999																;R2	=	0x99999999

MOV					R3,#10																		;counter

L1												ADDS					R0,R2																					;R0	=	R0	+	R2	and	set	the	flags

BCC								NEXT																					;if	C	=	0,	add	next	number

ADD							R1,R1,#1														;if	C	=	1,	increment	the	upper	word

NEXT					SUBS					R3,R3,#1														;R3	=	R3	-	1	and	set	the	flags

;(Decrement	counter)

BNE								L1																												;next	round	if	Z	=	0



HERE						B													HERE																						;stay	here

END

	

Note	that	there	is	also	a	“BCS	label”	instruction.	In	the	BCS	instruction,	if	C	=	1	it
jumps	 to	 the	 target	 address.	 We	 will	 give	 more	 examples	 of	 these	 instructions	 in	 the
context	of	applications.

Comparison	of	unsigned	numbers

CMP						Rn,Op2																	;compare	Rn	with	Op2	and	set	the	flags

The	CMP	instruction	compares	two	operands	and	changes	the	flags	according	to	the
result	 of	 the	 comparison.	 The	 operands	 themselves	 remain	 unchanged.	 There	 is	 no
destination	 register	 and	 the	 second	 source	 operands	 can	 be	 a	 register	 or	 an	 immediate
value	not	larger	than	0xFF.	It	must	be	emphasized	that	“CMP	Rn,Op2”	instruction	is	really
a	subtract	operation.	Op2	is	subtracted	from	Rn	(Rn	–	Op2)	and	the	result	is	discarded	and
flags	 are	 set	 accordingly.	 The	 contents	 of	 Rn	 and	 Op2	 remain	 unchanged	 after	 the
execution	of	CMP	instruction.	Although	all	the	C,	S,	Z,	and	V	flags	reflect	the	result	of	the
comparison,	only	C	and	Z	are	used	for	unsigned	numbers,	as	outlined	in	Table	4-2.

Instruction C Z

Rn	>	Op2 1 0

Rn	=	Op2 1 1

Rn	<	Op2 0 0

Table	4-	2:	Flag	Settings	for	Compare	(CMP		Rn,	Op2)	of	Unsigned	Data

	Look	at	the	following	case:

LDR								R1,=0x35F											;R1	=	0x35F								

LDR								R2,=0xCCC										;R2	=	0xCCC							

CMP						R1,R2																					;compare	0x35F	with	0xCCC

BCC								OVER																					;branch	if	C	=	0

MOV					R1,#0																					;if	C	=	1,	then	clear	R1

OVER					ADD							R2,R2,#1					;R2	=	R2	+	1	=	0xCCC	+	1	=	0xCCD																							

Figure	4-2	shows	the	diagram	and	the	C	language	version	of	the	code.

Pseudo	code:

		R1	=	0x35F

		R2	=	0xCCC

In	C:

		R1	=	0x35F;

		R2	=	0xCCC;

	



	

		IF	(R1	>=	R2)	THEN

R1	=	0

		ENDIF

	

		R2	=	R2	+	1

		if	(R1	>=	R2)

		{

R1	=	0;

		}

	

		R2	=	R2	+	1;

Figure	4-	2:	Flowchart	of	if	Instruction

In	the	above	program,	R1	is	less	than	the	R2	(0x35F	<	0xCCC);	therefore,	C	=	0	and
BCC	(branch	if	carry	clear)	will	go	to	target	OVER.	In	contrast,	look	at	the	following:

LDR								R1,=0xFFF

LDR								R2,=0x888

CMP						R1,R2																					;compare	0xFFF	with	0x888

BCC								NEXT

ADD							R1,R1,#0x40

NEXT					ADD							R1,R1,#0x25

	 In	 the	above,	R1	 is	greater	 than	R2	 (0xFFF	>	0x888),	which	 sets	C	=	1,	making
“BCC	NEXT”	fall	through	so	that	“ADD	R1,R1,0x40”	is	executed.		

Again,	it	must	be	emphasized	that	in	CMP	instructions,	the	operands	are	unaffected
regardless	of	the	result	of	the	comparison.	Only	the	flags	are	affected.	This	is	despite	the
fact	that	CMP	uses	the	SUB	operation	to	set	or	reset	the	flags.	It	also	may	be	noted	that,
unlike	 other	 arithmetic	 and	 logic	 instructions,	 there	 is	 no	 need	 to	 put	 S	 in	 the	 CMP
instruction	to	update	the	flags.	In	other	words,	the	CMP	instruction	automatically	updates
the	flags.

Program	4-1	uses	the	CMP	instruction	to	search	for	the	highest	byte	in	a	series	of	5
data	bytes.	To	search	for	the	highest	value	the	instruction	“CMP	R1,R3”	works	as	follows,
where	R1	 is	 the	 contents	 of	 the	memory	 location	 brought	 into	 R1	 register	 by	 the	 [R2]
pointer.

a)	If	R1	<	R3,	then	C	=	0	and	R3	becomes	the	basis	of	the	new	comparison.

b)	 If	R1	≥	R3,	 then	C	=	1	and	R1	 is	 the	 larger	of	 the	 two	values	and	 remains	 the
basis	of	comparison.

Program	4-1
Assume	that	there	is	a	class	of	five	people	with	the	following	grades:	69,	87,	96,	45,	and	75.

Find	the	highest	grade.

	



;searching	for	highest	value

COUNT	RN										R0											;COUNT	is	the	new	name	of	R0

MAX						RN										R1											;MAX	is	the	new	name	of	R1

;(MAX	has	the	highest	value)

POINTER														RN										R2											;POINTER	is	the	new	name	of	R2

NEXT					RN										R3											;NEXT	is	the	new	name	of	R3

	

													AREA			PROG_4_1D,	DATA,	READONLY

MYDATA														DCD							69,87,96,45,75

												AREA			PROG_4_1,	CODE,	READONLY

ENTRY	

MOV					COUNT,#5											;COUNT	=	5

MOV					MAX,#0																																;MAX	=	0

LDR								POINTER,=MYDATA							

;POINTER	=	MYDATA	(	address	of	first	data	)

AGAIN		LDR								NEXT,[POINTER]														

;load	contents	of	POINTER	location	to	NEXT

CMP						MAX,NEXT																									

;compare	MAX	and	NEXT

BHS								CTNU																																			

;if	MAX	>	NEXT	branch	to	CTNU

MOV					MAX,NEXT										;MAX	=	NEXT

CTNU				ADD							POINTER,POINTER,#4			

;POINTER=POINTER+4	to	point	to	the	next

SUBS					COUNT,COUNT,#1										;decrement	counter																						

BNE								AGAIN		;branch	AGAIN	if	counter	is	not	zero

	

HERE						B													HERE

END

Program	4-1	searches	through	five	data	items	to	find	the	highest	value.	The	program
has	a	variable	called	“MAX”	that	holds	 the	highest	grade	found	so	far.	One	by	one,	 the
grades	are	compared	 to	Highest.	 If	any	of	 them	 is	higher,	 that	value	 is	placed	 in	MAX.



This	continues	until	all	data	items	are	checked.	A	REPEAT-UNTIL	structure	was	chosen
in	the	program	design.	Figure	4-3	shows	the	flowchart	for	Program	4-1.	This	design	could
be	used	to	code	the	program	in	many	different	languages.

Pseudo	code:

	

Count	=	5

Highest	=	0

	

REPEAT

IF	(Next	>	MAX)

THEN

MAX	=	Next

ENDIF

Increment	pointer

Decrement	Count

UNTIL	Count	=	0

	

;	now	MAX	is	the	Highest

	

	

	

In	C:

	

//In	Keil,	long	is	32-bit	wide

	

unsigned	long	myData[5]=	{69,87,96,45,75};

unsigned	long	count	=	5;

unsigned	long	max	=	0;

unsigned	long	next;

unsigned	long	*pointer	=	myData;

	

do

{

		next	=	*pointer;

	

		if	(max	<	next)



max	=	next;

	

		pointer	++;

		count	—;

}while(count	!=	0);

Figure	4-	3:	Flowchart	and	Pseudocode	for	Program	4-1

Using	 CMP	 followed	 by	 conditional	 branches	 we	 can	 make	 any	 comparison	 on
unsigned	 numbers,	 as	 shown	 in	 Table	 4-3.	 Although	 BCS	 (branch	 carry	 set)	 and	 BCC
(branch	carry	clear)	check	the	carry	flag	and	can	be	used	after	a	compare	instruction,	it	is
recommended	that	BHS	(branch	higher	or	same)	and	BLO	(branch	below)	be	used	for	two
reasons.	One	reason	is	that	assemblers	will	unassemble	BCS	as	BLO,	and	BCC	as	BHS,
which	may	be	confusing	to	beginner	programmers.	Another	reason	is	that	“branch	higher”
and	 “branch	 below”	 are	 easier	 to	 understand	 than	 “branch	 carry	 set”	 and	 “branch	 carry
clear,”	since	it	is	more	immediately	apparent	that	one	number	is	larger	than	another,	than
whether	a	carry	would	be	generated	if	the	two	numbers	were	subtracted.

Instruction 	 Action

BCS/BHS branch	if	carry	set/branch	if	higher	or	same Branch	if	Rn	≥	Op2

BCC/BLO branch	if	carry	clear/branch	lower Branch	if	Rn	<	Op2

BEQ branch	if	equal Branch	if	Rn	=	Op2

BNE branch	if	not	equal Branch	if	Rn	≠	Op2

BLS branch	if	less	or	same Branch	if	Rn	≤	Op2

BHI branch	if	higher															 Branch	if	Rn	>	Op2

Table	4-	3:	ARM	Conditional	Branch	Instructions		for	Unsigned	Data

Division	of	unsigned	numbers	in	ARM

The	older	ARM	family	members	do	not	have	an	instruction	for	division	of	unsigned
numbers	since	it	took	too	many	gates	to	implement	it.	However,	many	of	the	ARM	Cortex
chips	implement	the	divide	instruction.	In	ARMs	with	no	divide	instructions	we	can	use
SUB	 instruction	 to	 perform	 the	 division.	 Program	 4-2	 shows	 an	 example	 of	 unsigned
division	using	subtract	operation.	In	the	program	the	numerator	is	placed	in	a	register	and
the	denominator	is	subtracted	from	it	repeatedly.	The	quotient	is	the	number	of	times	we
subtracted	and	the	remainder	is	in	the	register	upon	completion.	See	Figure	4-4.

Program	4-2:	Division	by	Repeated	Subtractions

AREA			PROG_4_2,	CODE,	READONLY						;Division	by	subtractions

ENTRY		



LDR								R0,=2012														;R0	=	2012	(numerator	)

;it	will	contain	remainder

MOV					R1,#10																		;R1	=	10	(	denominator	)

MOV					R2,#0																					;R2	=	0	(	quotient	)

L1												CMP						R0,R1																					;Compare	R0	with	R1	to	see	if	less	than	10

BLO								FINISH																		;if	R0	<	R1	jump	to	finish

SUB								R0,R0,R1														;R0	=	R0	-	R1	(division	by	subtraction)

ADD							R2,R2,#1														;R2	=	R2	+	1	(quotient	is	incremented)

B													L1																												;goto	L1	(B	is	discussed	in	the	next	section)

FINISH	B															FINISH	

	

Pseudo	code:

	

NUM	=	2012

DENOM	=	10

	

WHILE	NUM	>=	DENOM

Subtract	DENOM	from	NUM

Increment	QUOTIENT

END	WHILE

	

	

In	C:

	

R0	=	2012;

R1	=	10;

	

while	(R0	>=	R1)

{

R0	=	R0	-	R1;

R2	=	R2	+	1;

}

Figure	4-	4:	Flowchart	and	Pseudo-code	for	Program	4-2



TST	(Test)

TST									Rn,Op2																	;Rn	AND	with	Op2	and	flag	bits	are	updated

The	TST	instruction	is	used	to	test	the	contents	of	register	to	see	if	any	bit	is	set	to
HIGH.	 After	 the	 operands	 are	 ANDed	 together	 the	 flags	 are	 updated.	 After	 the	 TST
instruction	if	result	 is	zero,	then	Z	flag	is	raised	and	one	can	use	BEQ	(branch	equal)	to
make	decision.	Look	at	the	following	example:

MOV					R0,#0x04														;R0=00000100	in	binary

LDR								R1,=myport								;port	address

OVER					LDRB						R2,[R1]																	;load	R2	from	myport

TST									R2,R0																					;is	bit	2	HIGH?

BEQ								OVER																					;keep	checking

In	TST,	like	other	logic	or	arithmetic	data	processing	instructions,	the	Op2	can	be	an
immediate	value	of	less	than	0xFF.	Look	at	the	following	example:

LDR								R1,=myport								;port	address

OVER					LDRB						R2,[R1]																	;load	R2	from	myport

TST									R2,#0x04														;is	bit	2	HIGH?

BEQ								OVER																					;keep	checking

See	Example	4-5.

Example	4-5

Assume	address	location	0x200000	is	assigned	to	an	input	port	address	and	connected	to	8
DIP	switches.	Write	a	simple	short	program	to	check	the	PORT	and	whenever	both	pins	4
or	6	are	LOW,	R4	register	is	incremented.

	

Solution:

MYPORT														EQU							0x200000

MOV					R0,#2_01010000															;R0=0x50	(01010000	in	binary)

LDR								R1,=MYPORT					;R1	=	port	address

OVER					LDRB						R2,[R1]																	;get	a	byte	from	PORT	and	place	it	in	R2

TST									R2,R0																					;are	bits	4	and	6	LOW?

BNE								OVER																					;keep	checking

ADD							R4,R4,#1													

	



TEQ	(test	equal)

TEQ								Rn,Op2																	;Rn	EX-ORed	with	Op2	and	flag	bits	are	set

The	TEQ	instruction	is	used	to	test	to	see	if	the	contents	of	two	registers	are	equal.
After	 the	 source	 operands	 are	 Ex-ORed	 together	 the	 flag	 bits	 are	 set	 according	 to	 the
result.	After	the	TEQ	instruction	if	result	is	0,	then	Z	flag	is	raised	and	one	can	use	BEQ
(branch	 zero)	 to	make	 decision.	Recall	 that	 if	we	Exclusive-OR	 a	 value	with	 itself,	 the
result	 is	 zero.	Look	 at	 the	 following	 example	 for	 checking	 the	 temperature	of	 100	on	 a
given	port:

TEMP				EQU							100

MOV					R0,#TEMP											;R0	=	Temp

LDR								R1,=myport								;port	address

OVER					LDRB						R2,[R1]																	;load	R2	from	myport

TEQ								R2,R0																					;is	it	100?

BNE								OVER																					;keep	checking

Unconditional	branch	(jump)	instruction

The	unconditional	branch	is	a	jump	in	which	control	is	transferred	unconditionally
to	the	target	 location.	In	the	ARM	there	are	two	unconditional	branches:	B	(branch)	and
BX	(branch	and	exchange).	This	is	discussed	next.

B	(Branch)

B	(branch)	is	an	unconditional	jump	that	can	go	to	any	memory	location	in	the	32M
byte	address	space	of	the	ARM.	Another	syntax	for	B	instruction	is	BAL	(branch	always).	

B	has	different	usages	like	implementing	if/else,	while,	and	for	instructions.	In	the
following	code	you	see	an	example	of	implementing	the	if/else	instruction:

CMP				R1,R2

BHS				L1

MOV				R3,#2

B						OVER

L1					MOV				R3,#5

OVER

//in	C

if(R1	<	R2)

{

R3	=	2;

}

else

{

R3	=	5;

}

In	the	above	code,	R3	is	initialized	with	2	when	R1	is	lower	than	R2.	Otherwise,	it	is
initialized	with	5.



As	an	example	of	implementing	the	while	instruction	see	the	following	program.	It
calculates	the	sum	of	numbers	between	1	and	5:

MOV				R1,#1

MOV				R2,#0

L1					CMP				R1,#5

BHI				L2

ADD				R2,R2,R1

ADD				R1,R1,#1

B						L1

L2					MOV				R3,#5

	

//in	C

unsigned	long	R1	=	1;

unsigned	long	R2	=	0;

while	(R1	<=	5)

{

		R2	=	R2	+	R1;

		R1	=	R1	+	1;

}

The	for	 instruction	can	be	implemented	the	same	way	as	the	while	instruction.	For
example,	the	above	assembly	program	can	be	considered	as	a	for	loop.

In	cases	where	there	is	no	operating	system	or	monitor	program,	we	use	the	Branch
to	 itself	 in	order	 to	keep	 the	microcontroller	busy.	A	simple	way	of	doing	 that	 is	shown
below:

HERE						B													HERE						;stay	here

Another	syntax	for	the	B	instruction	is	BAL	(branch	always)	as	shown	below:

HERE						BAL								HERE						;stay	here

	

Since	ARM	instruction	is	32-bit,	8	bits	are	used	for	the	opcode,	and	the	other	24	bits
represent	the	address	of	the	target	location.	The	24-bit	target	address	is	shifted	left	twice
and	that	allows	a	jump	to	–32M	to	+32M	bytes	of	memory	locations	from	the	address	of
current	instruction.	Next,	we	explain	the	reason	for	this.

All	branches	are	short	branches	(jumps)

It	must	be	noted	that	all	branch	instructions	(conditional	and	unconditional)	are	short
jumps,	meaning	the	address	of	the	target	must	be	within	32M	bytes	of	the	program	counter
(PC).	 That	 means	 the	 short	 jumps	 cannot	 cover	 the	 entire	 address	 space	 of	 4G	 bytes
(0x00000000	to	0xFFFFFFFF).

Calculating	the	short	branch	address

All	conditional	branches	such	as	BCC,	BEQ,	and	BNE	are	short	branches.	This	 is
due	to	the	fact	that	the	ARM	instructions	are	32-bit	and	some	of	the	32-bit	must	be	used
for	opcode	and	therefore	it	cannot	cover	the	entire	4G	bytes	address	space	of	ARM.	In	the
branch	instruction	the	opcode	is	8	bits	and	the	relative	address	is	24	bits.	See	Figure	4-5.
The	target	address	is	relative	to	the	value	of	the	program	counter.	If	the	relative	address	is
positive,	 the	 jump	 is	 forward.	 If	 the	 relative	 address	 is	 negative,	 then	 the	 jump	 is
backwards.	 The	 relative	 address	 can	 cover	memory	 space	 of	 –32Mbytes	 to	 +32Mbytes



from	current	location	of	program	counter.	The	reason	for	32MB	is	the	fact	that	24	bits	are
shifted	left	twice	(multiplied	by	4)	by	the	ARM	CPU	automatically.	That	gives	us	26	bits.
Now,	 since	 one	 bit	 is	 used	 for	 positive	 or	 negative	 sign,	 we	 have	 only	 25	 bits	 for
magnitude.	The	25	bits	magnitude	gives	us	32M	bytes	(225	=	32M)	in	each	direction.	That
is	–32Mbytes	if	 it	 is	backward	and	+32MB	if	 it	 is	forward	jump.	Therefore,	 to	calculate
the	target	address,	the	relative	address	is	shifted	left	twice	and	added	to	the	address of	the
next	instruction	to	be	fetched	[target	address	=	relative	address	shifted	left	twice	+	address
of	 the	 next	 instruction	 to	 be	 fetched].	 It	 must	 be	 noted	 that	 the	 next	 instruction	 to	 be
fetched	 is	 two	 instructions	 below	 the	 current	 branch	 instruction.	 The	 reason	 is	 the
instruction	right	below	the	branch	is	already	in	the	pipeline.	See	Figure 4-5.

Figure	4-	5:	B	(Branch)	Instruction

You	might	 ask	why	we	add	 the	 relative	address	 to	 the	address	of	 two	 instructions
below	the	current	instruction.	(why	don’t	we	add	the	relative	address	to	the	address	of	the
instruction	 right	below	 the	current	 instruction	as	 it	 is	 in	other	CPUs).	This	 is	due	 to	 the
pipeline	issues	as	we	will	see	in	next	section	and	Chapter	7.

Now,	 to	 calculate	 the	 target	 address	 of	 the	 branch	 we	 add	 address	 of	 the	 next
instruction	to	be	fetched	to	the	offset	shifted	left	 twice	(multiplied	by	4).	The	reason	for
shifting	 left	 twice	 is	 to	make	 sure	 it	 is	 word	 aligned.	 Given	 the	 fact	 that	 all	 the	ARM
instructions	are	4-byte	 (word)	 long	and	are	word	aligned,	with	225	=	32M	bytes	address
space	for	the	forward	and	backward	jumps	the	target	address	of	jump	(branch)	can	be	up
to	8M	instructions	(32MBytes	/	4byes	=	8M	instructions)	from	the	current	 instruction	in
each	direction.	Although	this	does	not	cover	the	entire	1G	instructions	(4GBytes	/4byes	=
1G	instructions)	of	ARM	memory	space,	it	is	more	than	adequate	for	many	applications.
See	Example 4-6.

Example	4-6

In	ARM7,	the	next	instruction	to	be	fetched	is	2	instructions	below	the	current	executing
instruction.	Using	the	following	list	file	verify	the	jump	forward	address	calculation.

	



LINE									ADDRESS																	Machine																		Mnemonic															Operand

1														00000000																																																																AREA							EXAMPLE_4_6,	CODE,	READONLY

2														00000000																																																																ENTRY

3														00000000																E3A01015																																MOV								R1,	#0x15																;R1	=	0x15

4														00000004																EA000002																																B														THERE

5														00000008																E3A01025																																MOV								R1,	#0x25																;R1	=	0x25

6														0000000C																E3A02035																																MOV								R2,	#0x35																;R2	=	0x35

7														00000010																E3A03045																																MOV								R3,	#0x45																;R3	=	0x45

8														00000014																E3A04055																THERE					MOV								R4,	#0x55																;R4	=	0x55

9														00000018																EAFFFFFE																																HERE							B														HERE

10																																																																																												END

	

Solution:

First	notice	that	the	B	instruction	in	line	4	jumps	forward.	To	calculate	the	target	address,
the	relative	address	(offset)	is	shifted	left	twice	and	added	to	the	PC of	the	next	instruction
to	be	fetched.	The	position	of	the	next	instruction	to	be	fetched	is	2	instructions	below	the
current	instruction.	Recall	that	each	instruction	of	ARM	takes	4	bytes.	So	the	next
instruction	to	be	fetched	is	2	×	4	bytes	=	8	bytes	below	the	current	instruction	address
(00000004).	So	the	address	of	the	next	instruction	to	be	fetched	is	0000004	+	8	=
000000C	(the	position	of	MOV	instruction	in	line	6).	In	line	4	the	instruction	“B	THERE”
has	the	machine	code	of	EA000002.	To	distinguish	the	operand	and	opcode	parts,	we
should	compare	the	machine	code	with	the	B	instruction	format.	In	the	following,	you	see
the	format	of	the	B	instruction.	In	this	example	the	machine	code	is	EA000002.		If	we
compare	it	with	the	B	format,	we	see	that,	the	operand	is	000002	and	the	opcode	is	EA.
The	000002	is	the	offset,	relative	to	the	address	of	the	next	instruction.	Recall	that	to
calculate	the	target	address,	the	relative	address	(offset)	is	shifted	left	twice	and	added	to
the	current	value	of	the	PC	(Program	Counter).	Shifting	the	offset	(000002)	left	twice
results	in	000008	and	then	adding	it	to	the	address	of	the	next	instruction	to	be	fetched
(0000000C)	we	have	000008	+	0000000C	=	00000014	which	is	exactly	the	address	of
THERE	label.	All	the	jump	instructions,	whose	mnemonics	begin	with	B,	have	the	same
instruction	format,	and	the	opcode	changes	from	instruction	to	instruction.	So,	we	can
calculate	the	short	branch	address	for	any	of	them,	as	we	just	did	in	this	example.

It	must	also	be	noted	that	for	the	backward	branch	the	relative	value	is	negative	(2’s
complement).	That	is	shown	in	Example 4-7.



Example	4-7

Verify	the	calculation	of	backward	jumps	for	the	listing	of	Example	4-1,	shown	below.

	
LINE									ADDRESS																	Machine																		Mnemonic															Operand

5														00000000																E3A02FFA																															LDR										R2,=1000	;R2	=	1000

6														00000004																E3A00000																																MOV								R0,#0							;R0	=	0,	sum

7														00000008																E2800009																AGAIN					ADD									R0,R0,#9	;R0	=	R0	+	9

8														0000000C																E2522001																																SUBS							R2,R2,#1	;R2	=	R2	-	1

9														00000010																1AFFFFFC																																																BNE									AGAIN					;repeat

10												00000014																E1A04000																																MOV								R4,R0						;store	the	sum	in	R4

11												00000018																EAFFFFFE																HERE							B														HERE							;stay	here

12												0000001C																																																																END

	

Solution:

	

In	the	program	list,	“BNE	AGAIN”	in	line	9	has	machine	code	1AFFFFFC.	To	specify	the
operand	and	opcode,	we	compare	the	instruction	with	the	branch	instruction	format,	which
you	saw	in	the	previous	example.	The	opcode	is	1A	and	the	operand	(relative	offset
address)	is	FFFFFC.	The	FFFFFC	gives	us	–4,	which	means	the	displacement	is	(–4	×	4	=
–16	=	–0x10).

	

The	branch	is	located	in	address	0x0010.	The	address	of	the	next	instruction	to	be	fetched
is	two	instructions	ahead	of	current	branch	instruction,	and	each	instruction	is	4-byte	wide.
Therefore,	address	of	the	next	instruction	to	be	fetched	=	0x0010	+	(2	×	4)	=	0x0018

	

When	the	relative	address	of	–0x10	is	added	to	00000018,	we	have	–0x0010	+	0x0018	=
0x08

Notice	that	00000008	is	the	address	of	the	label	AGAIN.

	

FFFFFC	is	a	negative	number	and	that	means	it	will	branch	backward.	For	further
discussion	of	the	addition	of	negative	numbers,	see	Chapter	5.

	

Branching	beyond	32M	byte	limit

To	 branch	 beyond	 the	 address	 space	 of	 32M	 bytes,	 we	 use	 BX	 (branch	 and
exchange)	 instruction.	The	 “BX	Rn”	 instruction	uses	 register	Rn	 to	 hold	 target	 address.



Since	Rn	can	be	any	of	the	R0–R14	registers	and	they	are	32-bit	registers,	the	“BX		Rn”
instruction	 can	 land	 anywhere	 in	 the	 4G	 bytes	 address	 space	 of	 the	 ARM.	 In	 the
instruction	“BX		R2”	the	R2	is	loaded	into	the	program	counter	(R15)	and	CPU	starts	to
fetch	 instructions	 from	 the	 target	 address	 pointed	 to	 by	 R15,	 the	 program	 counter.	 See
Figure 4-6.	Since	the	instructions	are	word	aligned,	we	must	make	sure	that	the	lower	two
bits	of	the	Rn	are	0s.

Figure	4-	6:	BX	(Branch	and	exchange)	Instruction	Target	Address

The	BX	instruction	is	also	used	to	switch	to	THUMB	version	of	the	ARM	CPU.	For
more	information	see	the	ARM manual.

Review	Questions

1.							The	mnemonic	BNE	stands	for	_______.

2.	 	 	 	 	 	 	True	 or	 false.	 “BNE	BACK”	makes	 its	 decision	 based	 on	 the	 last	 instruction
affecting	the	Z	flag.

3.							“BNE	HERE”	is	a	___	-byte	instruction.

4.							In	“BEQ	NEXT”,	which	flag	bit	is	checked	to	see	if	it	is	high?

5.							B(ranch)	is	a(n)	___	-byte	instruction.

6.							Compare	B	and	BX	instructions.





Section	4.2:	Calling	Subroutine	with	BL
Another	control	transfer	instruction	is	the	BL	(branch	and	link)	instruction,	which	is

used	 to	 call	 a	 subroutine.	 Subroutines	 are	 often	 used	 to	 perform	 tasks	 that	 need	 to	 be
performed	 frequently.	 This	 makes	 a	 program	 more	 structured	 in	 addition	 to	 saving
memory	space.	In	 the	ARM	there	 is	only	one	instruction	for	call	and	that	 is	BL	(branch
and	link).		To	use	BL	instruction	for	call,	we	must	leave	the	R14	register	unused	since	that
is	 where	 the	 ARM	 CPU	 stores	 the	 address	 of	 the	 next	 instruction	 where	 it	 returns	 to
resume	executing	the	program.	

BL	(Branch	and	Link)	instruction	and	calling	subroutine	

In	 the	32-bit	 instruction	BL,	 8	 bits	 are	 used	 for	 the	opcode	 and	 the	other	 24	bits,
k23–k0,	 are	 used	 for	 the	 address	 of	 the	 target	 subroutine,	 just	 like	 in	 the	 Branch
instruction.	 Therefore,	 BL	 can	 be	 used	 to	 call	 subroutines	 located	 anywhere	within	 the
32M	address	space	of	the	ARM,	as	shown	in	Figure 4-7.

Figure	4-	7:	BL	(Branch	and	Link)	Instruction

To	make	 sure	 that	 the	ARM	knows	where	 to	 come	back	 to	 after	 execution	of	 the
called	 subroutine,	 the	 ARM automatically	 saves	 in	 the	 link	 register	 (LR),	 the	 R14,	 the
address	of	the	instruction	immediately	below	the	BL.	When	a	subroutine	is	called	by	the
BL	 instruction,	 control	 is	 transferred	 to	 that	 subroutine,	 and	 the	 processor	 saves	 the	PC
(program	 counter)	 in	 the	 R14	 register	 and	 begins	 to	 fetch	 instructions	 from	 the	 new
location.	After	finishing	execution	of	the	subroutine,	we	must	use	“BX	LR“	instruction	to
transfer	control	back	to	the	caller.	Every	subroutine	needs	“BX	LR”	as	the	last	instruction
for	return	address.

BL	instruction	and	the	role	of	linker	register

When	 a	 subroutine	 is	 called	 using	 BL	 instruction,	 first	 the	 processor	 saves	 the
address	 of	 the	 instruction	 just	 below	 the	BL	 instruction	 on	 the	R14	 register	 (LR,	 linker
register),	 and	 then	control	 is	 transferred	 to	 that	 subroutine.	This	 is	how	 the	CPU	knows



where	to	resume	when	it	returns	from	the	called	subroutine.

The	linker	register	and	returning	from	subroutine

There	is	no	RETurn	instruction	in	ARM7.	Therefore	at	the	end	of	the	subroutine	we
must	copy	the	linker	register,	R14,	to	the	program	counter	(R15).	When	the	BL	instruction
is	 executed	 the	 address	 of	 the	 instruction	 below	 the	 BL	 instruction	 is	 placed	 into	 R14
register,	 so,	 when	 the	 execution	 of	 the	 function	 finishes,	 the	 address	 of	 the	 instruction
below	 the	 BL	 must	 be	 reloaded	 back	 into	 the	 PC,	 and	 so	 the	 CPU	 can	 resume	 the
execution	of	instructions	below	the	BL	instruction.

	To	understand	the	role	of	the	R14	register	in	BL	instruction	and	the	return,	examine
the	Examples 4-8.	The	following	points	should	be	noted	for	the	Example 4-8:

1.	 	 	 	 	 	 	Notice	 the	DELAY	 subroutine.	Upon	 executing	 the	 first	 “BL	DELAY”,	 the
address	 of	 the	 instruction	 right	 below	 it,	 “MOV	R0,#0xAA”,	 is	 saved	onto	 the
R14	register,	and	the	ARM	starts	to	execute	instructions	at	DELAY	subroutine.

2.							In	the	DELAY	subroutine,	first	the	counter	R3	is	set	to	5	(R3	=	5);	therefore,	the
inner	loop	is	repeated	5	times.	When	R3	becomes	0,	control	falls	to	the	“BX	LR”
instruction,	which	 restores	 the	 address	 into	 the	 program	 counter	 and	 returns	 to
main	program	to	resume	executing	the	instructions	after	the	BL.

Example	4-8

Write	a	program	to	toggle	all	the	bits	of	address	0x40000000	by	sending	to	it	the	values
0x55	and	0xAA	continuously.	Put	a	time	delay	between	each	issuing	of	data	to	address
location.

	

Solution:																												

AREA					EXAMPLE4_8,	CODE,	READONLY

ENTRY

RAM_ADDR								EQU							0x40000000									;change	the	address	for	your	ARM

LDR								R1,=RAM_ADDR															;R1	=	RAM	address

AGAIN		MOV					R0,#0x55														;R0	=	0x55

STRB						R0,[R1]																	;send	it	to	RAM

BL											DELAY																		;call	delay	(R14	=	PC	of	next	instruction)

MOV					R0,#0xAA												;R0	=	0xAA

STRB						R0,[R1]																	;send	it	to	RAM

BL											DELAY																		;call	delay

B													AGAIN																		;keep	doing	it

;––––––—DELAY	SUBROUTINE



DELAY			LDR								R3,=5																					;R3 =5,	modify	this	value	for	different	size	delay

L1												SUBS					R3,R3,#1														;R3	=	R3	-	1

BNE								L1

BX											LR																											;return	to	caller

;––––––—end	of	DELAY	subroutine

END																							;notice	the	place	for	END	directive

Use	Keil	IDE	simulator	for	ARM	to	simulate	the	above	program	and	examine	the	registers
and	memory	location	0x40000000.	You	might	have	to	change	the	address	0x40000000	to
some	other	value	depending	on	the	RAM	address	of	the	ARM	chip	you	use.

	

In	above	program,	in	place	of	“BX	LR”	for	return,	we	could	have	used	“BX	R14”,
“MOV R15,R14”,	or	“MOV	PC,	LR”	instructions.	All	of	them	do	the	same	thing;	but	it	is
recommended	to	use	the	“BX	LR”	instruction.

	

The	amount	of	 time	delay	 in	Example 4-8	depends	on	 the	 frequency	of	 the	ARM
chip.	How	to	calculate	the	time	will	be	explained	in	the	last	section	of	this	chapter.

Main	Program	and	Calling	Subroutines

In	 real	world	 projects	we	 divide	 the	 programs	 into	 small	 subroutines	 (also	 called
functions)	 and	 the	 subroutines	 are	 called	 from	 the	main	 program.	Figure	 4-8	 shows	 the
format.

;MAIN	program	calling	subroutines

AREA					PogramName,	CODE,	READONLY

ENTRY

MAIN				BL											SUBR_1																																;Call	Subroutine	1

BL											SUBR_2																																;Call	Subroutine	1

BL											SUBR_3																																;Call	Subroutine	1

HERE						BAL								HERE																						;stay	here.	BAL	is	the	same	as	B

;––-end	of	MAIN

	

;––––––—SUBROUTINE	1																																																														

SUBR_1																																….

																….

BX											LR											;return	to	main

;––					end	of	subroutine	1



	

;––––––—SUBROUTINE	2

SUBR_2																….

….

BX											LR											;return	to	main

;––					end	of	subroutine	2

	

;––––––—SUBROUTINE	3

SUBR_3																….

….

BX											LR											;return	to	main

;––					end	of	subroutine	3

END																							;notice	the	END	of	file

Figure	4-	8:	ARM	Assembly	Main	Program	That	Calls	Subroutines

Program	4-3	shows	an	example	of	the	main	program	calling	subroutine.

Program	4-3

;This	program	fills	a	block	of	memory	with	a	fixed	value	and

;then	transfers	(copies)	the	block	to	new	area	of	memory

AREA					PROGRAM4_3,	CODE,	READONLY

ENTRY

RAM1_ADDR					EQU							0x40000000									;Change	the	address	for	your	ARM

RAM2_ADDR					EQU							0x40000100									;Change	the	address	for	your	ARM

BL											FILL																								;call	block	fill	subroutine

BL											COPY																					;call	block	transfer	subroutine

HERE						BAL								HERE						;BAL(branch	always)	is	the	same	as	B					

;–––––-BLOCK	FILL	SUBROUTINE

FILL								LDR								R1,=RAM1_ADDR												;R1	=	RAM	Address	pointer

MOV					R0,#10																																	;counter

LDR								R2,=0x55555555

L1												STR									R2,[R1]																																	;send	it	to	RAM

ADD							R1,R1,#4																														;R1	=	R1	+	4	to	increment	pointer

SUBS					R0,R0,#1																														;R0	=	R0	-	1	for	dec	counter

BNE								L1																																												;keep	doing	it



BX											LR																																											;return	to	caller

;–––––—BLOCK	COPY	SUBROUTINE

COPY					LDR								R1,=RAM1_ADDR												;R1	=	RAM	Address	pointer	(source)

LDR								R2,=RAM2_ADDR												;R2	=	RAM	Address	pointer		(dest.)

MOV					R0,#10																		;counter

L2												LDR								R3,[R1]																	;get	from	RAM1

STR									R3,[R2]																	;send	it	to	RAM2

ADD							R1,R1,#4														;R1	=	R1	+	4	to	increment	pointer	for	RAM1

ADD							R2,R2,#4														;R2	=	R2	+	4	to	increment	pointer	for	RAM2

SUBS					R0,R0,#1														;R0	=	R0	–	1	for	decrementing	counter

BNE								L2																												;keep	doing	it

BX											LR																											;return	to	caller

;–––-													

END																																							;notice	the	place	of	END	directive

There	are	cases	in	which	we	need	to	call	a	subroutine	within	a	call	(nested	call).	To
do	that	we	must	use	stack	since	the	ARM	CPU	can	support	only	one	call	at	a	time	since
there	is	only	one	linker	register	(R14).

Review	Questions

1.							The	mnemonic	BL	stands	for	_______.

2.							True	or	false.	“BL	DELAY”	saves	the	address	of	the	instruction	below	BL	in	LR
register.

3.							“BL	DELAY”	is	a	___	-byte	instruction.

4.							LR	is	an	___	-bit	register.

5.							LR	is	the	same	as		______register.

6.							Explain	the	difference	between	B	and	BL	instructions.





Section	4.3:	ARM	Time	Delay	and	Instruction	Pipeline
In	 this	 section	we	discuss	how	 to	generate	various	 time	delays	 and	 calculate	 time

delays	 for	 the	 ARM.	 We	 will	 also	 discuss	 instruction	 pipelining	 and	 its	 impact	 on
execution	time.

Delay	calculation	for	the	ARM

In	creating	a	time	delay	using	Assembly	language	instructions,	one	must	be	mindful
of	two	factors	that	can	affect	the	accuracy	of	the	delay:

1.	 	 	 	 	 	 	The	crystal	frequency:		The	frequency	of	the	crystal	oscillator	connected	to	the
CPU	is	one	factor	in	the	time	delay	calculation.	The	duration	of	the	clock	period	for
the	instruction	cycle	is	a	function	of	this	crystal	frequency.

2.	 	 	 	 	 	 	The	ARM	design:	 Since	 the	 1970s,	 both	 the	 field	 of	 IC	 technology	 and	 the
architectural	design	of	microprocessors	have	 seen	great	 advancements.	Due	 to	 the
limitations	of	IC	technology	and	limited	CPU	design	experience	for	many	years,	the
instruction	 cycle	 duration	 was	 longer.	 Advances	 in	 both	 IC	 technology	 and	 CPU
design	 in	 the	 1980s	 and	 1990s	 have	made	 the	 single	 instruction	 cycle	 a	 common
feature	of	many	microprocessors.	Indeed,	one	way	to	increase	performance	without
losing	code	compatibility	with	the	older	generation	of	a	given	family	is	to	reduce	the
number	of	 instruction	cycles	 it	 takes	 to	execute	an	 instruction.	One	might	wonder
how	microprocessors	such	as	ARM	are	able	to	execute	an	instruction	in	one	cycle.
There	are	 three	ways	 to	do	 that:	 (a)	Use	Harvard	architecture	 to	get	 the	maximum
amount	of	code	and	data	 into	 the	CPU,	(b)	use	RISC	architecture	features	such	as
fixed-size	 instructions,	 and	 finally	 (c)	 use	 pipelining	 to	 overlap	 fetching	 and
execution	of	instructions.	We	have	examined	the	Harvard	and	RISC	architectures	in
Chapter	2.	Next,	we	give	a	brief	discussion	of	pipelining.	Chapter	7	covers	the	ARM
pipeline	in	much	more	detail.

Pipelining

In	early	microprocessors	such	as	the	8085,	the	CPU	could	either	fetch	or	execute	at
a	given	time.	In	other	words,	the	CPU	had	to	fetch	an	instruction	from	memory,	decode,
and	then	execute	it,	and	then	fetch	the	next	instruction,	decode	and	execute	it,	and	so	on	as
shown	 in	Figure 4-9.	The	 idea	of	pipelining	 in	 its	 simplest	 form	 is	 to	allow	 the	CPU	to
fetch	 and	 execute	 at	 the	 same	 time.	 That	 is	 an	 instruction	 is	 being	 fetched	 while	 the
previous	instruction	is	being	executed.

Figure	4-	9:	Non-pipeline	execution

We	 can	 use	 a	 pipeline	 to	 speed	 up	 execution	 of	 instructions.	 In	 pipelining,	 the
process	of	executing	instructions	is	split	into	small	steps	that	are	all	executed	in	parallel.
In	this	way,	the	execution	of	many	instructions	is	overlapped.	One	limitation	of	pipelining
is	that	the	speed	of	execution	is	limited	to	the	slowest	stage	of	the	pipeline.	Compare	this
to	making	 pizza.	 You	 can	 split	 the	 process	 of	making	 pizza	 into	many	 stages,	 such	 as



flattening	the	dough,	putting	on	the	toppings,	and	baking,	but	the	process	is	limited	to	the
slowest	 stage,	 baking,	 no	 matter	 how	 fast	 the	 rest	 of	 the	 stages	 are	 performed.	 What
happens	if	we	use	two	or	three	ovens	for	baking	pizzas	to	speed	up	the	process?	This	may
work	 for	 making	 pizza	 but	 not	 for	 executing	 programs,	 because	 in	 the	 execution	 of
instructions	we	must	make	 sure	 that	 the	 sequence	 of	 instructions	 is	 kept	 intact	 and	 that
there	is	no	out-of-step	execution.

ARM	multistage	execution	pipeline	

As	 shown	 in	 Figure 4-10,	 in	 the	 ARM,	 each	 instruction	 is	 executed	 in	 3	 stages:
Fetch,	Decode,	and	Execute.

Figure	4-	10:	Pipeline	in	ARM

In	 step	 1,	 the	 opcode	 is	 fetched.	 In	 step	 2,	 the	 opcode	 is	 decoded.	 In	 step	 3,	 the
instruction	 is	 executed	 and	 result	 is	 written	 into	 the	 destination	 register.	 This	 3-stage
pipeline	was	used	in	the	original	ARM.	The	newer	version	of	ARM	may	have	more	stages
of	pipeline.	See	Chapter	7	and	your	ARM	manual.

Instruction	cycle	time	for	the	ARM

It	takes	a	certain	amount	of	time	for	the	CPU	to	execute	an	instruction.	This	amount
of	time	is	referred	to	as	machine	cycles.	Thanks	to	the	RISC	architecture,	ARM	executes
most	 instructions	 in	 one	machine	 cycle.	 In	 the	ARM	 family,	 the	 length	 of	 the	machine
cycle	 depends	 on	 the	 frequency	 of	 the	 oscillator	 connected	 to	 the	 ARM	 system.	 The
crystal	 oscillator,	 along	 with	 on-chip	 circuitry,	 provide	 the	 clock	 source	 for	 the	 ARM
CPU.	In	the	ARM,	one	machine	cycle	consists	of	one	oscillator	period,	which	means	that
with	each	oscillator	clock,	one	machine	cycle	passes.	Therefore,	to	calculate	the	machine
cycle	for	the	ARM,	we	take	the	inverse	of	the	crystal	frequency,	as	shown	in	Example 4-9.

Example	4-9

The	following	shows	the	crystal	frequency	for	four	different	ARM-based	systems.	Find
the	period	of	the	instruction	cycle	in	each	case.

(a)	80	MHz										(b)	160	MHz								(c)	100	MHz								(d)	50	MHz

	

Solution:

	

(a)	instruction	cycle	is	1/80	MHz	=	0.0125	ms	(microsecond)	=	12.5	ns	(nanosecond)



(b)	instruction	cycle		=	1/160	MHz	=	0.00625	ms	=	6.25	ns

(c)	instruction	cycle	=	1/100	MHz	=	0.01	ms	=	10	ns

(d)	instruction	cycle	=	1/50	MHz	=	0.02	ms	=	20	ns

	

Branch	penalty

The	overlapping	of	fetch	and	execution	of	the	instruction	is	widely	used	in	today’s
microprocessors	such	as	ARM.	For	the	concept	of	pipelining	to	work,	we	need	a	buffer	or
queue	 in	 which	 an	 instruction	 is	 prefetched	 and	 ready	 to	 be	 executed.	 In	 some
circumstances,	the	CPU	must	flush	out	the	queue.	For	example,	when	a	branch	instruction
is	executed,	the	CPU	starts	to	fetch	codes	from	the	new	memory	location	and	the	code	in
the	queue	 that	was	fetched	previously	 is	discarded.	 In	 this	case,	 the	execution	unit	must
wait	until	 the	fetch	unit	fetches	the	new	instruction.	This	 is	called	a	branch	penalty.	The
penalty	is	an	extra	instruction	cycle	to	fetch	the	instruction	from	the	target	location	instead
of	executing	the	instruction	right	below	the	branch.	Remember	that	the	instruction	below
the	 branch	 has	 already	 been	 fetched	 and	 is	 next	 in	 line	 to	 be	 decoded	 when	 the	 CPU
branches	 to	 a	 different	 address.	 This	 means	 that	 while	 the	 vast	 majority	 of	 ARM
instructions	 take	 only	 one	machine	 cycle,	 some	 instructions	 take	 three	machine	 cycles.
These	 are	 Branch,	 BL	 (call),	 and	 all	 the	 conditional	 branch	 instructions	 such	 as	 BNE,
BLO,	and	so	on.	The	conditional	branch	instruction	can	take	only	one	machine	cycle	if	it
does	 not	 jump.	For	 example,	 the	BNE	will	 jump	 if	Z	=	0	 and	 that	 takes	 three	machine
cycles.	If	Z	=	1,	then	it	falls	through	and	it	takes	only	one	machine	cycle.	See	Examples 4-
10	and	4-11.

Example	4-10

For	an	ARM	system	of	100	MHz,	find	how	long	it	takes	to	execute	each	of	the	following
instructions:

(a)	MOV															(b)		SUB																(c)	B						

(d)	ADD																(e)		NOP															(f)	BHI		

(g)	BLO																	(h)		BNE																																(i)	EQU

																															

Solution:

	

The	machine	cycle	for	a	system	of	100	MHz	is	10	ns,	as	shown	in	Example	4-9.
Therefore,	we	have:	

	

Instruction										Instruction		cycles												Time	to	execute															

(a)	MOV															1																																														1	×	10	ns	=	10	ns														



(b)	SUB																	1																																														1	×	10	ns	=	10	ns

(c)	B																							3																																														3	×	10	ns	=	30	ns																														

(d)	ADD																1																																														1	×	10	ns	=	10	ns																														

(e)	NOP																1																																														1	×	10	ns	=	10	ns

	

For	the	following,	due	to	branch	penalty,	3	clock	cycles	if	taken	and	1	if	it	falls	through:

(f)	BHI																			3/1																																									3	×	10	ns	=	30	ns																														

(g)	BLO																	3/1																																									3	×	10	ns	=	30	ns																														

(h)	BNE																	3/1																																									3	×	10	ns	=	30	ns														

(i)	EQU																		0																					(directives	do	not	produce	machine	instructions)

	

Notice	that	ARM	chip	does	not	have	the	NOP	instruction.	The	ARM	Assembler	replaces	it
with	some	other	1-cycle	instruction.	On	your	ARM	Assembler,	you	might	get	a	warning
that	NOP	does	not	exist,	but	it	still	compiles	the	program.	It	does	not	give	an	error.

	

Delay	calculation	for	ARM

A	delay	subroutine	consists	of	two	parts:	(1)	setting	a	counter,	and	(2)	a	loop.	Most
of	the	time	delay	is	performed	by	the	body	of	the	loop,	as	shown	in	Example 4-11.

Example	4-11

Find	the	size	of	the	delay	of	the	code	snippet	below	if	the	crystal	frequency	is	100	MHz:

DELAY			MOV					R0,#255

AGAIN		NOP																																																						

NOP																																																						

SUBS					R0,R0,#1

BNE								AGAIN																	

MOV					PC,LR																					;return

Solution:

	

We	have	the	following	machine	cycles	for	each	instruction	of	the	DELAY	subroutine:

	

Instruction																										Machine	Cycle



DELAY			MOV					R0,#255																;															1

AGAIN		NOP																																							;															1

NOP																																							;															1

SUBS					R0,R0,#1														;															1

BNE								AGAIN																		;															3/1

MOV					PC,LR																					;															1

	

Therefore,	we	have	a	time	delay	of	[1	+	((1+1+1+3)	×	255)	+	1]	×	10	ns	=	15,320	ns.

Notice	that	BNE	takes	three	instruction	cycles	if	it	jumps	back,	and	takes	only	one	cycle
when	falling	through	the	loop.	That	means	the	above	number	should	be	153.0	ns.	Because
the	last	time,	when	R0	is	zero,	the	BNE	takes	only	one	cycle	because	it	falls	through	the
loop

	

Very	often	we	calculate	the	time	delay	based	on	the	instructions	inside	the	loop	and
ignore	the	clock	cycles	associated	with	the	instructions	outside	the	loop.

In	Example 4-11,	the	largest	value	the	R0	register	can	take	is	232	=	4G.	One	way	to
increase	 the	 delay	 is	 to	 use	 NOP	 instructions	 in	 the	 loop.	 NOP,	 which	 stands	 for	 “no
operation,”	 simply	 wastes	 time,	 but	 takes	 4	 bytes	 of	 program	 memory	 and	 that	 is	 too
heavy	a	price	to	pay	for	just	one	instruction	cycle.	A	better	way	is	to	use	a	nested	loop.

Loop	inside	a	loop	delay

Another	way	to	get	a	large	delay	is	to	use	a	loop	inside	a	loop,	which	is	also	called	a
nested	loop.	See	Example 4-12.

Example	4-12

In	a	given	ARM	trainer	an	I/O	port	is	connected	to	8	LEDs.	The	following	program
toggles	the	LEDs	by	sending	to	it	0x55	and	0xAA	values	continuously.	Calculate	the	time
delay	for	toggling	of	LEDs.		Assume	the	system	clock	frequency	of	100	MHz.

	

Solution:

AREA					Example4_12,	CODE,	READONLY

ENTRY

PORT_ADDR							EQU							0x40000000									;change	the	address	for	your	ARM

LDR								R1,=PORT_ADDR														;R1	=	port	address

AGAIN		MOV					R0,#0x55														;R0	=	0x55



STRB						R0,[R1]																	;send	it	to	LEDs

BL											DELAY																			;call	delay

MOV					R0,#0xAA												;R0	=	0xAA

STRB						R0,[R1]																	;send	it	to	LEDs

BL											DELAY																			;call	delay

BAL								AGAIN																		;keep	doing	it	forever	(BAL	is	the	same	as	B)

	

;––––––—DELAY	SUBROUTINE

DELAY

MOV					R3,#100		;R3	=	100,modify	this	value	for	different	size	delay

L1												LDR								R4,=250000									;R4	=	250,000	(inner	loop	count)

L2												SUBS					R4,R4,#1														;1	clock

BNE								L2																												;3	clock

SUBS					R3,R3,#1														;R3	=	R3	-	1

BNE								L1

MOV					PC,LR																					;return	to	caller

END

	

Ignoring	the	delay	associated	with	the	outer	loop,	we	have	the	following	time	delay:

[(1	+	3)	×	250,000	×	100]	×	10	ns	=	1	second	since	1/100	MHz	=	10	ns.

Examine	the	working	frequency	for	your	ARM	trainer,	change	the	above	address
0x40000000	to	your	ARM	trainer	port	address	and	verify	the	time	delay	using
oscilloscope.

	

From	these	discussions	we	conclude	that	 the	use	of	instructions	in	generating	time
delay	is	not	 the	most	reliable	method.	To	get	more	accurate	 time	delay	Timers	are	used.
All	 ARM	 microcontrollers	 come	 with	 on-chip	 Timers.	 We	 can	 use	 Keil	 uVision’s
simulator	to	verify	delay	time	and	number	of	cycles	used.	Meanwhile,	to	get	an	accurate
time	delay	for	a	given	ARM	microcontroller,	we	must	use	an	oscilloscope	to	measure	the
exact	time	delay.

Review	Questions

1.							True	or	false.	In	the	ARM,	the	machine	cycle	lasts	1	clock	period	of	the	crystal
frequency.



2.							The	minimum	number	of	machine	cycles	needed	to	execute	an	ARM	instruction	is
_____.

3.							Find	the	machine	cycle	for	a	crystal	frequency	of	66	MHz.

4.							Assuming	a	crystal	frequency	of	100	MHz,	find	the	time	delay	associated	with	the
loop	section	of	the	following	DELAY	subroutine:

DELAY											LDR								R2,=50000000																			

HERE														NOP						

																NOP

																NOP

																NOP

																NOP						

																SUBS					R2,R2,#1

																BNE								HERE					

																MOV					PC,LR

5.							Find	the	machine	cycle	for	an	ARM	if	the	crystal	frequency	is	50	MHz.

6.							True	or	false.	In	the	ARM,	the	instruction	fetching	and	execution	are	done	at	the
same	time.

7.							True	or	false.	B	and	BL	will	always	take	2	machine	cycles.

8.							True	or	false.	The	BNE	instruction	will	always	take	3	machine	cycles.





Section	4.4:	Conditional	Execution
Every	microprocessor	 has	 the	 conditional	 branch	 (jump)	 instruction	 based	 on	 the

status	of	flag	bits	such	as	Z	and	C.	Instructions	such	as	BEQ	(branch	equal,	Z	=	1)	or	BNC
(branch	if	no	carry,	C	=	0)	are	common	in	all	CPUs.	The	ARM	CPU	has	a	unique	feature
that	we	do	not	see	in	other	microprocessors.	In	ARM,	the	concept	of	conditional	execution
is	implemented	for	all	instruction	and	not	just	for	branch	which	makes	you	able	to	decide
to	run	or	ignore	each	single	instruction	depending	on	the	status	of	flag	bits.	In	other	words,
not	only	the	branch	instruction	but	all	of	the	ARM	instructions	can	be	conditional.	As	we
discussed	 in	Chapters	 2	 and	 3,	 the	ADD,	 SUB,	 and	 other	 arithmetic	 instruction	 do	 not
affect	 the	 flag	 bits	 in	 CPSR	 (current	 program	 status	 register)	 register	 unless	 they	 have
letter	S	 in	 the	 syntax.	The	default	 is	not	 to	update	 the	 flags.	We	override	 the	default	by
having	 letter	S	 in	 the	 instruction.	The	same	 thing	 is	 true	about	conditional	 field	of	each
instruction.	 If	 we	 do	 not	 add	 a	 condition	 after	 an	 instruction,	 it	 will	 be	 executed
unconditionally	because	the	default	is	not	to	check	the	flags	and	execute	unconditionally.
If	 we	 want	 an	 instruction	 to	 be	 executed	 only	 when	 a	 condition	 is	 met,	 we	 put	 the
condition	syntax	right	after	the	instruction.

This	feature	of	ARM	allows	the	execution	of	an	instruction	conditionally	based	on
the	status	of	Z,	C,	V	and	N	flags.	To	do	that,	the	ARM	instructions	have	set	aside	the	most
significant	 4	bits	 of	 the	 instruction	 field	 for	 the	 conditions.	See	Figure	4-11.	The	4	bits
gives	us	16	possible	conditions.	Table	4-4	shows	the	list	of	all	the	16	possible	conditions.

Figure	4-	11:	Condition	Field	in	ARM	Instructions

Bits Mnemonic	Extension Meaning													 Flag

0000 EQ Equal Z	=	1

0001 NE Not	equal Z	=	0

0010 CS/HS Carry	Set/Higher	or	Same C	=	1

0011 CC/LO Carry	Clear/Lower C	=	0

0100 MI Minus/Negative N	=	1

0101 PL Plus N	=	0

0110 VS V	Set	(Overflow) V	=	1

0111 VC V	Clear	(No	Overflow) V	=	0

1000 HI Higher C	=	1	and	Z	=	0

1001 HS Lower	or	Same C	=	1	and	Z	=	1



1010 GE Greater	than	or	Equal N	=	V

1011 LT Less	than N	≠	V

1100 GT Greater	than Z	=	0	and	N	=	V

1101 LE Less	than	or	Equal Z	=	0	or	N	≠	V

1110 AL Always	(unconditional) 	

1111 – Not	Valid 	

Table	4-	4:	ARM	Condition	codes	for	the	Opcode	bits	[31-28]

Note!

By	 default,	 all	 the	 instructions	 are	 executed	 unconditionally.	 As	 a	 result	 the	 AL
(Always)	suffix	has	no	effect	on	the	instruction.	For	example,	BAL	(Branch	Always)	is
exactly	the	same	as	B	(Branch).	The	same	is	true	for	all	instructions.

To	make	an	instruction	conditional,	simply	we	put	the	condition	syntax	from	Table
4-4	in	front	of	it.	See	the	following	examples:

MOV					R1,#10		;R1	=	10

MOV					R2,#12		;R2	=	12

CMP						R2,R1					;compare	12	with	10,	Z	=	0	because	they	are	not	equal

MOVEQ																R4,#20		;this	line	is	not	executed	because

;	the	condition	EQ	is	not	met

The	following	code	adds	10	to	R1	if	it	is	not	zero:

CMP						R1,#0																					;compare	R1	with	0

ADDNE	R1,R1,#10												;this	line	is	executed	if	Z	=	0

																																																;(if	in	the	last	CMP	operands	were	not	equal)

Note	that	we	can	add	both	S	and	condition	to	syntax	of	an	instruction.	It	is	common
to	put	S	after	the	condition.	See	the	following	examples:

ADDNES															R1,R1,#10											

;this	line	is	executed	and	set	the	flags	if	Z	=	0

One	advantage	of	using	conditional	execution	is	it	saves	time	in	the	execution	of	an
instruction	 by	 avoiding	 branch	 penalty.	 As	 we	 discussed	 earlier,	 each	 instruction	 goes
through	three	pipeline	stages	of	fetch,	decode,	and	execution.	When	a	branch	instruction
such	as	BCC	(branch	if	C	cleared)	enters	the	pipeline,	the	instruction	below	is	also	fetched
into	the	CPU	not	knowing	whether	the	C	flag	is	high	or	low.	If	the	C	=	0,	the	branch	will
jump	 to	 new	 location	 resulting	 in	 emptying	 the	 instruction	 pipeline	 queue	 which	 was
working	 on	 the	 instruction	 below	 the	BCC	 instruction.	 This	 penalty	 can	 be	 avoided	 by



using	conditional	execution	feature	of	the	ARM.	We	can	make	the	execution	of	many	of
the	ARM	instructions	conditional	by	simply	adding	a	mnemonic	extension	to	the	end	of	it.
For	 example,	 we	 can	 use	 ADDCS	 instead	 of	 ADD.	 The	 ADDCS	 means	 add	 if	 C=1.
(ADDCS:	Add	if	Carry	Set).	By	the	same	token	the	ADDEQ	means	add	only	if	Z=1.

Example	 4-13	 shows	 two	 versions	 of	 the	 Example	 4-4	we	 covered	 earlier.	 In	 the
new	version,	we	 use	 the	 conditional	 execution	 instructions.	 Simulate	 and	 compare	 both
versions	to	see	how	the	conditional	instructions	are	executed.

Example	4-13

The	following	program	adds	0x99999999	together	10	times.	Compare	the	code	syntax	to
see	how	the	conditional	execution	of	the	code	is	used.

	

Code	1:	(Example	4-4	without	conditional	execution)

AREA					EXAMPLE4_4,	CODE,	READONLY

ENTRY

MOV					R1,#0																					;clear	high	word	(R1	=	0)

MOV					R0,#0																					;clear	low	word	(R0	=	0)

LDR								R2,=0x99999999																;R2	=	0x99999999

MOV					R3,#10																		;counter

L1												ADDS					R0,R0,R2														;R0	=	R0	+	R2	and	update	the	flags

BCC								NEXT																					;if	C	=	0,	go	to	next	number

ADD							R1,R1,#1														;if	C	=	1,	increment	the	upper	word

NEXT					SUBS					R3,R3,#1														;R3	=	R3	-	1	and	update	the	flags

BNE								L1																												;next	round	if	z	=	0

HERE						B													HERE																						;stay	here

END

	

Code	2:	(Example	4-4	with	conditional	execution)

AREA					EXAMPLE4_13,		CODE,	READONLY

ENTRY

MOV					R1,#0																					;clear	high	word	(R1	=	0)

MOV					R0,#0																					;clear	low	word	(R0	=	0)

LDR								R2,=0x99999999																;R2	=	0x99999999

MOV					R3,#10																		;counter



L1												ADDS					R0,R0,R2														;R0	=	R0	+	R2	and	update	the	flags

ADDCS		R1,R1,#1														;if	C	set	(C	=	1),increment	the	upper	word

NEXT					SUBS					R3,R3,#1														;R3	=	R3	-	1	and	update	the	flags

BNE								L1																												;next	round	if	z	=	0

HERE						B													HERE																						;stay	here

END

	

See	also	Examples	4-14	and	4-15.

Example	4-14

Rewrite	the	main	part	of	Program	4-1	using	conditional	execution	of	ARM	instructions

	

Solution:

MOV					COUNT,#5											;COUNT	=	5

MOV					MAX,#0																																;MAX	=	0

LDR								POINTER,=MYDATA							

;POINTER	=	MYDATA	(address	of	first	data)

AGAIN	

LDR								NEXT,[POINTER]														

;load	contents	of	POINTER	location	to	NEXT

CMP						MAX,NEXT										;compare	MAX	and	NEXT																												

MOVLO																MAX,NEXT																									

;if	MAX	is	lower	than	NEXT	then	MAX=NEXT

ADD							POINTER,POINTER,#4			

;POINTER	=	POINTER  +  4	to	point	to	next

SUBS					COUNT,COUNT,#1										;decrement	counter

BNE								AGAIN																		;branch	AGAIN	if	counter	is	not	zero

	

	

Example	4-15



Using	rotation,	write	a	program	that	counts	the	number	of	1s	in	R0.

	

Solution:

AREA					EXAMPLE4_15,	CODE,	READONLY

ENTRY

LDR								R0,=0x34F37D36

MOV					R1,	#0																				;number	of	1s

MOV					R2,	#32	;counter

BEGIN			MOV					R0,R0,RRX											;Rotate	right	with	carry	the	R0	register

ADDCS		R1,R1,#1														;if	C	=	1	then	increment	R1

SUBS					R2,R2,#1														;decrement	counter

BNE								BEGIN																			;if	counter	is	not	equal	to	zero	branch	BEGIN

END

	

Review	Questions

1.							True	or	false.	All	the	ARM	instructions	have	the	conditional	execution	feature.

2.							How	many	bits	of	the	ARM	instruction	are	set	aside	for	the	condition	codes?

3.							The	ADDAL	stands	for……………..	.

4.							True	or	false.	MOVVC	is	a	valid	instruction	in	ARM

5.							True	or	false.	SUBEQS	is	a	valid	instruction	in	ARM



Problems
Section	4.1:	Looping	and	Branch	Instructions

1.							In	the	ARM,	looping	action	using	a	single	register	is	limited	to	_______	iterations.

2.							If	a	conditional	branch	is	not	taken,	what	is	the	next	instruction	to	be	executed?

3.							In	calculating	the	target	address	for	a	branch,	a	displacement	is	added	to	the
contents	of	register	_______.

4.							The	mnemonic	BNE	stands	for	__________.

5.							What	is	the	advantage	of	using	BX	over	B?

6.							True	or	false.	The	target	of	a	BNE	can	be	anywhere	in	the	4G	word	address	space.

7.							True	or	false.	All	ARM	branch	instructions	can	branch	to	anywhere	in	the	4G	byte
address	space.

8.							Dissect	the	B	instruction,	indicating	how	many	bits	are	used	for	the	operand	and
the	opcode,	and	indicate	how	far	it	can	branch.

9.							True	or	false.	All	conditional	branches	are	2-byte	instructions.

10.			Show	code	for	a	nested	loop	to	perform	an	action	10,000,000,000	times.

11.			Show	code	for	a	nested	loop	to	perform	an	action	200,000,000,000	times.

12.			Find	the	number	of	times	the	following	loop	is	performed:

MOV		R0,#0x55																

MOV		R2,#40																					

L1												LDR		R1,=10000000

L2												EOR		R0,R0,#0xFF												

SUB		R1,R1,#1																			

BNE		L2																																																

SUB		R2,R2,#1																			

BNE		L1																																																

	

13.			Indicate	the	status	of	Z	and	C	after	CMP	is	executed	in	each	of	the	following	cases.

(a)

MOV					R0,#50

MOV					R1,#40		

CMP						R0,R1

	

(b)

MOV					R1,#0xFF

MOV					R2,#0x6F

CMP						R1,R2

(c)										

MOV					R2,#34

MOV					R3,#88

CMP						R2,R3



(d)

SUB		R1,R1,R1

MOV					R2,#0					

CMP						R1,R2

	

(e)									

EOR								R2,R2,R2

MOV					R3,#0xFF

CMP						R2,R3

(f)										

EOR								R0,R0,R0

EOR								R1,R1,R1

CMP						R0,R1

(g)

MOV	R4,#0x78

MOV					R2,#0x40

CMP						R4,R2

(h)									

MOV					R0,#0xAA

AND							R0,R0,#0x55

CMP						R0,#0

	

	

14.			Rewrite	Program	4-1	to	find	the	lowest	grade	in	that	class.

15.			The	target	address	of	a	BNE	is	backward	if	the	relative	address	portion	of	opcode
is		_______	(negative,	positive).

16.			The	target	address	of	a	BNE	is	forward	if	the	relative	address	portion	of	opcode	is
_______	(negative,	positive).

Section	4.2:	Calling	Subroutine	with	BL

17.			BL	is	a(n)	___-byte	instruction.

18.			In	ARM,	which	register	is	the	linker	register?

19.			True	or	false.	The	BL	target	address	can	be	anywhere	in	the	4G	byte	address	space.

20.			Describe	how	we	can	return	from	a	subroutine	in	ARM.

21.			In	ARM,	which	address	is	saved	when	BL	instruction	is	executed.

Section	4.3:	ARM	Time	Delay	and	Instruction	Pipeline

	

22.			Find	the	oscillator	frequency	if	the	machine	cycle	=	1.25	ns.

23.			Find	the	machine	cycle	if	the	crystal	frequency	is	200	MHz.

24.			Find	the	machine	cycle	if	the	crystal	frequency	is	100	MHz.

25.			Find	the	machine	cycle	if	the	crystal	frequency	is	160	MHz.

26.			Find	the	time	delay	for	the	delay	subroutine	shown	below	if	the	system	has	an
ARM	with	a	frequency	of	80	MHz:

	

MOV					R8,#200

BACK			LDR								R1,=400000000



		HERE				NOP

SUBS					R1,R1,#1

BNE								HERE

SUBS					R8,R8,#1

BNE								BACK

	

27.			Find	the	time	delay	for	the	delay	subroutine	shown	below	if	the	system	has	an
ARM	with	a	frequency	of	50	MHz:

	

MOV					R2,#100

		BACK			LDR								R0,=50000000

		HERE				NOP

NOP

SUBS					R0,R0,#1

BNE								HERE

SUBS					R2,R2,#1																													

BNE								BACK

	

28.			Find	the	time	delay	for	the	delay	subroutine	shown	below	if	the	system	has	a	ARM
with	a	frequency	of	40	MHz:

	

MOV					R1,#200

		BACK			LDR								R0,#20000000

		HERE				NOP

NOP

NOP

SUBS					R0,R0,#1

													BNE								HERE

SUBS					R1,R1,#1

BNE								BACK

29.			Find	the	time	delay	for	the	delay	subroutine	shown	below	if	the	system	has	an
ARM	with	a	frequency	of	100	MHz:



	

MOV					R8,#500

		BACK			LDR								R1,=20000

		HERE				NOP

NOP

NOP

SUBS					R1,R1,#1

BNE								HERE

SUBS					R8,R8,#1

BNE								BACK

	

30.			The	ARM	chip	does	not	have	the	NOP	instruction.	Examine	the	list	file	generated
by	your	ARM	assembler	to	see	what	instruction	is	used	in	place	of	the	NOP.

Section	4.4:	Conditional	Execution

	

31.			Which	bits	of	the	ARM	instruction	are	set	aside	for	condition	execution?

32.			True	or	false.	Only	ADD	and	MOV	instructions	have	conditional	execution
feature.

33.			True	or	false.	In	ARM,	the	conditional	execution	is	default.

34.			Which	flag	bit	is	examined	before	the	MOVEQ	instruction	is	executed?

35.			State	the	difference	between	the	ADDEQ	and	ADDNE	instructions.

36.			State	the	difference	between	the	BAL	and	B	instructions	.

37.			State	the	difference	between	the	SUBCC	and	SUBCS	instructions.

38.			State	the	difference	between	the	ANDEQ	and	ANDNE	instructions.

39.			True	or	false.	The	decision	to	execute	the	SUBCC	is	based	on	the	status	of	Z	flag.

40.			True	or	false.	The	decision	to	execute	the	ADDEQ	is	based	on	the	status	of	Z	flag.



Answers	to	Review	Questions
1.							Branch	if	not	Equal

2.							True											

3.							4																	

4.							Z	flag	of	CPSR	(status	register)

5.							4

6.							The	B	can	only	branch	to	an	address	location	within	32	MB	address	space,	while
the	BX	can	go	anywhere	in	the	4	GB	address	space	of	ARM.

Section	4.2:	Calling	Subroutine	with	BL

1.							Branch	and	Link

2.							True

3.							4

4.							32

5.							R14

6.							In	both	of	them	the	target	address	is	relative	to	the	value	of	the	program	counter
and	the	relative	address	can	cover	memory	space	of	–32MB	to	+32MB	from	current
location	of	program	counter.	The	BL	instruction	saves	the	address	of	the	next
instruction	in	the	LR	register	before	jumping,	while	the	B	instruction	just	jumps
without	saving	anything.

Section	4.3:	ARM	Time	Delay	and	Instruction	Pipeline

1.							True						

2.							1																													

3.							MC	=	1/66	MHz	=	0.015	ms	=	15	ns

4.							[50,000,000	×	(1	+	1	+	1	+	1	+	1	+	1	+	3)]	×	10	ns	=	4.5	seconds

5.							Machine	Cycle	=	1	/	50	MHz	=	0.02	ms	=	20	ns

6.							True

7.							False

8.							False.	It	takes	3	cycles,	only	if	it	branches	to	the	target	address.

Section	4.4:	Conditional	Execution

1.							True

2.							4	bits

3.							ADD	always	regardless	of	the	status	flag.



4.							True

5.							True



	





Chapter	5:	Signed	Numbers	and	IEEE	754	Floating	Point
This	chapter	deals	with	signed	number	 instructions	and	operations.	 In	Section	5.1,

we	 focus	 on	 the	 concept	 of	 signed	 numbers	 in	 software	 engineering.	 	 Signed	 number
arithmetic	operations	and	 instructions	are	explained	along	with	examples	 in	Section	5.2.
The	IEEE	754	floating	point	will	be	explained	in	Section	5.3.





Section	5.1:	Signed	Numbers	Concept
All	data	items	used	so	far	have	been	unsigned	numbers,	meaning	that	the	entire	8-

bit,	16-bit	or	32-bit	operand	was	used	for	the	magnitude.	Many	applications	require	signed
data.	In	this	section	the	concept	of	signed	numbers	is	discussed.

Concept	of	signed	numbers	in	computers

In	everyday	life,	numbers	are	used	that	could	be	positive	or	negative.	For	example,	a
temperature	of	5	degrees	below	zero	can	be	represented	as	-5,	and	20	degrees	above	zero
as	 +20.	 Computers	must	 be	 able	 to	 accommodate	 such	 numbers.	 To	 do	 that,	 computer
scientists	have	devised	the	following	arrangement	for	the	representation	of	signed	positive
and	negative	numbers:	The	most	significant	bit	(MSB)	is	set	aside	for	the	sign	(+	or	-)	and
the	rest	of	the	bits	are	used	for	the	magnitude.	The	sign	is	represented	by	0	for	positive	(+)
numbers	 and	 1	 for	 negative	 (-)	 numbers.	 Signed	 byte	 and	 word	 representations	 are
discussed	below.

Signed	byte	operands

In	signed	byte	operands,	D7	(MSB)	 is	 the	sign	and	D0	to	D6	are	set	aside	for	 the
magnitude	of	the	number.	If	D7	=	0,	the	operand	is	positive,	and	if	D7	=	1,	it	is	negative.

The	range	of	positive	numbers	that	can	be	represented	by	the	above	format	is	0	to
+127.

Dec. Binary

0 0000	0000

+1 0000	0001

… ….	….

+5 0000	0101

… ….	….

+127 0111	1111

Dec. Binary

-0 1000	0000

-1 1000	0001

… ….	….

-5 1000	0101

… ….	….

-127 1111	1111

Negative	numbers	using	2’s	complement

To	save	ALU	circuitry,	we	use	2’s	complement	method	 to	 implement	 the	negative
numbers.	 For	 negative	 numbers,	 D7	 is	 1	 but	 the	 non-sign	 (magnitude)	 portion	 is
represented	 in	 2’s	 complement.	 	 Although	 the	 assembler	 does	 the	 conversion,	 it	 is	 still
important	 to	 understand	 how	 the	 conversion	 works.	 To	 convert	 to	 negative	 number
representation	(2’s	complement),	follow	these	steps:



1.							Write	the	magnitude	of	the	number	in	8-bit	binary	(no	sign).

2.							Invert	each	bit.

3.							Add	1	to	it.

Dec. Binary

0 0000	0000

+1 0000	0001

… ….	….

+5 0000	0101

… ….	….

+127 0111	1111

Dec. Binary

0 0000	0000

-1 1111	1111

… ….	….

-5 1111	1011

… ….	….

-127 1000	0001

-128 1000	0000

Examples	5-1,	5-2,	and	5-3	demonstrate	these	three	steps.

Example	5-1

Show	how	the	computer	would	represent	-5.

	

Solution:

	1.	0000	0101							5	in	8-bit	binary

	2.	1111	1010							invert	each	bit

	3.	1111	1011							add	1	(0xFB)

	

	This	is	the	signed	number	representation	in	2’s	complement	for	-5.

	

	

Example	5-2

Show	-34	hex	as	it	is	represented	internally.

	

Solution:



	

	1.	0011	0100

	2.	1100	1011

	3.	1100	1100							(which	is	0xCC)

	

	

Example	5-3

Show	the	representation	for	-12810.

	

Solution:

	

	1.	1000	0000

	2.	0111	1111

	3.	1000	0000	Notice	that	this	is	not	negative	zero	(–0).

	

From	the	examples	above	it	is	clear	that	the	range	of	byte-sized	negative	numbers	is
-1	to	-128.	The	following	lists	byte-sized	signed	number	ranges:

Decimal Binary Hex

-128 1000	0000 80

-127 1000	0001 81

-126 1000	0010 82

… ….	… ..

-2 1111	1110 FE

-1 1111	1111 FF

0 0000	0000 00

	 0000	0001 01

+2 0000	0010 02

… ….	…. ..



+127 0111	1111 7F

Halfword-sized	signed	numbers

In	ARM	CPU	a	half-word	is	16	bits	in	length.	Setting	aside	the	MSB	(D15)	for	the
sign	leaves	a	total	of	15	bits	(D14–D0)	for	the	magnitude.	This	gives	a	range	of	–32,768	(–
215)	to	+32,767	(215–1).

If	a	number	 is	 larger	 than	16-bit,	 it	must	be	 treated	as	a	32-bit	word	operand.	The
following	shows	the	range	of	signed	half-word	operands.	To	convert	a	negative	number	to
its	 half-word	 operand	 representation,	 the	 steps	 discussed	 in	 negative	 byte	 operands	 are
used.

Decimal Binary Hex

-32,768 1000	0000	0000	0000 8000

-32,767 1000	0000	0000	0001 8001

-32,766 1000	0000	0000	0010 8002

… ….	… ..

-2 1111	1111	1111	1110 FFFE

-1 1111	1111	1111	1111 FFFF

0 0000	0000	0000	0000 0000

+1 0000	0000	0000	0001 0001

+2 0000	0000	0000	0010 0002

… ….	…. …

+32,766 0111	1111	1111	1110 7FFE

+32,767 0111	1111	1111	1111 7FFF

Using	Microsoft	Windows	calculator	for	signed	numbers

All	Microsoft	Windows	operating	systems	come	with	a	handy	calculator.	Use	it	 to
verify	the	signed	number	operations	in	this	section.

Word-sized	signed	numbers

In	ARM	CPUs,	a	word	is	32	bits	in	length.	Setting	aside	the	MSB	(D31)	for	the	sign
leaves	a	total	of	31	bits	(D30–D0)	for	the	magnitude.	This	gives	a	range	of	-(231)	to	+(231-
1).



To	 convert	 a	 negative	 number	 to	 its	 word	 operand	 representation,	 the	 three	 steps
discussed	in	negative	byte	operands	are	used.	See	Example	5-4.

Example	5-4

Show	how	the	computer	would	represent	-5	for	(a)	8-bit,	(b)	16-bit,	and	(c)	32-bit	data
sizes.

	

Solution:

	

(a)	8-bit

	1.	0000	0101							5	in	8-bit	binary

	2.	1111	1010							invert	each	bit

	3.	1111	1011							add	1					(0xFB)

	

(b)	16-bit

	1.	0000	0000	0000	0101																		5	in	16-bit	binary

	2.	1111	1111	1111	1010																		invert	each	bit

	3.	1111	1111	1111	1011																		add	1	(0xFFFB)

	

(c)	32-bit

	1.	0000	0000	0000	0000	0000	0000	0000	0101									5	in	32-bit	binary

	2.	1111	1111	1111	1111	1111	1111	1111	1010									invert	each	bit

	3.	1111	1111	1111	1111	1111	1111	1111	1011									add	1					(0xFFFFFFFB)

	

Use	the	Windows	calculator	to	verify	these	examples.

	

If	a	number	is	larger	than	32-bit,	it	must	be	treated	as	a	64-bit	doubleword	operand
and	 be	 processed	 chunk	 by	 chunk	 the	 same	 way	 as	 unsigned	 numbers.	 The	 following
shows	the	range	of	signed	word	operands.

Decimal Binary Hex



-2,147,483,648 10000000000000000000000000000000 80000000

-2,147,483,647 10000000000000000000000000000001 80000001

-2,147,483,646 10000000000000000000000000000010 80000002

… … …

-2 11111111111111111111111111111110 FFFFFFFE

-1 11111111111111111111111111111111 FFFFFFFF

0 00000000000000000000000000000000 00000000

+1 00000000000000000000000000000001 00000001

+2 00000000000000000000000000000010 00000002

… … …

+2,147,483,646 01111111111111111111111111111110 7FFFFFFE

+2,147,483,647 01111111111111111111111111111111 7FFFFFFF

Table	5-1	shows	a	summary	of	signed	data	ranges.

Data	Size Bits 2n Decimal Hexadecimal

Byte 8 -27	to	+27-1 -128	to	+127 0x80–0x7F

Half-
word 16 -215	to	+215-

1		
-32,768	to	+32,767 0x8000–0x7FFF

Word 32 -231	to	+231-1 -2,147,483,648	to
+2,147,483,647

0x80000000–
0x7FFFFFFF

Table	5-1:	Signed	Data	Range	Summary

Review	Questions

1.							In	an	8-bit	operand,	bit	_____	is	used	for	the	sign	bit,	whereas	in	a	16-bit	operand,
bit	_____	is	used	for	the	sign	bit.	Repeat	for	32-bit	signed	data.

2.							Compute	the	byte-sized	2’s	complement	of	0x16.

3.							The	range	of	byte-sized	signed	operands	is		-______	to	+_____.		The	range	of	half
word-sized	signed	operands	is		-__________	to	+__________.	

4.							The	range	of	word-sized	signed	operands	is		-__________	to	+__________.

5.							Compute	the	2’s	complement	of	0x500000.





Section	5.2:	Signed	Number	Instructions	and	Operations
In	 this	 section	 we	 examine	 issues	 associated	 with	 signed	 number	 arithmetic

operations.	We	will	also	discuss	the	ARM	instructions	for	signed	numbers	and	how	to	use
them.	 It	must	 be	 noted	 that	 in	ARM	 the	N	 flag	 bit	 in	CSPR	 is	 the	 sign	bit.	N=0	 is	 for
positive	and	N=1	for	negative	numbers.

Overflow	problem	in	signed	number	operations

When	using	signed	numbers,	a	serious	problem	arises	that	must	be	dealt	with.	This
is	the	overflow	problem.	The	CPU	indicates	the	existence	of	the	problem	by	raising	the	V
(oVerflow)	 flag,	but	 it	 is	up	 to	 the	programmer	 to	 take	care	of	 it.	The	CPU	understands
only	0s	and	1s	and	ignores	the	human	convention	of	positive	and	negative	numbers.	Now
what	is	an	overflow?	If	the	result	of	an	operation	on	signed	numbers	is	too	large	for	the
register,	an	overflow	occurs	and	the	programmer	must	be	notified.	Look	at	Example	5-5.

Example	5-5

Look	at	the	following	case	for	8-bit	data	size:

+	96 0110	0000

+	70 +0100	0110

+166 1010	0110

	According	to	the	CPU,	this	is	-90,	which	is	wrong.	(V	=	1,	N	=	1,	C	=	0)

	

In	the	example	above,	+96	is	added	to	+70	and	the	result	according	to	the	CPU	is	- 
90.	 Why?	 The	 reason	 is	 that	 the	 result	 was	 more	 than	 8	 bits	 could	 handle.	 The	 8-bit
registers	can	only	contain	up	to	+127.	The	designers	of	the	CPU	created	the	overflow	flag
specifically	 for	 the	 purpose	 of	 informing	 the	 programmer	 that	 the	 result	 of	 the	 signed
number	operation	is	erroneous.

When	the	overflow	flag	is	set	in	8-bit	operations

In	 8-bit	 signed	 number	 operations,	 V	 is	 set	 to	 1	 if	 either	 of	 the	 following	 two
conditions	occurs:

1.							There	is	a	carry	from	D6	to	D7	but	no	carry	out	of	D7	(C	=	0).

2.							There	is	a	carry	from	D7	out	(C	=	1)	but	no	carry	from	D6	to	D7.

In	other	words,	the	overflow	flag	is	set	to	1	if	there	is	a	carry	from	D6	to	D7	or	from
D7	out,	but	not	both.	This	means	that	if	there	is	a	carry	both	from	D6	to	D7	and	from	D7
out,	V	=	0.	In	Example	5-5,	since	there	is	only	a	carry	from	D6	to	D7	and	no	carry	from
D7	out,	V	=	1.	Examples	5-6,	5-7,	and	5-8	give	further	illustrations	of	the	overflow	flag	in
signed	number	arithmetic.



Example	5-6

Examine	the	following	case:

-	128 1000	0000 	

+						-2 +1111	1110 	

-	130 0111	1110 V=1,	N=0	(positive),	C=1

According	to	the	CPU,	the	result	is	+126,	which	is	wrong.	The	error	is	indicated	by	the
fact	that	V	=	1.

	

	

Example	5-7

Observe	the	results	of	the	following:

;assume	R3=+7	(R3=0x07)

;assume	R2=+18	(R2=0x12)

ADD	R2,R2,R3				;(R2=0x19=+25,	correct)

+7 0000	0111

+		+18 +0001	0010

+25 0001	1001

V	=	0,	C	=	0,	and	N	=	0	(positive).

	

	

Example	5-8

Observe	the	results	of	the	following:

-2 1111	1110 	

+	-5 1111	1011 	

		-7 1111	1001 	

V	=	0,	C	=	0,	and	N	=	1	(negative);	the	result	is	correct	since	V	=	0.

	



Overflow	flag	in	16-bit	operations

In	a	16-bit	operation,	V	is	set	to	1	in	either	of	two	cases:

1.							There	is	a	carry	from	D14	to	D15	but	no	carry	out	of	D15	(C	=	0).

2.							There	is	a	carry	from	D15	out	(C	=	1)	but	no	carry	from	D14	to	D15.

Again	the	overflow	flag	is	low	(not	set)	if	there	is	a	carry	from	both	D14	to	D15	and
from	D15	out.	The	V	is	set	to	1	only	when	there	is	a	carry	from	D14	to	D15	or	from	D15
out,	but	not	from	both.	See	Examples	5-9	and	5-10.

Example	5-9

Observe	the	results	in	the	following	16-bit	hex	numbers:

		+6E2F 0110	1110	0010	1111 	

+	+13D4 0001	0011	1101	0100 	

+8203 1000	0010	0000	0011

=		–0x7DFD	=	–32,253	incorrect!

V	=	1,	C	=	0,	N	=	1

	

	

	

Example	5-10

Observe	the	results	in	the	following	16-bit	hex	numbers:

+542F 0101	0100	0010	1111 	

+	+12E0 	+0001	0010	1110	0000 	

		+670F 0110	0111	0000	1111	
=		+0x670F	=	+26,383	(correct	answer);

V	=	0,	C	=	0,	N	=	0

	

Overflow	flag	in	32-bit	operations

In	a	32-bit	operation,	V	is	set	to	1	in	either	of	two	cases:

1.	There	is	a	carry	from	D30	to	D31	but	no	carry	out	of	D31	(C	=	0).

2.	There	is	a	carry	from	D31	out	(C	=	1)	but	no	carry	from	D30	to	D31.

Again	the	overflow	flag	is	low	(not	set)	if	there	is	a	carry	from	both	D30	to	D31	and
from	D31	out.	The	V	is	set	to	1	only	when	there	is	a	carry	from	D30	to	D31	or	from	D31



out,	but	not	from	both.	See	Examples	5-11	and	5-12.

Example	5-11

Observe	the	results	in	the	following	32-bit	hex	numbers:

+6E2F356F 0110	1110	0010	1111	0011	0101	0110	1111 	

+	+13D49530 +0001	0011	1101	0100	1001	0101	0011	0000 	

+8203CA9F 1000	0010	0000	0011	1100	1010	1001	1111 =	–0x7DFC3561

incorrect!		V	=	1,	C	=	0,	N	=	1

	

	

Example	5-12

Observe	the	results	in	the	following	32-bit	hex	numbers:

+542F356F 0101	0100	0010	1111	0011	0101	0110	1111 	

+	+12E09530 0001	0010	1110	0000	1001	0101	0011	0000 	

		+670FCA9F 0110	0111	0000	1111	1100	1010	1001	1111 =	+670FCA9F

correct	answer;	V	=	0,	C	=	0,	N	=	0

	

Sign	extension	and	avoiding	erroneous	results	in	signed	number	operations

To	 avoid	 the	 problems	 associated	 with	 signed	 number	 operations,	 one	 can	 sign-
extend	the	operand.	Sign	extension	copies	the	sign	bit	(D7)	of	the	lower	byte	of	a	register
into	the	upper	bits	of	the	32-bit	register,	or	copies	the	sign	bit	of	a	16-bit	register	into	32-
bit.	The	LDRSB	(load	register	signed	byte)	instruction	loads	into	the	register	a	byte	from
memory	and	sign	extends	the	D7	to	the	entire	32-bit	register.	The	LDRSH	(load	register
signed	half-word)	 instruction	 loads	 into	 the	 register	 a	 half-word	 from	memory	 and	 sign
extends	the	D15	to	the	entire	32-bit	register.	They	work	as	follows:

LDRSB	 loads	 into	 the	 destination	 register	 a	 byte	 from	memory	 and	 sign	 extends
(copy	D7,	the	sign	flag)	to	all	32	bits.	This	is	illustrated	in	Figure	5-1.

Figure	5-1:	Sign	Extending	a	Byte

Look	at	the	following	example:



;assume	location	0x80000	has	+96	=	0110	0000	and	R1=0x80000

LDRSB			R0,[R1]	;now	R0	=		00000000000000000000000001100000

;assume	location	0x80000	contains	-2	=	1111	1110	and	R2=0x80000

LDRSB			R4,[R2]		;now	R4	=	11111111111111111111111111111110

As	can	be	seen	in	the	above	examples,	LDRSB	does	not	alter	the	lower	8	bits.	The
sign	of	8	bits	is	copied	to	the	rest	of	the	32-bit	register.

LDRSH	loads	the	destination	register	with	a	16-bit	signed	number	and	sign-extends
to	 the	32-bit	 register.	 It	 copies	D15	of	Rd	 to	all	bits	of	 the	Rd	 register.	This	 is	used	 for
signed	half-word	operand	and	is	illustrated	in	Figure	5-2.

Figure	5-	2:	Sign	Extending	a	Half-word

Look	at	the	following	example:

;assume	0x80000	contains	+260	=	0000	0001	0000	0100	and	R1=0x80000

LDRSH			R0,[R1]		;R0=0000	0000	0000	0000	0000	0001	0000	0100

Another	example:

;assume	location	0x20000	has	-327660=0x8002	and	R2=0x20000

LDRSH			R1,[R2]																	;R1=FFFF8002

As	can	be	seen	in	the	above	examples,	LDRSH	does	not	alter	the	lower	16	bits.	The
sign	of	16	bits	is	copied	to	the	rest	of	the	32-bit	register.	How	can	these	instructions	help
correct	 the	 overflow	 error?	To	 answer	 that	 question,	Example	 5-13	 shows	Example	 5-5
rewritten	to	correct	the	overflow	problem.

Example	5-13

Write	a	program	for	Example	5-5	to	handle	the	overflow	problem.

	

Solution:

AREA					EXAMPLE5_13,CODE,READONLY

ENTRY

LDR								R1,=DATA1

LDR								R2,=DATA2

LDR								R3,=RESULT

LDRSB			R4,	[R1]																;R4	=	+96

LDRSB			R5,	[R2]																;R5	=	+70



ADD							R4,R4,R5														;R4	=	R4	+	R5	=	96	+	70	=	+166

STR									R4,[R3]																	;Store	+166	in	location	RESULT

HL											B													HL

	

DATA1	DCB								+96

DATA2	DCB								+70

	

AREA					VARIABLES,DATA,READWRITE				;The	following	is	stored	in	RAM

RESULT	DCW						0

END

	

The	following	is	an	analysis	of	the	values	in	Example	5-13.	Each	is	sign-extended
and	then	added	as	follows:

Sign Binary	numbers																												 Decimal

0 000	0000	0000	0000	0000	0000	0110	0000 +96	after	sign	ext.

0 000	0000	0000	0000	0000	0000	0100	0110 +70	after	sign	ext.

0 000	0000	0000	0000	0000	0000	1010	0110 +166

As	a	rule,	if	the	possibility	of	overflow	exists,	all	byte-sized	signed	numbers	should
be	sign-extended	into	a	word,	and	similarly,	all	halfword-sized	signed	operands	should	be
sign-extended	 to	 a	 word	 before	 they	 are	 processed.	 This	 is	 shown	 in	 Program	 5-1.
Program	5-1	finds	total	sum	of	a	group	of	signed	number	data.

Program	5-1

;	This	program	calculates	the	sum	of	signed	numbers

	

AREA					PROG5_1,CODE,READONLY

ENTRY

LDR								R0,=SIGN_DAT

MOV					R3,#9

MOV					R2,#0

LOOP					LDRSB			R1,	[R0]	

;Load	into	R1	and	sign	extend	it.																																															



ADD							R2,R2,R1														;R2	=	R2	+	R1

ADD							R0,R0,#1														;point	to	next

SUBS					R3,R3,#1														;decrement	counter

BNE								LOOP

LDR								R0,=SUM

STR									R2,[R0]																	;Store	R2	in	location	SUM

HERE						B													HERE					

	

SIGN_DAT	DCB																	+13,-10,+19,+14,-18,-9,+12,-19,+16

	

AREA					VARIABLES,DATA,READWRITE

SUM						DCD							0

END						

Signed	number	multiplication

Signed	 number	 multiplication	 is	 similar	 in	 its	 operation	 to	 the	 unsigned
multiplication	 described	 in	 Chapter	 3.	 The	 only	 difference	 between	 them	 is	 that	 the
operands	 in	 signed	 number	 operations	 can	 be	 positive	 or	 negative;	 therefore,	 the	 result
must	 indicate	 the	 sign.	 In	ARM	we	have	SMULL	(signed	multiply	 long)	but	no	SMUL
(sign	multiply).	Table	5-2	summarizes	signed	number	multiplication;	it	is	similar	to	Table
3-3	in	Chapter	3.	See	Examples	5-14	and	5-15.

Multiplication Operand	1 Operand	2 Result

word×word Rm Rs RdHi=	upper	32-bit,RdLo=lower	32-bit

Note:	Using	SMULL	(signed	multiply	long)	for	word	×	words	multiplication	provides	the	64-bit	result	in	RdLo	and	RdHi	register.	This	is
used	for	32-bit	×	32-bit	numbers	in	which	result	can	go	beyond	0xFFFFFFFF.

Table	5-2:	Signed	Multiplication	(SMULL	RdLo,RdHi,Rm,Rs)	Summary

Example	5-14

Observe	the	results	of	the	following	multiplication	of	signed	numbers:

	

LDR								R1,=-3500												;R1	=	-3500	(0xFFFFF254)

LDR								R0,=-100														;R0	=	-100	(0xFFFFFF9C)

SMULL		R2,R3,R0,R1

Solution:



	

-3500	×	-100	=	350,000	=	55730	in	hex.	After	executing	the	above	program	R2	and	R3
will	contain	0x55730	and	00000000,	respectively.

	

	

Example	5-15

The	following	program	is	similar	to	Example	5-14.	But,	instead	of	SMULL,	the	UMULL
instruction	is	used.	Observe	the	results	of	the	following	multiplication:

LDR								R1,=-3500												;R1	=	-3500	(0xFFFFF254)

MOV					R0,#-100														;R0	=	-100	(0xFFFFFF9C)

UMULL		R2,R3,R0,R1

Solution:

	

0xFFFFF254	×	0xFFFFFF9C	=	0xFFFFF1F000055730.	Thus,	R2	and	R3	will	contain
0x00055730	and	0xFFFFF1F0,	respectively.	As	you	can	see,	the	results	of	the	programs
are	completely	different.	In	the	previous	program	the	SMULL	instruction	considers	the
operands	signed	numbers	and	the	result	of	two	negative	numbers	becomes	positive.	As	a
result,	the	sign	bit	becomes	zero,	but	in	this	example	the	operands	are	considered	as
unsigned	numbers.

	

Signed	number	comparison

In	Chapter	4	we	saw	that	 the	CMP	instruction	affects	 the	Z	and	C	flags;	using	the
flags	we	compared	unsigned	numbers.	This	instruction	affects	the	N	and	V	flags,	as	well;
We	 can	 use	 flags	 Z,	 V,	 and	 N	 to	 compare	 signed	 numbers.	 The	 Z	 flag	 shows	 if	 the
numbers	are	equal	or	not.	When	the	numbers	are	equal	the	Z	flag	is	set	to	one.	N	and	V
flags	show	if	the	left	operand	is	bigger	than	the	right	operand	or	not.	When	N	and	V	have
the	same	value,	the	first	operand	has	a	greater	value.

In	summary,	after	executing	the	instruction	CMP	Rn,	Op2	 the	flags	are	changed	as
follows:

Op2	>	Rn														V	=	N

Op2	=	Rn														Z	=	1

Op2	<	Rn														N	≠	V

Table	 5-3	 lists	 the	 branch	 instructions	 which	 check	 the	 Z,	 V,	 and	 N	 flags.	 The
instructions	can	be	used	together	with	the	CMP	instruction	to	compare	signed	numbers.



Instruction Action

BEQ branch	equal Branch	if	Z	=	1

BNE Branch	not	equal Branch	if	Z	=	0

BMI Branch	minus	(branch	negative) Branch	if	N	=	1

BPL Branch	plus	(branch	positive) Branch	if	N	=	0

BVS Branch	if	V	set	(branch	overflow) Branch	if	V	=	1

BVC Branch	if	V	clear	(branch	if	no	overflow) Branch	if	V	=	0

BGE Branch	greater	than	or	equal Branch	if	N	=	V

BLT Branch	less	than Branch	if	N	≠	V

BGT Branch	greater	than Branch	if	Z	=	0	and	N	=	V

BLE Branch	less	than	or	equal Branch	if	Z	=	1	or	N	≠	V

Table	5-	3:	ARM	Conditional	Branch	(Jump)	Instructions		for	Signed	Data

Program	5-2	finds	the	lowest	number	among	a	list	of	numbers.

Program	5-2

;Finding	the	lowest	of	signed	numbers

AREA					PROG5_2,CODE,READONLY

ENTRY

LDR								R0,=SIGN_DAT

MOV					R3,#8

LDRSB			R2,[R0]																

;bring	into	R2	the	first	sign	number	and	sign	extend	it

ADD							R0,R0,#1														;point	to	next

BEGIN			LDRSB			R1,	[R0]																;R1	=	contents	of	loc.	pointed	to	by	R0

CMP						R1,R2																					;compare	R1	and	R2

BGE								NEXT																				

;branch	to	NEXT	if	R1	is	greater	than	or	equal	to	R2

MOV					R2,R1																				

;R2	=	R1	(use	the	new	number	for	comparison)

NEXT					ADD							R0,R0,#1														;point	to	next



SUBS					R3,R3,#1														;decrement	counter

BNE								BEGIN																			;if	R3	is	not	zero	branch	BEGIN

	

LDR								R0,=LOWEST						;R0	=	address	of	LOWEST

STR									R2,[R0]																	;store	R2	in	location	SUM

HERE						B													HERE

	

SIGN_DAT	DCB																	+13,-10,+19,+14,-18,-9,+12,-19,+16

	

AREA					VARIABLES,DATA,READWRITE

LOWEST															DCD							0

END						

;Notice	that	we	use	the	first	sign	number	as	basis	for

;comparison	and	keep	comparing	it	with	other	numbers.

;Anytime	any	of	the	number		is	smaller	we	use	it	as	basis

;for	comparison.

CMN	instruction

CMN						Rn,Op2

In	 ARM	 we	 have	 two	 compare	 instructions:	 CMP	 and	 CMN.	 While	 the	 CMP
instruction	sets	the	flags	by	subtracting	the	source	operand	from	the	destination,	the	CMN
sets	the	flags	by	adding	source	to	destination.	As	a	result	CMN	compares	the	destination
operand	with	the	negative	of	the	source	operand:

																destination	>	(-1	×	source)										V	=	N				

destination	=	(-1	×	source)										Z	=	1						

destination	<	(-1	×	source)										N	=	negation	of	V

When	 the	 source	 operand	 is	 an	 immediate	 value,	 the	 instructions	 can	 be	 used
interchangeably.	Example	5-16	is	an	example	of	using	the	CMN	instruction.

Example	5-16

Assuming	R5	has	a	positive	value,	write	a	program	that	finds	its	negative	match	in	an
array	of	data	(OUR_DATA).

	

Solution:



AREA					EXAMPLE5_16,CODE,READONLY

ENTRY

	

MOV					R5,#13

LDR								R0,=OUR_DATA

MOV					R3,#9				

BEGIN

LDRSB			R1,	[R0]																															;R1	=	contents	of	loc.	pointed	to	by	R0

;(sign	extended)

CMN						R1,R5																					;compare	R1	and	negative	of	R5

BEQ								FOUND																	;branch	if	R1	is	equal	to	negative	of	R5

	

ADDS					R0,R0,#1														;increment	pointer

SUBS					R3,R3,#1														;decrement	counter

BNE								BEGIN																			;if	R3	is	not	zero	branch	BEGIN

	

NOT_FOUND					B													NOT_FOUND

FOUND																	B													FOUND

	

OUR_DATA									DCB								+13,-10,-13,+14,-18,-9,+12,-19,+16

END

	

In	the	above	program	R5	is	initialized	with	13.	Therefore,	it	finishes	searching	when	it
gets	to	– 13.

	

Arithmetic	shift

As	was	discussed	in	Chapter	3,	there	are	two	types	of	shifts:	logical	and	arithmetic.	
Logical	 shift,	 which	 is	 used	 for	 unsigned	 numbers,	 was	 discussed	 in	 Chapter	 3.	 The
arithmetic	 shift	 is	 used	 for	 signed	numbers.	 It	 is	 basically	 the	 same	 as	 the	 logical	 shift,
except	that	the	sign	bit	is	copied	to	the	shifted	bits.

ASR	(arithmetic	shift	right)

MOV					Rn,Op2,	ASR	count



As	the	bits	of	the	source	are	shifted	to	the	right	into	C,	the	empty	bits	are	filled	with
the	sign	bit.	One	can	use	the	ASR	instruction	to	divide	a	signed	number	by	2,	as	shown
below:

MOV					R0,#-10																	;R0	=	-10	=	0xFFFFFFF6

MOV					R3,R0,ASR	#1					;R0	is	arithmetic	shifted	right	once

;R3	=	0xFFFFFFFB	=	-5

Review	Questions

1.							Explain	the	difference	between	an	overflow	and	a	carry.

2.							Explain	the	purpose	of	the	LDRSB	and	LDRSH	instructions.	Demonstrate	the
effect	of	LDRSB	on	R0	=	0xF6.		Demonstrate	the	effect	of	LDRSH	on	R1	=
0x124C.

3.							The	instruction	for	signed	multiplication	is	________.	

4.							For	each	of	the	following	instructions,	indicate	the	flag	condition	necessary	for
each	branch	to	occur:	(a)	BLE	(b)	BGT





Section	5.3:	IEEE	754	Floating-Point	Standards
In	this	section	we	study	the	IEEE	standard	for	floating-point	numbers.

IEEE	floating-point	standard

Up	to	the	late	1970s,	real	numbers	(numbers	with	decimal	points)	were	represented
differently	in	binary	form	by	different	computer	manufacturers.	This	made	many	programs
incompatible	 for	 different	 machines.	 In	 1980,	 an	 IEEE	 committee	 standardized	 the
floating-point	 data	 representation	 of	 real	 numbers.	 This	 standard,	 much	 of	 which	 was
contributed	by	Intel	based	on	the	8087	math	coprocessor,	recognized	the	need	for	different
degrees	of	precision	by	different	applications;	therefore,	it	established	single	precision	and
double	precision.	Since	almost	all	software	and	hardware	companies	now	abide	by	these
standards,	each	one	is	explained	thoroughly.

IEEE	754	single-precision	floating-point	numbers

IEEE	single-precision	 floating-point	numbers	use	only	32	bits	of	data	 to	 represent
any	 real	 number	 range	 2128	 to	 2-126,	 for	 both	 positive	 and	 negative	 numbers.	 This
translates	approximately	to	a	range	of	1.2	×	10-38	to	3.4	×	10+38	in	decimal	numbers,	again
for	both	positive	and	negative	values.	In	some	math	coprocessor	terminology,	these	single-
precision	32-bit	floating-point	numbers	are	referred	to	as	short	real.	Assignment	of	the	32
bits	in	the	single-precision	format	is	shown	in	Figure	5-3.

Figure	5-	3:	IEEE	754	Single-precision	Floating-point	Numbers

To	make	the	hardware	design	of	the	math	processors	much	easier	and	less	transistor
consuming,	 the	 exponent	 part	 is	 added	 to	 a	 constant	 of	 0x7F	 (127	 decimal).	 This	 is
referred	 to	 as	 a	 biased	 exponent.	 Conversion	 from	 real	 to	 floating	 point	 involves	 the
following	steps.

1.							The	real	number	is	converted	to	its	binary	form.

2.							The	binary	number	is	represented	in	scientific	form:	1.xxxx	E	yyyy

3.							Bit	31	is	either	0	for	positive	or	1	for	negative.

4.							The	exponent	portion,	yyyy,	is	added	to	7F	to	get	the	biased	exponent,	which	is
placed	in	bits	23	to	30.

5.							The	significand,	xxxx,	is	placed	in	bits	22	to	0.

Examples	5-17,	5-18,	and	5-19	demonstrate	this	process.

Example	5-17

Convert	9.7510	to	single-precision	(short	real)	floating	point.

	

Solution:



	

decimal	9.75	=	binary	1001.11	=	scientific	binary	1.00111	E	3

Sign	bit	31	is	0	for	positive.

Exponent	bits	30	to	23	are	1000	0010	(3	+	7F	=	82H)	after	biasing.

Significand	bits	22	to	0	are	001110000000000000000	…00.

Putting	it	all	together	gives	the	following	binary	form,	under	which	is	written	the	hex
form:

	

0100							0001							0001							1100							0000							0000							0000							0000

4														1														1														C													0														0														0														0															

	

This	can	be	verified	by	using	an	assembler	such	as	Keil.

	

	

Example	5-18

Convert	0.07812510	to	short	IEEE	floating-point	standard	real	FP	(single	precision).

	

Solution:

	

decimal	0.078125	=	binary	0.000101	=	scientific	binary	1.01	E	–4

Sign	bit	31	is	0	for	positive.

Exponent	bits	30–23	are	0111	1011	(–4	+	7F	=	7B)	after	biasing.

Significand	bits	22–0	are	01000000….000.

This	number	will	be	represented	in	binary	and	hex	as

	

0011							1101							1010							0000							0000							0000							0000							0000

3														D													A													0														0														0														0														0

	

	



Example	5-19

Convert	–96.2710	to	single-precision	FP	format.

	

Solution:

	

decimal	96.27	=	binary	1100000.01000101000111101	=

scientific	binary	1.10000001000101000111101E	6

Sign	bit	31	is	1	for	negative.

Exponent	bits	30–23	are	1000	0101	(6	+	7F	=	85H)	after	biasing,

Fraction	bits	22–0	are	10000001000101000111101,

The	final	form	in	binary	and	hex	is

	

1100							0010							1100							0000							1000							1010							0011							1101

C													2														C													0														8														A													3														D

	

It	must	be	noted	that	conversion	of	the	decimal	portion	0.27	to	binary	can	be	continued
beyond	the	point	shown	above,	but	because	the	fraction	part	of	the	single	precision	is
limited	to	23	bits,	this	was	all	that	was	shown.		For	that	reason,	double-precision	FP
numbers	are	used	in	some	applications	to	achieve	a	higher	degree	of	accuracy.

	

IEEE	754	double-precision	floating-point	numbers

Double-precision	FP	(called	long	real	by	Intel)	can	represent	numbers	in	the	range
2.3	×	10-308	to	1.7	×	10308,	both	positive	and	negative.	A	total	of	52	bits	(bits	0	to	51)	are
for	the	significand,	11	bits	(bits	52	to	62)	are	for	the	exponent,	and	finally,	bit	63	is	for	the
sign.	The	conversion	process	 is	 the	 same	as	 for	 single	precision	 in	 that	 the	 real	number
must	first	be	represented	as		1.xxxxxxx		E		YYYY,	then	YYYY	is	added	to	3FF	to	get	the
biased	exponent.	See	Figure	5-4	and	Example	5-20.

Figure	5-	4:	IEEE	754	Double-precision	Floating-point	Numbers

Example	5-20

Convert	152.187510	to	double-precision	FP.



	

Solution:

	

decimal	152.1875	=	binary	10011000.0011	=

scientific	binary	1.00110000011	E	7

Bit	63	is	0	for	positive.

Exponent	bits	62–53	are	10000000110	(7	+	3FF	=	406)	after	biasing.

Fraction	bits	52–0	are	00110000011000…..000.

0100 0000 0110 0011 0000 0110 0000 0000 0000 … 0000

4 0 6 3 0 6 0 0 0 … 0

This	example	will	be	verified	by	an	assembler	in	the	next	section.

	

Math	coprocessor	in	ARM

Using	a	general-purpose	microprocessor	such	as	the	ARM	to	perform	mathematical
functions	such	as	floating	point	calculation,	log,	sine,	and	others	is	very	time	consuming,
not	only	for	the	CPU	but	also	for	programmers	writing	such	programs.	In	the	absence	of	a
math	 coprocessor,	 programmers	 must	 write	 subroutines	 using	 ARM	 instructions	 for
mathematical	functions.	Although	some	of	these	subroutines	are	already	written,	no	matter
how	 good	 the	 subroutine,	 its	 CPU	 run	 time	 will	 still	 be	 quite	 long.	 To	 accelerate
complicated	 mathematical	 and	 floating	 point	 calculation,	 math	 or	 floating	 point
coprocessors	are	used.	A	simpler	variation	of	math	coprocessor	is	called	floating	point	unit
(FPU)	 and	 some	ARM	chips	 come	with	 on-chip	 FPU.	 In	Keil	 there	 is	 a	 library	 named
fplib	to	do	floating	point	calculation.

Review	Questions

1.							Single-precision	IEEE	FP	standard	uses	_________	bits	to	represent	data.

2.							Double-precision	IEEE	FP	standard	uses	________		bits	to	represent	data.

3.							To	get	the	biased	exponent	portion	of	IEEE	single-precision	floating-point	data	we
add	________.

4.							To	get	the	biased	exponent	portion	of	IEEE	double-precision	floating-point	data
we	add	________.

5.							True	or	false.	In	the	absence	of	a	math	processor,	the	general-purpose	processor
must	perform	all	math	calculations.

6.							True	or	false.	All	of	the	ARM	chips	come	with	the	FPU.	



Problems:
Section	5.1:	Signed	Numbers	Concept

1.							Show	how	the	32-bit	computers	would	represent	the	following	numbers	and	verify
each	with	a	calculator.

(a)	-23 (b)	+12 (c)	-0x28

(d)	+0x6F (e)	-128 (f)	+127

(g)	+365 (h)	-32,767 	

2.							Show	how	the	32-bit	computers	would	represent	the	following	numbers	and	verify
each	with	a	calculator.

(a)	-230 (b)	+1200												 (c)	-	0x28F										

(d)	+0x6FF 	 	

Section	5.2:	Signed	Number	Instructions	and	Operations

	

3.							Find	the	overflow	flag	for	each	case	and	verify	the	result	using	an	ARM	IDE.	Do
byte-sized	calculation	on	them.

(a)	(+15)	+	(-12)															 (b)	(-123)	+	(-127) (c)	(+0x25)	+	(+34)

(d)	(-127)	+	(+127) (e)	(+100)	+	(-100) 	

4.							Sign-extend	the	following	and	write	simple	programs	in	using	ARM	IDE	to	verify
them.

(a)	-122 (b)-0x999 (c)	+0x17

(d)	+127 (e)	-129 	

5.							Modify	Program	5-2	to	find	the	highest	temperature.	Verify	your	program.

Section	5.3:	IEEE	754	Floating-Point	Standards

	

6.							What	is	the	disadvantage	of	using	a	general-purpose	processor	to	perform	math
operations?

7.							Show	the	bit	assignment	of	the	IEEE	single-precision	standard.

8.							Convert	(by	hand	calculation)	each	of	the	following	real	numbers	to	IEEE	single-
precision	standard.

(a)	15.575												(b)	89.125												(c)	–1022.543					(d)	–0.00075



9.							Show	the	bit	assignment	of	the	IEEE	double-precision	standard.

10.			In	single-precision	FP	(floating	point),	the	biased	exponent	is	calculated	by	adding	
________	to	the	_________	portion	of	a	scientific	binary	number.

11.			In	double-precision	FP,	the	biased	exponent	is	calculated	by	adding		________	to
the	_________	portion	of	a	scientific	binary	number.

12.			Convert	the	following	to	double-precision	FP.

(a)	12.9375										(b)	98.8125



Answers	to	Review	Questions
Section	5.1

1.							D7,	D15,	and	D31	for	32-bit	signed	data.

2.							0x16	=	0001	0110;	its	2’s	complement	is:	1110	1010

3.							–128	to	+127;		–32,768	to	+32,767	(decimal)

4.							-2,147,483,648	to	+2,147,483,647

5.							0x500000	=	0101	0000	0000	0000	0000	0000;

Its	2’s	complement	is:	1011	0000	0000	0000	0000	0000

Section	5.2

1.							C	flag	is	raised	when	there	is	a	carry	out	of	the	result,	but	V	flag	is	raised	when
there	is	a	carry	to	the	sign	bit	and	no	carry	out	of	the	sign	bit	or	when	there	is	no
carry	to	the	sign	bit	and	there	is	a	carry	out	of	the	sign	bit.	C	flag	is	used	to	indicate
overflow	in	unsigned	arithmetic	operations	while	V	flag	is	involved	in	signed
operations.

2.							The	LDRSB	instruction	sign	extends	the	sign	bit	of	a	byte	into	a	word;	the	LDRSH
instruction	sign	extends	the	sign	bit	of	a	half-word	into	a	word.

In	0xF6	the	sign	bit	is	1;	thus,	it	is	sign-extended	into	0xFFFFFFF6

0x124C	sign-extended	into	R1	would	be	R0	=	0x0000124C.

3.							SMULL

	

(a)	BLE	will	jump	if	V	is	the	inverse	of	N,	or	if	Z	=	1.

(b)	BGT	will	jump	if	V	equals	N,	and	if	Z	=	0.

Section	5.3

1.							32

2.							64

3.							0x7F

4.							0x3FF

5.							True

6.							False

	

	



	





Chapter	6:	ARM	Memory	Map,	Memory	Access,	and	Stack
This	 chapter	 discusses	 the	 issue	 of	 memory	 access	 and	 the	 stack.	 Section	 6.1	 is

dedicated	to	ARM	memory	map	and	memory	access.	We	will	also	explain	the	concepts	of
align,	non-align,	little	endian,	and	big	endian	data	access.	In	Section	6.2,	we	examine	the
use	of	the	stack	in	ARM.	We	discuss	the	bit-addressable	(bit-band)	SRAM	and	peripherals
in	Section	6.3.	Advanced	indexed	addressing	mode	is	explained	in	Section	6.4.	In	Section
6.5,	we	describe	the	PC	relative	addressing	mode	and	its	use	 in	 implementing	ADR	and
LDR.





Section	6.1:	ARM	Memory	Map	and	Memory	Access
The	ARM	CPU	uses	32-bit	addresses	to	access	memory	and	peripherals.	This	gives

us	 a	maximum	 of	 4	GB	 (gigabytes)	 of	memory	 space.	 This	 4GB	 of	 directly	 accessible
memory	space	has	addresses	0x00000000	to	0xFFFFFFFF,	meaning	each	byte	is	assigned
a	unique	address	(ARM	is	a	byte-addressable	CPU).		See	Figure	6-1.

Figure	6-1:	Memory	Byte	Addressing	in	ARM

The	4GB	of	memory	space	is	divided	into	three	regions:		code,	data,	and	peripheral
devices.	See	Table	6-1.

Address	range Name Description

0x00000000-
0x1FFFFFFF Code ROM	or	Flash	memory

0x20000000-
0x3FFFFFFF SRAM SRAM	region	used	for	on-chip	RAM

0x40000000-
0x5FFFFFFF Peripheral On-chip	peripheral	address	space

0x60000000-
0x9FFFFFFF RAM Memory,	cache	support

0xA0000000-
0xDFFFFFFF Device Shared	and	non-shared	device	space

0xE0000000-
0xFFFFFFFF System PPB	and	vendor	system	peripherals

Table	6-	1:	Memory	Space	Allocation	in	ARM	Cortex

In	 other	 words,	 the	 ARM	 uses	 the	 memory	 mapped	 I/O.	 For	 the	 ARM
microcontrollers,	generally	the	Flash	ROM	is	used	for	program	code,	SRAM	for	scratch
pad	 data,	 and	 memory-mapped	 I/O	 ports	 for	 peripherals.	 While	 there	 is	 an	 absolute
standard	 for	 the	 ARM	 instructions	 that	 all	 licensees	 of	 ARM	must	 follow,	 there	 is	 no



standard	for	exact	locations	and	types	of	memory	and	peripherals.	Therefore	the	licensees
can	implement	the	memory	and	peripherals	as	they	choose.	For	this	reason	the	amount	and
the	address	locations	of	memory	used	by	Flash	ROM,	SRAM,	and	I/O	peripherals	varies
among	 the	 family	members	 and	 chip	manufacturers.	 The	ARM	manufacturer	 datasheet
should	give	you	the	details	of	the	memory	map	for	both	on-chip	and	off-chip	memory	and
peripherals.	Make	sure	to	examine	the	memory	map	of	a	given	ARM	chip	before	you	start
to	program	it.	From	Table	6-1,	notice	that	some	of	the	memory	addresses	are	set	aside	for
the	 external	 (off-chip)	 memory	 and	 peripherals.	 At	 the	 time	 of	 this	 writing,	 no	 ARM
manufacturer	has	populated	the	entire	4	GB	of	memory	space	with	on-chip	ROM,	RAM,
and	I/O	peripherals.

ARM-based	Motherboards

In	ARM systems	for	Microsoft	Windows,	Unix,	and	Android	operating	systems	the
ARM	motherboards	use	DRAM	for	the	RAM	memory,	just	like	the	x86	and	Pentium	PCs.
As	the	ARM	CPU	is	pushed	into	the	laptop,	desktop,	and	tablets	PCs,	and	the	high	end	of
embedded	 systems	 products	 such	 as	 routers,	we	will	 see	 the	 use	 of	DRAM	 as	 primary
memory	 to	 store	 both	 the	 operating	 systems	 and	 the	 applications.	 In	 such	 systems,	 the
Flash	memory	will	 be	holding	 the	POST	 (power	on	 self	 test),	BIOS	 (basic	 Input/output
systems)	 and	boot	 programs.	 Just	 like	x86	 system,	 such	 systems	have	both	on-chip	 and
off-chip	high	speed	SRAM	for	cache.	Currently,	there	are	ARM	chips	on	the	market	with
some	 on-chip	 Flash	 ROM,	 SRAM,	 and	 memory	 decoding	 circuitry	 for	 connection	 to
external	(off-chip)	memory.	This	off-chip	memory	can	be	SRAM,	Flash,	or	DRAM.	The
datasheet	 for	 such	ARM	chips	provide	 the	details	of	memory	map	 for	both	on-chip	and
off-chip	memories.	Next,	we	examine	the	ARM	buses	and	memory	access.

Figure	6-2:	Memory	Connection	Block	Diagram	in	ARM

D31–D0	Data	bus



The	32-bit	data	bus	of	the	ARM	provides	the	32-bit	data	path	to	the	on-chip	and	off-
chip	memory	and	peripherals.	They	are	grouped	into	8-bit	data	chunks,	D0–D7,	D8–D15,
D16–D23,	and	D24–D31.	

A31–A0

These	 signals	provide	 the	32-bit	 address	path	 to	 the	on-chip	and	off-chip	memory
and	peripherals.	Since	the	ARM	supports	data	access	of	byte	(8	bits),	half	word	(16	bits),
and	 word	 (32	 bits),	 the	 buses	 must	 be	 able	 to	 access	 any	 of	 the	 4	 banks	 of	 memory
connected	to	the	32-bit	data	bus.	The	A0	and	A1	are	used	to	select	one	of	the	4	bytes	of
the	D31-D0	data	bus.	See	Figure	6-3.

Figure	6-3:	Memory	Block	Diagram	in	ARM

AHB	and	APB	buses

The	ARM	CPU	is	connected	 to	 the	on-chip	memory	via	an	AHB	(advanced	high-
performance	bus).	The	AHB	is	used	not	only	for	connection	to	on-chip	ROM	and	RAM,	it
is	also	used	 for	connection	 to	 some	of	 the	high	speed	 I/Os	 (input/output)	 such	as	GPIO
(general	 purpose	 I/O).	 ARM	 chip	 also	 has	 the	 APB	 (advanced	 peripherals	 bus)	 bus
dedicated	 for	 communication	 with	 the	 on-chip	 peripherals	 such	 as	 timers,	 ADC,	 serial
COM,	SPI,	 I2C,	and	other	peripheral	ports.	While	we	need	 the	32-bit	data	bus	between
CPU	and	 the	memory	 (RAM	and	ROM),	many	 slower	 peripherals	 are	 8	 or	 16	 bits	 and
there	 is	 no	need	 for	 entire	 fast	 32-bit	 data	bus	pathway.	For	 this	 reason,	ARM	uses	 the
AHB-to-APB	bridge	to	access	the	slower	on-chip	devices	such	as	peripherals.	Also	since
peripherals	do	not	need	a	high	speed	bus,	a	bridge	between	AHB	and	APB	allows	going
from	the	higher	speed	bus	of	AHB	to	lower	speed	bus	of	peripherals.	The	AHB	bus	allows
a	single-cycle	access.	See	Figure	6-4	for	AHB-to-APB	bridge.



Figure	6-4:	AHB	and	APB	in	ARM

Bus	cycle	time

To	access	a	device	such	as	memory	or	I/O,	the	CPU	provides	a	fixed	amount	of	time
called	a	bus	cycle	time.	During	this	bus	cycle	time,	the	read	or	write	operation	of	memory
or	I/O	must	be	completed.	The	bus	cycle	time	used	for	accessing	memory	is	often	referred
to	as	MC	(memory	cycle)	time.	The	time	from	when	the	CPU	provides	the	addresses	at	its
address	pins	to	when	the	data	is	expected	at	its	data	pins	is	called	memory	read	cycle	time.
While	for	on-chip	memory	the	cycle	time	can	be	1	clock,	in	the	off-chip	memory	the	cycle
time	is	often	2	clocks.	If	memory	is	slow	and	its	access	time	does	not	match	the	MC	time
of	the	CPU,	extra	time	can	be	requested	from	the	CPU	to	extend	the	read	cycle	time.	This
extra	time	is	called	a	wait	state	(WS).	In	the	1980s,	the	clock	speed	for	memory	cycle	time
was	the	same	as	the	CPU’s	clock	speed.	For	example,	in	the	20	MHz	processors,	the	buses
were	working	at	the	same	speed	of	20	MHz.	This	resulted	in	2	×	50	ns	=	100	ns	for	the
memory	cycle	time	(1/20	MHz	=	50	ns).	See	Example	6-1.

Example	6-1

Calculate	the	memory	cycle	time	of	a	50-MHz	bus	system	with

(a)	0	WS,

(b)	1	WS,	and

(c)	2	WS.	

Assume	that	the	bus	cycle	time	for	off-chip	memory	access	is	2	clocks.

	

Solution:

	

1/50	MHz	=	20	ns	is	the	bus	clock	period.	Since	the	bus	cycle	time	of	zero	wait	states	is	2
clocks,	we	have:

	Memory	cycle	time	with	0	WS																			2	×	20	=	40	ns

	Memory	cycle	time	with	1	WS																			40	+	20	=	60	ns



	Memory	cycle	time	with	2	WS																			40	+	2	×	20	=	80	ns

	

It	 is	preferred	 that	 all	 bus	 activities	be	 completed	with	0	WS.	However,	 if	 the	 read	and
write	operations	cannot	be	completed	with	0	WS,	we	request	an	extension	of	the	bus	cycle
time.	This	extension	is	in	the	form	of	an	integer	number	of	WS.		That	is,	we	can	have	1,	2,
3,	and	so	on	WS,	but	not	1.25	WS.

	

When	the	CPU’s	speed	was	under	100	MHz,	the	bus	speed	was	comparable	to	the
CPU	 speed.	 In	 the	 1990s	 the	CPU	 speed	 exploded	 to	 1	GHz	 (gigahertz)	while	 the	 bus
speed	maxed	out	at	around	200	MHz.	The	gap	between	the	CPU	speed	and	the	bus	speed
is	one	of	the	biggest	problems	in	the	design	of	high-performance	systems.	 	To	avoid	the
use	of	too	many	wait	states	in	interfacing	memory	to	CPU,	cache	memory	and	other	high-
speed	DRAMs	are	used.	These	are	discussed	in	Chapters	9	and	10.

Bus	bandwidth

The	 rate	 of	 data	 transfer	 is	 generally	 called	 bus	 bandwidth.	 In	 other	 words,	 bus
bandwidth	 is	 a	 measure	 of	 how	 fast	 buses	 transfer	 information	 between	 the	 CPU	 and
memory	or	peripherals.	The	wider	the	data	bus,	 the	higher	the	bus	bandwidth.	However,
the	advantage	of	the	wider	external	data	bus	comes	at	the	cost	of	increasing	the	die	size	for
system	 on-chip	 (SOC)	 or	 the	 printed	 circuit	 board	 size	 for	 off-chip	memory.	 Now	 you
might	ask	why	we	should	care	how	fast	buses	transfer	information	between	the	CPU	and
outside,	 as	 long	 as	 the	CPU	 is	working	 as	 fast	 as	 it	 can.	 The	 problem	 is	 that	 the	CPU
cannot	process	 information	 that	 it	 does	not	have.	 In	other	words,	 the	 speed	of	 the	CPU
must	be	matched	with	the	higher	bus	bandwidth;	otherwise,	there	is	no	use	for	a	fast	CPU.
This	is	like	driving	a	Porsche	or	Ferrari	 in	first	gear;	 it	 is	a	terrible	under	usage	of	CPU
power.	Bus	 bandwidth	 is	measured	 in	MB	 (megabytes)	 per	 second	 and	 is	 calculated	 as
follows:

bus	bandwidth	=	(1/bus	cycle	time)	×	bus	width	in	bytes

In	 the	 above	 formula,	 bus	 cycle	 time	 can	 be	 for	 both	memory	 and	 I/O	 since	 the
ARM	uses	the	memory	mapped	I/O.	Example	6-2	clarifies	the	concept	of	bus	bandwidth.
As	 can	 be	 seen	 from	 Example	 6-2,	 there	 are	 two	ways	 to	 increase	 the	 bus	 bandwidth:
Either	use	a	wider	data	bus	or	shorten	the	bus	cycle	time	(or	do	both).	That	is	exactly	what
many	processors	have	done.	Again,	 it	must	be	noted	that	although	the	processor’s	speed
can	go	 to	1	GHz	or	higher,	 the	bus	speed	 for	off-chip	memory	 is	 limited	 to	around	200
MHz.	The	reason	for	this	is	that	the	signals	become	too	noisy	for	the	circuit	board	if	they
are	above	100	MHz.

Example	6-2

Calculate	memory	bus	bandwidth	for	the	following	CPU	if	the	bus	speed	is	100	MHz.

	



(a)	ARM	Thumb	with	0	WS	and	1	WS	(16-bit	data	bus)

(b)	ARM	with	0	WS	and	1	WS	(32-bit	data	bus)

Assume	that	the	bus	cycle	time	for	off-chip	memory	access	is	2	clocks.

	

Solution:

	

The	memory	cycle	time	for	both	is	2	clocks,	with	zero	wait	states.	With	the	100	MHz	bus
speed	we	have	a	bus	clock	of	1/100	MHz	=	10	ns.

	

		(a)								Bus	bandwidth	=	(1/(2	×	10	ns))	×	2	bytes	=	100M	bytes/second	(MB/s)

With	1	wait	state,	the	memory	cycle	becomes	3	clock	cycles

3	×	10	=	30	ns	and	the	memory	bus	bandwidth	is	=	(1/30	ns)	×	2	bytes	=	66.6	MB/s

	

(b)							Bus	bandwidth	=	(1/(2	×	10	ns))	×	4	bytes	=	200	MB/s

With	1	wait	state,	the	memory	cycle	becomes	3	clock	cycles

3	×	10	=	30	ns	and	the	memory	bus	bandwidth	is	=	(1/30	ns)	×	4	bytes	=	126.6	MB/s

	

From	the	above	it	can	be	seen	that	the	two	factors	influencing	bus	bandwidth	are:

	

1.	The	read/write	cycle	time	of	the	CPU

2.	The	width	of	the	data	bus

	

Code	memory	region	

The	 4	 GB	 of	 ARM	memory	 space	 is	 organized	 as	 1G	 ×	 32	 bits	 since	 the	 ARM
instructions	are	32-bit.	The	internal	data	bus	of	the	ARM	is	32-bit,	allowing	the	transfer	of
one	 instruction	 into	 the	CPU	every	clock	cycle.	This	 is	one	of	 the	benefits	of	 the	RISC
fixed	instruction	size.	The	fetching	of	an	instruction	in	every	clock	cycle	can	work	only	if
the	code	is	word	aligned,	meaning	each	instruction	is	placed	at	an	address	location	ending
with	0,	4,	8,	or	C.	Example	6-3	shows	the	placement	of	code	in	ARM	memory.	Notice	that
the	code	addresses	go	up	by	4	since	the	ARM	instructions	are	fixed	at	4	bytes	each.	While
compilers	ensure	that	codes	are	word	aligned,	it	is	job	of	the	programmer	to	make	sure	the
data	in	SRAM	is	word	aligned	too.	We	will	examine	this	important	topic	soon.

Example	6-3



Compile	and	debug	the	following	code	in	Keil	and	see	the	placement	of	instructions	in
memory	locations.

AREA					ARMex,	CODE,	READONLY

ENTRY	

MOV					R2,#0x00														;R2=0x00

MOV					R3,#0x35														;R3=0x35

ADD							R4,R3,R2													

END							;Mark	end	of	file

	

Solution

As	you	can	see	in	the	figure,	the	first	MOV	instruction	starts	from	location	0x00000000,
the	second	MOV	instruction	starts	from	location	0x00000004	and	the	ADD	instruction
starts	from	location	0x00000008.

The	following	image	displays	the	first	locations	of	memory.	The	code	of	the	first	MOV
instruction	is	located	in	the	first	word	(four	bytes)	of	memory	which	is	word	aligned.	The
same	rule	applies	for	the	other	instructions.	Note	that	the	code	of	MOV	R2,0	is	E3	A0	20
00	but	00	20	A0	E3	is	stored	in	the	memory.	We	will	discuss	the	reason	in	this	chapter
when	we	focus	on	the	concept	of	big	endian	and	little	endian.	

	

SRAM	memory	region	

A	section	of	the	memory	space	is	used	by	SRAM.	The	SRAM	can	be	on-chip	or	off-
chip	 (external).	The	 same	way	 that	 every	ARM	chip	 has	 some	on-chip	Flash	ROM	 for
code,	a	portion	of	the	memory	region	is	used	by	the	on-chip	SRAM.	This	on-chip	SRAM
is	used	by	the	CPU	for	scratch	pad	to	store	parameters.	It	is	also	used	by	the	CPU	for	the
purpose	of	the	stack.	We	examine	the	stack	usage	by	the	ARM	in	the	next	section.	In	using



the	SRAM	memory	 for	 storing	parameters,	we	must	be	careful	when	 loading	or	 storing
data	 in	 the	 SRAM	 lest	 we	 use	 unaligned	 data	 access.	 Next,	 we	 discuss	 this	 important
issue.		

Data	misalignment	in	SRAM

The	case	of	misaligned	data	has	a	major	effect	on	the	ARM	bus	performance.	If	the
data	is	aligned,	for	every	memory	read	cycle,	 the	ARM	brings	in	4	bytes	of	information
(data	 or	 code)	 using	 the	D31–D0	 data	 bus.	 Such	 data	 alignment	 is	 referred	 to	 as	word
alignment.	 To	make	 data	word	 aligned,	 the	 least	 significant	 digits	 of	 the	 hex	 addresses
must	be	0,	4,	8,	or	C	(in	hex).		

While	the	compilers	make	sure	that	program	codes	(instructions)	are	always	aligned
(Example	 6-3),	 it	 is	 the	 placement	 of	 data	 in	 SRAM	 by	 the	 programmer	 that	 can	 be
nonaligned	 and	 therefore	 subject	 to	 memory	 access	 penalty.	 In	 other	 words,	 the	 single
cycle	access	of	memory	is	also	used	by	ARM	to	bring	into	registers	4	bytes	of	data	every
clock	cycle	assuming	that	the	data	is	aligned.	To	make	sure	that	data	are	also	aligned	we
use	the	align	directive.	The	use	of	align	directive	for	RAM	data	makes	sure	that	each	word
is	located	at	an	address	location	ending	with	address	of	0,	4,	8,	or	C.	If	our	data	is	word
size	(using	DCDU	directive)	then	the	use	of	align	directive	at	the	start	of	the	data	section
guaranties	all	the	data	placements	will	be	word	aligned.	When	a	word	size	data	is	defined
using	the	DCD	directive,	the	assembler	aligns	it	to	be	word	aligned.

Accessing	non-aligned	data

As	 we	 have	 stated	 many	 times	 before,	 ARM	 defines	 32-bit	 data	 as	 a	 word.	 The
address	of	a	word	can	start	at	any	address	location.	For	example,	in	the	instruction	“LDR
R1,[R0]”	if	R0	=	0x20000004,	the	address	of	the	word	being	fetched	into	R1	starts	at	an
aligned	address.	In	the	case	of	“LDR	R1,[R0]”		if	R0	=	0x20000001	the	address	starts	at	a
non-aligned	 address.	 In	 systems	 with	 a	 32-bit	 data	 bus,	 accessing	 a	 word	 from	 a	 non-
aligned	addressed	location	can	be	slower.	This	issue	is	important	and	applies	to	all	32-bit
processors.				

	 In	 the	 8-bit	 system,	 accessing	 a	 word	 (4	 bytes)	 is	 treated	 like	 accessing	 four
consecutive	 bytes	 regardless	 of	 the	 address	 location.	 Since	 accessing	 a	 byte	 takes	 one
memory	 cycle,	 accessing	 4	 bytes	 will	 take	 4	 memory	 cycles.	 In	 the	 32-bit	 system,
accessing	a	word	with	an	aligned	address	takes	one	memory	cycle.	That	is	because	each
byte	is	carried	on	its	own	data	path	of	D0–D7,	D8–D15,	D16–D23,	and	D24–D31	in	the
same	memory	cycle.	However,	accessing	a	word	with	a	non-aligned	address	requires	two
memory	 cycles.	 For	 example,	 see	 how	 accessing	 the	word	 in	 the	 instruction	 “LDR	R1,
[R0]”	 works	 as	 shown	 in	 Figure	 6-5.	 As	 a	 case	 of	 aligned	 data,	 assume	 that	 R0	 =
0x80000000.	 In	 this	 instruction,	 4	 bytes	 contents	 of	 memory	 locations	 0x80000000
through	 0x80000003	 are	 being	 fetched	 in	 one	 cycle.	 In	 only	 one	 cycle,	 the	ARM	CPU
accesses	locations	0x80000000	through	0x80000003	and	puts	it	in	R1.



Figure	6-5:	Memory	Access	for	Aligned	and	Non-aligned	Data

Now	 assuming	 that	 R0	 =	 0x80000001	 in	 this	 instruction,	 8	 bytes	 contents	 of
memory	locations	0x80000000	through	0x80000007	are	being	fetched	in	two	consecutive
cycles	but	only	4	bytes	of	it	are	used.	In	the	first	cycle,	the	ARM	CPU	accesses	locations
0x80000000	 through	 0x80000003	 and	 puts	 them	 in	 R1	 only	 the	 desired	 three	 bytes	 of
locations	0x800000001	through	0x80000003.	In	the	second	cycle,	the	contents	of	memory
locations	 0x8000004	 through	 0x80000007	 are	 accessed	 and	 only	 the	 desired	 byte	 of
0x80000004	is	put	into	R1.	See	Example	6-4.

Example	6-4

Show	the	data	transfer	of	the	following	cases	and	indicate	the	number	of	memory	cycle
times	it	takes	for	data	transfer.	Assume	that	R2	=	0x4598F31E.

LDR								R1,=0x40000000																;R1=0x40000000

LDR								R2,=0x4598F31E																;R2=0x4598F31E

STR									R2,[R1]																	;Store	R2	to	location	0x40000000

ADD							R1,R1,#1														;R1	=	R1	+	1	=	0x40000001

STR									R2,[R1]																	;Store	R2	to	location	0x40000001

ADD							R1,R1,#1														;R1	=	R1	+	1	=	0x40000002

STR									R2,[R1]																	;Store	R2	to	location	0x40000002

ADD							R1,R1,#1														;R1	=	R1	+	1	=	0x40000003

STR									R2,[R1]																	;Store	R2	to	location	0x40000003

Solution:

For	the	first	STR	R2,[R1]	instruction,	the	entire	32	bits	of	R2	is	stored	into	locations	with



addresses	 of	 0x40000000,	 0x40000001,	 0x40000002,	 and	 0x40000003,	 The	 4-byte
content	 of	 register	 R2	 is	 stored	 into	 memory	 locations	 with	 starting	 address	 of
0x40000000	 via	 the	 32-bit	 data	 bus	 of	 D31–D0.	 This	 address	 is	 word	 aligned	 since
address	 of	 the	 least	 significant	 digit	 is	 0.	 Therefore,	 it	 takes	 only	 one	memory	 cycle	 to
transfer	the	32-bit	data.

For	the	second	STR	R2,[R1]	instruction,	in	the	first	memory	cycle,	the	lower	24	bits	of	R2
is	 stored	 into	 locations	 0x40000001,	 0x40000002,	 and	 0x40000003.	 In	 the	 second
memory	cycle,	the	upper	8	bits	of	R2	is	stored	into	the	0x40000004	location.

For	the	third	STR	R2,[R1]	instruction,	in	the	first	memory	cycle,	the	lower	16	bits	of	R2	is
stored	into	locations	0x40000002	and	0x40000003.	In	the	second	memory	cycle,	the	upper
16	bits	of	R2	is	stored	into	locations	0x40000004	and	0x40000005.

For	the	fourth	STR	R2,[R1]	instruction,	in	the	first	memory	cycle,	the	lower	8	bits	of	to
R2	is	stored	into	locations	0x40000003.	In	the	second	memory	cycle,	the	upper	24	bits	of
R2	is	stored	into	the	locations	0x40000004,	0x40000005,	and	0x40000006.

	

The	lesson	to	be	 learned	from	this	 is	 to	 try	not	 to	put	any	words	on	a	non-aligned
address	 location	 in	a	32-bit	 system.	 Indeed	 this	 is	 so	 important	 that	directive	ALIGN	 is
specifically	designed	for	this	purpose.	Next,	we	discuss	the	issue	of	aligned	data.

Using	LDR	instruction	with	DCD	and	ALIGN	directives

The	DCD	and	DCDU	directives	are	used	for	32-bit	(word)	data.	The	DCD	directive



ensures	32-bit	data	types	are	aligned,	in	contrast	to	DCDU	which	does	not.	DCD	is	used
as	follows:

VALUE1																DCD							0x99775533

This	 ensures	 that	 VALUE1,	 a	 word-sized	 operand,	 is	 located	 in	 a	 word	 aligned
address	 location.	 Therefore,	 an	 instruction	 accessing	 it	 will	 take	 only	 a	 single	memory
cycle.	Since	performance	of	the	CPU	depends	on	how	fast	it	can	fetch	the	data	we	must
ensure	 that	any	memory	access	 reading	32-bit	data	 is	done	 in	a	single	clock	cycle.	This
means	we	must	make	sure	all	32-bit	data	are	word	aligned.	This	is	so	important	that	ARM
has	 an	 interrupt	 (exception)	 dedicated	 to	misaligned	data,	meaning	 any	 time	 it	 accesses
misaligned	 data,	 it	 lets	 us	 know	 that	 there	 is	 a	 problem.	 The	 one-time	 use	 of	 ALIGN
directive	at	the	beginning	of	data	area	using	DCDU	makes	the	data	aligned	for	that	group
of	data.

Using	LDRH	with	DCW	and	ALIGN	directives

The	problem	of	misaligned	data	is	also	an	issue	when	the	data	size	is	in	half-words
(16-bit).	In	many	cases	using	DCWU,	we	must	use	the	ALIGN	directive	multiple	times	in
the	data	area	of	a	given	program	to	ensure	they	are	aligned.	This	is	in	contrast	to	the	DCW
directive	which	ensures	data	type	to	be	half-word	aligned.	This	is	especially	the	case	when
we	 use	 the	 LDRH	 instruction.	 See	 Example	 6-5.	 Aligned	 data	 is	 also	 an	 issue	 for	 the
Thumb	version	of	the	ARM.

Example	6-5

Show	the	data	transfer	of	the	following	LDRH	instructions	and	indicate	the	number	of
memory	cycle	times	it	takes	for	data	transfer.

LDR								R1,=0x80000000																;R1=0x80000000

LDR								R3,=0xF31E4598																;R3=0xF31E4598

LDR								R4,=0x1A2B3D4F														;R4=0x1A2B3D4F

STR									R3,[R1]

;(STR	R3,[R1])stores	R3	to	location	0x80000000

STR									R4,[R1,#4]

;(STR	R4,[R1+4])	stores	R4	to	location	0x80000004

LDRH					R2,	[R1]			

;loads	two	bytes	from	location	0x80000000	to	R2														

LDRH					R2,	[R1,#1]

;loads	two	bytes	from	location	0x80000001	to	R2

LDRH					R2,	[R1,#2]

;loads	two	bytes	from	location	0x80000002	to	R2



LDRH					R2,	[R1,#3]

;loads	two	bytes	from	location	0x80000003	to	R2

	

Solution:

	

In	the	LDRH	R2,[R1]		instruction,	locations	with	addresses	of	0x80000000,	0x80000001,
0x80000002,	and	0x80000003	are	accessed	but	only	0x80000000	and	0x80000001	are
used	to	get	the	16	bits	to	R2.		This	address	is	halfword	aligned	since	the	least	significant
digit	is	0.	Therefore,	it	takes	only	one	memory	cycle	to	transfer	the	data.	Now,
R2=0x00004598

For	the	LDRH	R2,[R1,#1],	instruction,	locations	with	addresses	of	0x80000000,
0x80000001,	0x80000002,	and	0x80000003	are	accessed,	but	only	0x80000001	and
0x80000002	are	used	to	get	the	16	bits	to	R2.	Therefore,	it	takes	only	one	memory	cycle
to	transfer	the	data.	Now,	R2=0x00001E45.

For	the	LDRH	R2,[R1,#2],	instruction,	locations	with	addresses	of	0x80000000,
0x80000001,	0x80000002,	and	0x80000003	are	accessed,	but	only	0x80000002	and
0x80000003	are	used	to	get	the	16	bits	to	R2.	Therefore,	it	takes	only	one	memory	cycle
to	transfer	the	data.	Now,	R2=0x0000F31E.

For	the	LDRH	R2,[R1,#3]	instruction,	in	the	first	memory	cycle,	locations	with	addresses
of	0x80000000,	0x80000001,	0x80000002,	and	0x80000003	are	accessed,	but	only
0x80000003	is	used	to	get	the	lower	8	bits	to	R2.	In	the	second	memory	cycle,	the	address
locations		0x80000004,	0x80000005,	0x80000006,	and	0x80000007	are	accessed	where
only	the	0x80000004	location	is	used	to	get	the	upper	8	bits	to	R2.	Now,	R2=0x00004FF3.



	

Using	LDRB	with	DCB	and	ALIGN	directives

The	problem	of	misaligned	data	does	not	exist	when	the	data	size	is	bytes.	In	cases
such	 as	 using	 the	 string	 of	 ASCII	 characters	 with	 the	DCB	 directive,	 accessing	 a	 byte
takes	 the	 same	 amount	 of	 time	 (one	 memory	 cycle)	 as	 an	 aligned	 word	 (4	 bytes),
regardless	of	the	address	location	of	the	data.	The	only	problem	with	the	LDRB	is	it	brings
into	the	CPU	only	a	single	byte	of	data	in	each	memory	cycle	instead	of	4	bytes	if	LDR	is.
See	Example	6-6.

Example	6-6

Show	the	data	transfer	of	the	following	LDRB	instructions	and	indicate	the	number	of
memory	cycle	times	it	takes	for	data	transfer.	

LDR								R1,=0x80000000																;R1=0x80000000

LDR								R3,=0xF31E4598																;R3=0xF31E4598

LDR								R4,=0x1A2B3D4F														;R4=0x1A2B3D4F

STR									R3,[R1]

;Store	R3	to	location	0x80000000

STR									R4,[R1,#4]										

;(STR	R4,[R1+4])	Store	R4	to	location	0x80000004

																LDRB						R2,[R1]

;load	one	byte	from	location	0x80000000	to	R2

																LDRB						R2,[R1,#1]										

;(LDRB	R2,[R1+1])	load	one	byte	from	location	0x80000001

																LDRB						R2,[R1,#2]										

;(LDRB	R2,[R1+2])	load	one	byte	from	location	0x80000002

																LDRB						R2,[R1,#3]										

;(LDRB	R2,[R1+3])	load	one	byte	from	location	0x80000003

	

Solution:

	

In	the	LDRB	R2,[R1]	instruction,	locations	with	addresses	of	0x80000000,	0x80000001,
0x80000002,	and	0x80000003	are	accessed	but	only	0x80000000	is	used	to	get	the	8	bits
to	 R2.	 	 Therefore,	 it	 takes	 only	 one	 memory	 cycle	 to	 transfer	 the	 data.	 Now,
R2=0x00000098.



In	 the	 LDRB	 R2,[R1,#1]	 instruction,	 locations	 with	 addresses	 of	 0x80000000,
0x80000001,	0x80000002,	and	0x80000003	are	accessed	but	only	0x80000001	is	used	to
get	the	8	bits	to	R2.		Therefore,	it	takes	only	one	memory	cycle	to	transfer	the	data.	Now,
R2=0x00000045.

In	 the	 LDRB	 R2,[R1,#2]	 	 instruction,	 locations	 with	 addresses	 of	 0x80000000,
0x80000001,	0x80000002,	and	0x80000003	are	accessed	but	only	0x80000002	is	used	to
get	the	8	bits	to	R2.		Therefore,	it	takes	only	one	memory	cycle	to	transfer	the	data.	Now,
R2=0x0000001E.

In	 the	 LDRB	 R2,[R1,#3]	 instruction,	 locations	 with	 addresses	 of	 0x80000000,
0x80000001,	0x80000002,	and	0x80000003	are	accessed	but	only	0x80000003	is	used	to
get	the	8	bits	to	R2.		Therefore,	it	takes	only	one	memory	cycle	to	transfer	the	data.	Now,
R2=0x000000F3.

	

Peripheral	region

Table	 6-1	 showed	 a	 section	 of	 memory	 is	 set	 aside	 for	 peripherals.	 The	 type	 of
peripherals	 and	 memory	 address	 locations	 used	 is	 unique	 to	 a	 vendor.	 The	 ARM
manufacturers	provide	the	details	of	memory	map	for	the	peripherals.	If	you	examine	the
manufacturer	data	sheet	you	will	see	that	they	use	aligned	addresses	to	make	sure	there	is
no	clock	penalty	for	accessing	them.

Little	Endian	vs.	Big	Endian	war

In	 storing	 data,	 the	 ARM	 follows	 the	 little	 endian	 convention.	 The	 little	 endian
places	 the	 least	 significant	 byte	 (little	 end	 of	 the	 data)	 in	 the	 low	 address	 and	 the	 big
endian	 is	 the	 opposite.	 The	 origin	 of	 the	 terms	 big	 endian	 and	 little	 endian	 is	 from	 a
Gulliver’s	Travels	story	about	how	an	egg	should	be	opened:	from	the	big	end	or	the	little
end.	ARM	supports	both	little	and	big	endian.	In	ARM	little	endian	is	the	default.	Some
ARM	chip	manufacturers	provide	an	option	for	changing	it	to	big	endian.	See	Example	6-
7	to	understand	little	endian	and	big	endian	data	storage.

Example	6-7

Show	how	data	is	placed	after	execution	of	the	following	code	using

a)	little	endian	and

b)	big	endian.

LDR								R2,=0x7698E39F																;R2=0x7698E39F

LDR								R1,=0x80000000

STR									R2,[R1]

Solution:

	



a)	For	little	endian	we	have:

		Location	80000000	=	(9F)

		Location	80000001	=	(E3)

		Location	80000002	=	(98)

		Location	80000003	=	(76)

b)	For	big	endian	we	have:

		Location	80000000	=	(76)

		Location	80000001	=	(98)

		Location	80000002	=	(E3)

		Location	80000003	=	(9F)

	

In	Example	6-7,	notice	how	the	least	significant	byte	(the	little	end	of	the	data)	0x9F
goes	to	the	low	address	0x80000000,	and	the	most	significant	byte	of	the	data	0x76	goes
to	 the	high	address	0x80000003.	This	means	 that	 the	 little	 end	of	 the	data	goes	 in	 first,
hence	the	name	little	endian.	In	 the	ARM	with	big	endian	option	enabled,	data	 is	stored
the	opposite	way:	The	big	end	(most	significant	byte)	goes	into	the	low	address	first,	and
for	this	reason	it	is	called	big	endian.	Many	of	recent	RISC	processors	allow	selection	of
mode,	big	endian	or	little	endian.

Harvard	Architecture	and	ARM

In	 recent	 years	many	ARM	manufacturers	 are	 using	 the	 Harvard	 architecture	 for
ARM	CPUs.	Old	ARM	 architectures	 up	 to	ARM7	 use	Von	Neumann	 architecture.	 The
Harvard	architecture	feeds	the	CPU	with	both	code	and	data	at	the	same	time	via	two	sets
of	buses,	one	for	code	and	one	for	data.	This	increases	the	processing	power	of	the	CPU



since	it	can	bring	in	more	information.

Figure	6-6:	Von	Neumann	vs.	Harvard	Architecture

Review	Questions

1.							In	ARM,	all	the	instructions	are	___bytes?

2.							Who	makes	sure	that	instruction	are	aligned	on	word	boundary?

3.							In	ARM,	the	_____	endian	is	the	default.

4.							A	66 MHz	system	has	a	memory	cycle	time	of		_____	ns	if	it	is	used	with	a	zero
wait	state.

5.							To	interface	a	100 MHz	processor	to	a	50 ns	access	time	ROM,	how	many	wait
states	are	needed?

6.							True	or	false.	ARM	uses	big	endian	format	when	is	powered	up.





Section	6.2:	Stack	and	Stack	Usage	in	ARM
The	stack	 is	a	 section	of	RAM	used	by	 the	CPU	 to	store	 information	 temporarily.

This	information	could	be	data	or	an	address	or	CPU	registers	when	calling	a	subroutine.
Stack	 is	 also	widely	 used	when	 executing	 an	 interrupt	 service	 routine	 (ISR).	 The	CPU
needs	this	storage	area	because	there	are	only	a	limited	number	of	registers.

How	stacks	are	accessed

If	the	stack	is	a	section	of	RAM,	there	must	be	a	register	inside	the	CPU	to	point	to
it.	In	the	ARM	CPU	the	register	used	to	access	the	stack	is	R13.

The	storing	of	CPU	information	such	as	the	registers	on	the	stack	is	called	a	PUSH,
and	 loading	 the	contents	of	 the	stack	back	 into	a	CPU	register	 is	called	a	POP.	 In	other
words,	a	register	is	pushed	onto	the	stack	to	save	it	and	popped	off	the	stack	to	retrieve	it.
The	following	describes	each	process.

Pushing	onto	the	stack

The	stack	pointer	(SP)	points	to	the	top	of	the	stack	(TOS).	In	the	ARM	register	R13
is	designated	as	stack	pointer.	As	we	push	(store)	data	onto	the	stack,	the	data	are	saved	in
SRAM (where	the	SP	points	to)	and	SP	must	be	decremented	(or	incremented)	to	point	to
the	 next	 location.	 In	 the	 ARM	 we	 have	 a	 choice	 of	 either	 incrementing	 the	 SP	 or
decrementing	 it.	Notice	 that	 this	 is	 different	 from	many	 other	microprocessors,	 notably
x86	processors,	 in	which	 the	SP	is	decremented	automatically	when	data	 is	pushed	onto
the	 stack.	Again	 it	must	 be	 emphasized	 that	while	 in	 traditional	CPUs	 such	 as	 x86,	 the
stack	pointer	is	decremented	automatically	by	the	CPU	itself,	in	the	ARM	CPU	we	must
actually	code	the	instruction	for	stack	pointer	decrementation	(or	incrementation)	for	that
matter.	Therefore,	to	push	a	register	onto	stack	we	use	the	STR	and	SUB	instructions	as
shown	in	the	following	code:

STR									Rr,[R13]																;Rr	can	be	any	registers	(R0-R12)

SUB								R13,R13,#4										;decrement	stack	pointer

For	example,	to	store	the	value	of	R1	we	can	write	the	following	instructions:

STR									R1,[R13]															;store	R1	onto	the	stack,

SUB								R13,R13,#4										;and	decrement	SP

Popping	from	the	stack

Popping	(loading)	the	contents	of	the	stack	back	into	a	given	register	is	the	opposite
process	of	pushing.	When	 the	POP	 is	executed,	 the	SP	 is	 incremented	 (or	decremented)
and	 the	 top	 location	of	 the	stack	 is	copied	 (loaded)	back	 to	 the	 register.	That	means	 the
stack	is	LIFO	(Last-In-First-Out)	memory.

To	retrieve	data	from	stack	we	can	use	the	LDR	instruction.

ADD							R13,R13,#4										;increment	stack	pointer

LDR								Rr,[R13]																;Rr	can	any	of	the	registers	(R0-R13)



For	example,	the	following	instructions	pop	from	the	top	of	stack	and	copy	to	R1:

ADD							R13,R13,#4										;increment	SP

LDR								R1,	[R13]														;load	(POP)	the	top	of	stack	to	R1

Initializing	the	stack	pointer	in	ARM

When	 the	ARM	is	powered	up,	 the	R13	(SP)	 register	contains	value	0.	Therefore,
we	must	initialize	the	SP	at	the	beginning	of	the	program	so	that	it	points	to	somewhere	in
the	 internal	 SRAM.	 In	 ARM,	 we	 can	 make	 the	 stack	 to	 grow	 from	 a	 higher	 memory
location	to	a	lower	memory	location.	In	this	case	when	we	push	(store)	onto	the	stack	the
SP	is	decremented.	We	can	also	make	the	stack	to	grow	from	a	lower	memory	location	to
a	 higher	 memory	 location,	 therefore	 when	 we	 push	 (store)	 onto	 the	 stack,	 the	 SP	 is
incremented.	 It	 is	 common	 to	 initialize	 the	 SP	 to	 the	 uppermost	RAM	memory	 region,
which	means	as	we	push	data	onto	the	stack,	the	stack	pointer	must	be	decremented.

Different	 ARMs	 have	 different	 amounts	 of	 RAM.	 In	 some	 ARM	 assembler
Stack_Top	represents	the	address	of	top	of	the	stack.	So,	if	we	want	to	initialize	the	SP,	we
can	simply	load	Stack_Top	into	 the	SP.	Notice	 that	SP	(R13)	 is	a	32-bit	 register.	So,	we
can	use	any	32-bit	address	of	SRAM	as	a	stack	section.

Example 6-8	shows	how	to	initialize	the	SP	and	use	the	store	and	load	instructions
for	PUSH	and	POP	operations.

Example	6-8

The	following	ARM	program	places	some	data	into	registers	and	calls	a	subroutine	that
uses	the	same	registers.	It	shows	how	to	use	the	stack.	Examine	the	stack,	stack	pointer,
and	the	registers	used	after	the	execution	of	each	instruction.	

;initialize	the	SP	to	point

;to	the	last	location	of	RAM	(Stack_Top)

;Assume	Stack_Top	=	0xFF8

LDR								R13,=Stack_Top																;load	SP

LDR								R0,=0x125											;R0	=	0x125

LDR								R1,=0x144											;R1	=	0x144

MOV					R2,#0x56														;R2	=	0x56

BL											MY_SUB														;call	a	subroutine

ADD							R3,R0,R1													

;R3	=	R0	+	R1	=	0x125	+	0x144	=	0x269

ADD							R3,R3,R2													

;R3	=	R3	+	R2	=	0x269	+	0x56	=	0x2BF

HERE						B													HERE																						;stay	here



;–––––––––	

MY_SUB

;––––––-

;save	R0,	R1,	and	R2	on	stack

;before	they	are	used	by	a	loop

STR									R0,[R13]															;save	R0	on	stack

SUB								R13,R13,#4									

;R13	=	R13	-	4,	to	decrement	the	stack	pointer

STR									R1,[R13]															;save	R1	on	stack

SUB								R13,R13,#4									

;R13	=	R13	-	4,	to	decrement	the	stack	pointer

STR									R2,[R13]															;save	R2	on	stack

SUB								R13,R13,#4									

;R13	=	R13	-	4,	to	decrement	the	stack	pointer

;––—R0,R1,	and	R2	are	changed

MOV					R0,#0																					;R0	=	0

MOV					R1,#0																					;R1	=	0

MOV					R2,#0																					;R2	=	0

;––––––––––––––

;restore	the	original	registers	contents	from	stack

ADD							R13,R13,#4									

;R13	=	R13	+	4	to	increment	the	stack	pointer

LDR								R2,[R13]															;restore	R2	from	stack

ADD							R13,R13,#4									

;R13	=	R13	+	4	to	increment	the	stack	pointer

LDR								R1,[R13]															;restore	R1	from	stack

ADD							R13,R13,#4									

;R13	=	R13	+	4	to	increment	the	stack	pointer

LDR								R0,[R13]															;restore	R0	from	stack

	

BX											LR																											;return	to	caller



	

Solution:

After	the
execution	of

Contents	of	some	the	registers

(in	Hex) Stack

R0 R1 R2 SP	(R13)

LDR	R13,=0xFF8 0 0 0 FF8

LDR	R0,=0x125

LDR	R1,=0x144

LDR	R2,=0x56

125 144 56 FF8

STR	R0,[R13]

SUB	R13,R13,#4
125 144 56 FF4

STR	R1,[R13]

SUB	R13,R13,#4
125 144 56 FF0

STR	R2,[R13]

SUB	R13,R13,#4
125 144 56 FEC

MOV	R0,#0

MOV	R1,#0

MOV	R2,#0

0 0 0 FEC

ADD	R13,R13,#4

LDR	R2,[R13]
0 0 56 FF0

ADD	R13,R13,#4

LDR	R1,[R13]
0 144 56 FF4



ADD	R13,R13,#4

LDR	R0,[R13]
125 144 56 FF8

	

The	stack	limit	and	nested	calls	in	ARM

As	mentioned	earlier,	we	can	define	the	stack	anywhere	in	the	read/write	memory.
So,	in	the	ARM	the	stack	can	be	as	big	as	its	RAM.	In	ARM,	the	stack	is	used	for	calls
and	interrupts.	We	must	remember	that	upon	calling	a	subroutine	from	the	main	program
using	 the	BL	 instruction,	R14,	 the	 linker	 register,	keeps	 track	of	where	 the	CPU	should
return	after	completing	the	subroutine.	Now,	if	we	have	another	call	inside	the	subroutine
using	the	BL	instruction,	then	it	is	our	job	to	store	the	original	R14	on	the	stack.	Failure	to
do	that	will	end	up	crashing	the	program.	For	this	reason,	we	must	be	very	careful	when
manipulating	the	stack	contents.	

Using	LDM	and	STM	instructions	for	the	stack

Another	way	to	push	register	contents	onto	the	stack	is	to	use	STM	(store	multiple)
and	LDM	(load	multiple)	instructions.	In	many	interrupt	and	multitasking	applications	we
need	to	save	the	contents	of	multiple	registers	on	the	stack	and	restore	them	back.	Pushing
the	registers	onto	the	stack	one	register	at	a	time	is	time	consuming.	For	this	reason	ARM
has	 the	STM	and	LDM	instructions.	The	STM	and	LDM	allow	to	store	(push)	and	 load
(pop)	multiple	 registers	with	 a	 single	 instruction.	Next,	we	explain	 each	 instruction	 and
how	it	is	used.

STM	

Below	shows	the	syntax	for	the	STM.	Notice	we	can	specify	the	number	of	registers
to	 be	 stored	 and	 destination	 RAM	 address	 (pointer)	 to	 which	 the	 data	 is	 pushed	 onto.
Examine	the	following	instructions:				

STM							R11,{R0-R3}							

;Store	R0	through	R3	onto	memory	pointed	to	by	R11

STM							R8,{R0-R7}										

;Store	R0	through	R7	onto	memory	pointed	to	by	R8

STM							R7,{R0,R3,R5}				

;Store	R0,	R3,	R5	onto	memory	pointed	to	by	R7

STM							R11,{R0-R10}					

;Store	R0	through	R10	onto	memory	pointed	to	by	R11

LDM

Below	shows	the	syntax	for	the	LDM.	Notice	we	can	specify	the	number	of	registers



to	be	loaded	and	destination	RAM	address	(pointer)	from	which	the	data	is	popped	from.
Examine	the	following	instructions:

LDM	R11,{R0-R3}													

;Load	R0	through	R3	from	memory	pointed	to	by	R11

LDM	R8,{R0-R7}															

;Load	R0	through	R7	from	memory	pointed	to	by	R8

LDM	R7,{R0,R3,R5}									

;Load	R0,R3,R5	from	memory	pointed	to	by	R7

LDM	R11,{R0-R10}											

;Load	R0	through	R10	from	memory	pointed	to	by	R11

Example	6-9	shows	how	we	can	use	STM	and	LDM	to	simplify	a	code	and	prevent
unwanted	errors.

Example	6-9

Modify	the	Example	6-8	using	the	LDM	and	STM	instructions.

	

Solution:

;initialize	the	SP	to	point	to

;the	last	location	of	RAM	(Stack_Top)

;Assume	Stack_Top	=	0xFF8

LDR								R13,=Stack_Top																;load	SP

LDR								R0,=0x125											;R0	=	0x125

LDR								R1,=0x144											;R1	=	0x144

MOV					R2,#0x56														;R2	=	0x56

BL											MY_SUB														;call	a	subroutine

ADD							R3,R0,R1														;R3	=	R0	+	R1

;		=	0x125	+	0x144	=	0x269

ADD							R3,R3,R2														;R3	=	R3	+	R2

																																																;		=	0x269	+	0x56	=	0x2BF

HERE						B													HERE																						;stay	here

;–––––––––	

MY_SUB



;–––––––––

;save	R0,R1,	and	R2	on	stack

;before	they	are	used	by	a	loop

STM							R13,{R0-R2}								;save	R0,R1,R2	on	stack

SUB								R13,R13,#12

;––—R0,R1,	and	R2	are	changed

MOV					R0,#0																				;R0=0

MOV					R1,#0																				;R1=0

MOV					R2,#0																				;R2=0

;–––

;restore	the	original	registers	contents	from	stack

ADD							R13,R13,#12

LDM							R13,{R0-R2}								;restore	R0,R1,	and	R2	from	stack

BX											LR																											;return	to	caller

;–––-

	

We	can	also	use	the	PUSH	and	POP	pseudo-instructions	to	do	the	same	thing.

Copying	a	block	of	data	with	LDM	and	STM	

To	 copy	 a	 block	 of	 data,	 we	 bring	 into	 the	 CPU’s	 register	 a	 word	 of	 data	 from
memory	and	then	copy	it	from	the	register	to	a	location	in	RAM.	In	that	case	we	copy	one
word	(4	bytes)	at	a	time.	So	to	copy	16	words	we	have	to	set	a	counter	to	16	for	a	loop
iteration.	We	 can	 use	 the	LDM	and	STM	 to	 do	 the	 same	 thing	with	much	 less	 coding.
Using	 LDM	 and	 STM	 instructions	 to	 copy	 a	 block	 of	 data,	 we	 need	 a	 register	 for	 the
source	address	and	another	one	for	the	destination	address.	Program	6-1	uses	R11	and	R12
for	 source	 and	 destination	 addresses,	 respectively.	 The	 registers	 R0–R9	 are	 used	 as
temporary	place	for	data	before	they	are	copied	to	the	destination.	That	gives	us	10	words
(40	bytes)	transfer	at	a	time.	Notice	that	in	the	STM	and	LDM	instructions,	registers	are
transferred	to	or	from	memory	in	the	order	of	the	lowest	to	highest,	so	R0	will	always	be
transferred	to	or	from	a	location	lower	than	the	location	of	R1	in	the	memory	and	so	on.
That	is	why	we	should	not	be	worrying	about	the	order	of	registers	in	the	stack	when	we
use	STM	and	LDM	and	it	is	not	needed	to	PUSH	and	POP	registers	in	opposite	order	as	is
common	in	normal	POP	and	PUSH	instructions.

Program	6-1:	Copying	a	Block	of	Memory

This	program	copies	a	block	of	10	words	(40	bytes)	memory	from	source	to	destination.
The	registers	R11	and	R12	are	used	for	source	and	destination	addresses.



	

AREA					PROG6_1,	CODE,	READONLY																												

ENTRY	

LDM							R11,{R0-R9}			;Load	R0	thru	R9	from	memory	pointed	to	by	R11

STM							R12,{R0-R9}			;Store	R0	thru	R9	to	memory	pointed	to	by	R12

END

Review	Questions

1.							The	______	register	is	the	default	stack	pointer.

2.							How	deep	is	the	size	of	the	stack	in	the	ARM?

3.							Write	a	program	that	pushes	R5,	R6,	R7,	and	R8	into	the	stack.

4.							Write	a	program	that	pops	R5,	R6,	R7,	and	R8	from	the	stack.

5.							What	does	the	following	program	do?

LDR								R5,=0x40000000

LDM							R5,{R1,R4}

LDR								R5,=0x50000000

STM							R5,{R1,R4}





Section	6.3:	ARM	Bit-Addressable	Memory	Region
Many	microprocessors	allow	programs	to	access	memory	and	I/O	ports	in	byte	size

increments	only.	In	other	words,	if	you	need	to	check	a	single	bit	of	an	I/O	port,	you	must
read	the	entire	byte	first	and	then	manipulate	the	whole	byte	with	some	logic	instructions
to	get	hold	of	the	desired	bit.	This	is	not	the	case	with	ARM	microprocessors.	Indeed,	one
of	the	most	important	features	of	the	CPU	is	the	ability	to	access	the	RAM	and	I/O	ports
in	bits	 instead	of	bytes.	This	 is	a	very	 important	and	powerful	 feature	of	 the	ARM	used
widely	in	the	embedded	system	design	and	applications.	In	this	section	we	show	address
assignment	of	bits	of	I/O	and	RAM,	in	addition	to	ways	of	programming	them.			

Bit-addressable	(bit-band)	SRAM

Of	the	4GB	memory	space	of	the	ARM,	a	number	of	bytes	are	bit-addressable.	The
ARM	literature	refers	to	this	region	as	the	bit-band	region.	Since	the	ARM	instruction	is
32-bit	and	the	CPU	executes	code	one	instruction	at	a	time,	the	code	(Flash	ROM)	space	is
always	word	size	and	word	aligned,	as	we	have	seen	throughout	the	chapters.	That	means
the	bit-addressable	regions	must	be	located	in	SRAM	and	I/O	peripherals	regions.	The	bit-
addressable	RAM	and	 I/O	 locations	 vary	 among	 the	 family	members	 and	 vendors.	The
ARM	 generic	 manual	 defines	 the	 location	 addresses	 of	 bit-band	 as	 0x20000000	 to
0x200FFFFF	for	SRAM	and	0x40000000	to	0x400FFFFF	for	peripherals.	Notice	they	are
located	at	the	lowest	1	MB	address	space	of	SRAM	and	peripherals.	See	Table	6-1.	It	must
be	 also	noted	 that	 the	bit-band	 (bit-addressable)	 regions	 are	 the	only	 region	 that	 can	be
accessed	in	both	bit	and	byte/halfword/word	formats	while	the	other	area	of	memory	must
be	accessed	in	byte/halfword/word	size.	In	other	words,	the	memory	space	region	outside
of	 the	 bit-band	 must	 always	 be	 accessed	 in	 byte/halfword/word	 formats	 only.	 For	 the
ARM	Cortex-M,	the	bit-band	SRAM	has	addresses	of	0x20000000	to	0x200FFFFF.	This
1M	bytes	bit-addressable	region	is	given	alias	addresses	of	0x22000000	to	0x23FFFFFF.
Therefore,	 the	bit	addresses	0x22000000	 to	0x2200001F	are	 for	 the	 first	byte	of	SRAM
location	0x20000000,	and	0x22000020	to	0x2200003F	are	the	bit	addresses	of	the	second
byte	of	SRAM	location	0x20000001,	and	so	on.	See	Figure	6-7.



Figure	6-7:	SRAM	bit-addressable	region	and	their	alias	addresses

Since	each	byte	of	SRAM	has	8	bits	we	need	an	address	for	each	bit.	This	means	we
need	at	least	8M	address	locations	to	access	8M	bits,	one	address	for	each	bit.	However,	to
make	the	addresses	word-aligned	the	ARM	provides	4-byte	alias	address	for	each	bit.	For
example,	0x22000000	to	0x2200001F	is	assigned	to	a	single	byte	location	of	0x20000000.
That	 means	 we	 have	 0x22000000	 to	 0x23FFFFFF	 (total	 of	 32M	 locations,	 as	 alias
addresses)	for	1M	bytes	of	address.

Bit	map	for	SRAM

From	Figure	6-7	once	again	notice	the	following	facts:

1.							The	bit	address	0x22000000	is	assigned	to	D0	of	SRAM	location	0x20000000.

2.							The	bit	address	0x22000004	is	assigned	to	D1	of	SRAM	location	0x20000000.

3.							The	bit	address	0x22000008	is	assigned	to	D2	of	SRAM	location	of
0x20000000.

4.							The	bit	address	0x2200000C	is	assigned	to	D3	of	SRAM	location	of
0x20000000.

5.							The	bit	address	0x22000010	is	assigned	to	D4	of	SRAM	location	0x20000000.

6.							The	bit	address	0x22000014	is	assigned	to	D5	of	RAM	location	0x20000000.

7.							The	bit	address	0x22000018	is	assigned	to	D6	of	SRAM	location	0x20000000.

8.							The	bit	address	0x2200001C	is	assigned	to	D7	of	SRAM	location	0x20000000.

Notice	that	SRAM	locations	0x20000000	–	0x200FFFFF	are	both	byte-addressable
and	 bit-addressable.	 The	 only	 difference	 is	 when	 we	 access	 it	 in	 byte	 (or	 halfword	 or
word)	we	use	addresses	0x20000000	to	0x200FFFFF,	but	when	they	are	accessed	in	bit,
they	are	accessed	via	their	alias	addresses	of	0x22000000	to	0x23FFFFFF.		The	reason	it



is	 called	 aliases	 is	 because	 it	 is	 same	 physical	 location	 but	 accessed	 by	 two	 different
addresses.	 It	 is	 like	 a	 same	 person	 but	 different	 names	 (aliases)	 See	 Examples	 6-10
through	6-12.

Example	6-10

The	generic	ARM	chip	has	the	following	address	assignments.	Calculate	the	space	and	the
amount	of	memory	given	to	each	region.

(a)										Address	range	of	0x20000000–200FFFFF	for	SRAM	bit-addressable	region

(b)										Address	range	of	0x22000000–23FFFFFF	for	alias	addresses	of	bit-addressable
SRAM

	

Solution:

	

(a)										200FFFFF	–	20000000	=	FFFFF	bytes.	Converting	FFFFF	to	decimal,	we	get
1,048,575	+	1	=	1,048,576,	which	is	equal	to	1M	bytes.

(b)										23FFFFFF	–	22000000	=	1FFFFFF	bytes.	Converting	1FFFFFF	to	decimal,	we
get	33,554,431	+	1	=	33,554,432,	which	is	equal	to	32M	bytes.

	

	

Example	6-11

Write	a	program	to	set	HIGH	the	D6	of	the	SRAM	location	0x20000001	using	a)	byte
address	and	b)	the	bit	alias	address.

	

Solution:

	

a)											

LDR								R1,=0x20000001																;load	the	address	of	the	byte				

LDRB						R2,[R1]																	;get	the	byte

ORR							R2,R2,#2_01000000									;make	D6	bit	high

;(binary	representation	in	Keil	for	0b01000000)

STRB						R2,[R1]																	;write	it	back

	

b)												From	Figure	6-7	we	have	address	0x22000038	as	the	bit	address	of	D6	of	SRAM



location	0x20000001.

LDR								R1,=0x22000038																;load	the	alias	address	of	the	bit

MOV					R2,#1																																					;R2	=	1

STRB						R2,[R1]																	;Write	one	to	D6

	

	

Example	6-12

Write	a	program	to	set	LOW	the	D0	bit	of	the	SRAM	location	0x20000005	using	a)	byte
address	and	b)	the	bit	alias	address.

Solution:

a)											

LDR								R1,=0x20000005																;load	the	address	of	byte

LDRB						R2,[R1]																	;get	the	byte

AND							R2,R2,#2_11111110									;make	D0	bit	low

STRB						R2,[R1]																	;write	it	back

	

b)												From	Figure	6-7	we	have	address	0x220000A0	as	the	bit	address	of	D0	of
SRAM	location	0x20000005.

LDR	R2,=0x220000A0						;load	the	alias	address	of	the	bit

MOV	R0,0																												;R0	=	0

STRB	R0,[R2]																						;write	zero	to	D0

	

Peripheral	I/O	port	bit-addressable	region

The	 general	 purpose	 I/O	 (GPIO)	 and	 peripherals	 such	 as	 ADC,	 DAC,	 RTC,	 and
serial	COM	port	 are	widely	used	 in	 the	 embedded	 system	design.	 In	many	ARM-based
trainer	boards	we	see	the	connection	of	LEDs,	switches,	and	LCD	to	the	GPIO	pins	of	the
ARM	 chip.	 In	 such	 trainers	 the	 vendor	 provides	 the	 details	 of	 I/O	 port	 and	 peripheral
connections	to	the	ARM	chip	in	addition	to	their	address	map.	As	we	discussed	earlier,	the
ARM	has	 set	 aside	1M	bytes	of	address	 space	 to	be	used	bit-band	 (bit-addressable)	 I/O
and	 peripherals.	 The	 address	 space	 assigned	 to	 bit-band	 peripherals	 and	 GPIO	 is
0x40000000	 to	 0x400FFFFF	 with	 address	 aliases	 of	 0x42000000	 to	 0x43FFFFFF.
Examine	 your	 trainer	 board	 data	 sheet	 for	 the	 bit-band	 addresses	 implemented	 on	 the
ARM	chip.



Figure	6-8:	Peripherals	bit-addressable	region	and	their	alias	addresses.

Bit	map	for	I/O	peripherals

From	Figure	6-8	once	again	notice	the	following	facts.

1.							The	bit	address	0x42000000	is	assigned	to	D0	of	peripherals	location
0x40000000.

2.							The	bit	address	0x42000004	is	assigned	to	D1	of	peripherals	location
0x40000000.

3.							The	bit	address	0x42000008	is	assigned	to	D2	of	peripherals	location	of
0x40000000.

4.							The	bit	address	0x4200000C	is	assigned	to	D3	of	peripherals	location	of
0x40000000.

5.							The	bit	address	0x42000010	is	assigned	to	D4	of	peripherals	location
0x40000000.

6.							The	bit	address	0x42000014	is	assigned	to	D5	of	peripherals	location
0x40000000.

7.							The	bit	address	0x42000018	is	assigned	to	D6	of	peripherals	location
0x40000000.

8.							The	bit	address	0x4200001C	is	assigned	to	D7	of	peripherals	location
0x40000000.

When	accessing	a	peripheral	port	 in	 a	 single-bit	manner,	we	must	use	 the	address
aliases	of	0x42000000	–	0x43FFFFFF.	Indeed	the	bit-addressable	peripherals	are	widely
used	in	embedded	system	design.

Review	Questions



1.							True	or	false.	All	bytes	of	SRAM	in	ARM	are	bit-addressable.

2.							True	or	false.	All	bits	of	the	I/O	peripherals	in	ARM	are	bit-addressable.

3.							True	or	false.	All	ROM	locations	of	the	ARM	are	bit-addressable.

4.							Of	the	4G	bytes	of	memory	in	the	ARM,	how	many	bytes	are	bit-addressable?	List
them.

5.							How	would	you	check	to	see	whether	bit	D0	of	location	0x20000002	is	high	or
low?

6.							Find	out	to	which	byte	each	of	the	following	bits	belongs.	Give	the	address	of	the
RAM	byte	in	hex.		

(a)	0x23000030 (b)	0x23000040 (c)	0x23000048

(d)	0x4200003C (e)	0x43FFFFFC 	





Section	6.4:	Advanced	Indexed	Addressing	Mode
In	previous	chapters	we	showed	how	 to	use	a	 simple	 indexed	addressing	mode	 in

STR,	 LDR,	 LDM	 and	 STM.	 The	 advanced	 addressing	 modes	 bring	 very	 important
advantages	in	the	ARM	and	will	be	discussed	in	this	section.

Indexed	addressing	mode

In	the	indexed	addressing	mode,	a	register	is	used	as	a	pointer	to	the	data	location.
The	ARM	provides	three	indexed	addressing	modes.	These	modes	are:	preindex,	preindex
with	write	back,	and	post	index.	Table	6-2	summarizes	these	modes.	Each	of	these	indexed
addressing	mode	can	be	used	with	offset	of	fixed	value	or	offset	of	a	shifted	register.	See
Table	6-3.	In	this	section	we	will	discuss	each	mode	in	detail.

Indexed	Addressing
Mode Syntax Pointing	Location	in

Memory
Rm	Value	After
Execution

Preindex LDR	Rd,[Rm,#k] Rm+#k Rm

Preindex	with	WB* LDR	Rd,[Rm,#k]! Rm+#k Rm	+	#k

Postindex LDR	Rd,[Rm],#k Rm Rm	+	#k

*WB	means	Writeback

**	Rd	and	Rm	are	any	of	registers	and	#k	is	a	signed	12-bit	immediate	value	between	-4095	and	+4095

Table	6-2:	Indexed	Addressing	in	ARM

Offset Syntax Pointing	Location

Fixed	value LDR	Rd,[Rm,#k] Rm+#k

Shifted	register LDR	Rd,[Rm,Rn,
<shift>] Rm+(Rn	shifted	<shift>)

*	Rn	and	Rm	are	any	of	registers	and	#k	is	a	signed	12-bit	immediate	value	between	-4095	and	+4095

**	<shift>	is	any	of	shifts	studied	in	Chapter3	like	LSL#2

Table	6-3:	Offset	of	Fixed	Value	vs.	Offset	of	Shifted	Register

Preindexed	addressing	mode	with	fixed	offset

In	 this	addressing	mode,	a	 register	and	a	positive	or	negative	 immediate	value	are
used	 as	 a	 pointer	 to	 the	 data	 location.	 The	 value	 of	 register	 does	 not	 change	 after
instruction	is	executed.	This	addressing	mode	can	be	used	with	STR,	STRB,	STRH,	LDR,
LDRB,	and	LDRH.	See	Example	6-13.

Example	6-13

Write	a	program	to	store	contents	of	R5	to	the	SRAM	location	0x10000000	to
0x10000000F	using	preindexed	addressing	mode	with	fixed	offset.



	

Solution:

LDR								R5,=0x55667788

LDR								R1,=0x10000000															

;load	the	address	of	first	location

STR									R5,[R1]	;store	R5	to	location	0x10000000

STR									R5,[R1,#4]										

;store	R5	to	location	0x10000000	+	4	(0x10000004)

STR									R5,[R1,#8]										

;store	R5	to	location	0x10000000	+	8	(0x10000008)

STR									R5,[R1,#0x0C]			

;store	R5	to	location	0x10000000	+	0x0C	(	0x1000000C)

Notice	that	after	running	this	code	the	content	of	R1	is	still	0x10000000

It	is	a	common	practice	to	use	a	register	to	point	to	the	first	location	of	the	memory
space	 and	 access	 the	 different	 locations	 using	 proper	 offsets.	 For	 example	 see	 the
following	program:

ADR							R0,OUR_DATA																		;point	to	OUR_DATA

LDRB						R2,[R0,#1]																											;load	R2	with	BETA

…

OUR_DATA

ALFA						DCB								0x30

BETA						DCB								0x21

Preindexed	addressing	mode	with	write-back	and	fixed	offset

This	addressing	mode	 is	 like	preindexed	addressing	mode	with	fixed	offset	except
that	 the	 calculated	 pointer	 is	 written	 back	 to	 the	 pointing	 register.	 We	 put	 !	 after	 the
instruction	to	tell	the	assembler	to	enable	writeback	in	the	instruction.	See	Example	6-14.

Example	6-14

Rewrite	Example	6-13	using	preindexed	addressing	mode	with	writeback	and	fixed	offset.

	

Solution:

LDR								R1,=0x10000000																;load	the	address	of	first	location



STR									R5,[R1]																	;store	R5	to	location	0x10000000

STR									R5,[R1,#4]!								

;store	R5	to	location	0x10000000	+	4	(0x10000004)

;writeback	makes	R1	=	0x10000004

STR									R5,[R1,#4]!								

;store	R5	to	location	0x10000004	+	4	(0x10000008)

																;writeback	makes	R1	=	0x10000008

STR									R5,[R1,#4]!								

;store	R5	to	location	0x10000008	+	4	(0x1000000C)

																;writeback	makes	R1	=	0x1000000C	

	

Notice	that	after	running	this	code	the	content	of	R1	is	0x1000000C

Postindexed	addressing	mode	with	fixed	offset

This	addressing	mode	is	like	preindexed	addressing	mode	with	writeback	and	fixed
offset	 except	 that	 the	 instruction	 is	 executed	 on	 the	 location	 that	 Rn	 is	 pointing	 to
regardless	of	offset	 value.	After	 running	 the	 instruction,	 the	new	value	of	 the	pointer	 is
calculated	and	written	back	to	the	pointing	register.	Examine	the	following	instructions:				

STR									R1,[R2],#4											;store	R1	onto	memory	pointed	to	by

																																																;	R2	and	then	writeback	R2	+	4	to	R2

LDRB						R5,[R3],#1											;load	a	byte	from	memory	pointed	to

																																																;	by	R3	and	then	writeback	R3	+	1	to	R3

Notice	that	writeback	is	by	default	enabled	in	postindexed	addressing	and	there	is	no
need	 to	put	 !	 after	 instructions	because	postindexing	without	writeback	 is	useless	as	 the
index	 is	 neither	 used	 in	 the	 instruction	 nor	 written	 back	 to	 the	 pointing	 register.	 See
Example	6-15.

Example	6-15

Rewrite	Example	6-13	using	postindexed	addressing	mode	with	fixed	offset.

	

Solution:

	

LDR								R1,=0x10000000																;load	the	address	of	first	location

STR									R5,[R1],#4											;store	R5	to	location	0x10000000	and	writeback



																																																;0x10000000	+	4	(0x10000004)	to	R1

STR									R5,[R1],#4											;store	R5	to	location	0x10000004	and	writeback

																																																;0x10000004	+	4	(0x10000008)	to	R1

STR									R5,[R1],#4											;store	R5	to	location	0x10000008	and	writeback

																																																;0x10000008	+	4	(0x1000000C)	to	R1

STR									R5,[R1],#4											;store	R5	to	location	0x1000000C	and	writeback

																																																;0x1000000C	+	4	(0x10000010)	to	R1

Notice	that	after	running	this	code	the	content	of	R1	is	0x10000010.

Preindexed	address	mode	with	offset	of	a	shifted	register

This	 advanced	addressing	mode	 is	 a	very	 important	 feature	 in	 the	ARM.	We	 start
describing	this	mode	from	simple	case	with	no	shift	(shift	=	0)	and	then	we	will	focus	on
more	complex	formats.

Simple	format	of	preindexed	address	mode	with	offset	register

The	following	is	the	simple	syntax	for	LDR	and	STR.

LDR								Rd,[Rm,Rn]									;Rd	is	loaded	from	location	Rm	+	Rn	of	memory

STR									Rs,[Rm,Rn]									;Rs	is	stored	to	location	Rm	+	Rn	of	memory

This	addressing	mode	is	widely	used	 in	 implementing	of	object	oriented	programs
when	we	want	 to	make	a	dynamic	array	of	variables.	Example	6-16	shows	how	we	use
this	addressing	mode	in	accessing	different	locations	of	an	array	defined	in	memory.

Example	6-16

Examine	the	value	of	R5	and	R6	after	the	execution	of	the	following	program.

	

POINTER														RN										R2

ARRAY1																RN										R1

AREA					EXAMPLE_6_16,	CODE,	READONLY

ENTRY			

LDR								ARRAY1,	=	MYDATA

	

LDRB						R4,[ARRAY1]					

;load	POINTER	location	of	ARRAY1	to	R4	(R4= 0x45)

	



MOV					POINTER,#1								;POINTER	=	1	to	point	to	location	1	of	array

LDRB						R5,[ARRAY1,POINTER]		

;Load	POINTER	location	of	ARRAY1	to	R5

;(R5 = 0x24)

MOV					POINTER,#2								;POINTER	=	2	to	point	to	location	2	of	array

LDRB						R6,[ARRAY1,POINTER]		

;load	POINTER	location	of	ARRAY1	to	R6

;(R6 = 0x18)

HERE						B													HERE

MYDATA														DCB								0x45,0x24,0x18,0x63

END

Solution:

	

After	running	the	LDRB	R4,[ARRAY1]	instruction,	location	0	of	MYDATA	is	loaded	to
R4.	Now	R4=0x45.

Next,	after	running	the	LDRB	R5,[ARRAY1,POINTER]	instruction,	location	1	of
MYDATA	is	loaded	to	R5.	Now	R5	=	0x24.

Next,	after	running	the	LDRB	R6,[ARRAY1,POINTER]	instruction,	location	2	of
MYDATA	is	loaded	to	R6.	So	the	content	of	R6	=	0x18.

Notice	that	purposely	we	used	DCB	and	LDRB	in	this	example	so	each	location	of
MYDATA	takes	one	byte.

	

In	Example	6-16,	we	purposely	used	DCB	and	LDRB	so	each	location	of	MYDATA
takes	one	byte.	If	we	define	an	array	using	DCD,	then	we	will	not	be	able	to	use	LDRB
R5,[ARRAY1,POINTER]	 to	 load	 the	POINTER	location	of	ARRAY.	See	Example	6-17
for	clarification.

Example	6-17

In	Example	6-16,	change	MYDATA	DCB	0x45,0x24,0x18,0x63	to	MYDATA	DCD
0x45,0x2489ACF5	and	examine	the	value	of	R5	and	R6	after	the	execution	of	the



following	program.

	

POINTER														RN										R2

ARRAY1																RN										R1

												AREA			EXAMPLE_6_17,	CODE,	READONLY

ENTRY			

LDR								ARRAY1,	=	MYDATA

	

LDRB						R4,[ARRAY1]						;load	POINTER	location	of

;ARRAY1	to	R4	(R4= 0x45)

MOV					POINTER,#1								;POINTER	=	1	to	point	to

;location	1	of	array

LDRB						R5,[ARRAY1,POINTER]		

;	Load	POINTER	location	of	ARRAY1	to	R5

MOV					POINTER,#2								;POINTER	=	2	to	point	to

;location	2	of	array

LDRB						R6,[ARRAY1,POINTER]		

;	load	POINTER	location	of	ARRAY1	to	R6

HERE						B													HERE

MYDATA														DCD							0x45,0x2489ACF5

END

Solution:

	

After	running	the	LDRB	R4,[ARRAY1]	instruction,	location	0	of	MYDATA	is	loaded	to
R4.	Now	R4=0x45.

Next,	after	running	the	LDRB	R5,[ARRAY1,POINTER]	instruction,	location	1	of
MYDATA	is	loaded	to	R5.	Now	R5	=	0x00.

Next,	after	running	the	LDRB	R6,[ARRAY1,POINTER]	instruction,	location	2	of
MYDATA	is	loaded	to	R6.	So	the	content	of	R6	=	0x00.	



To	access	 locations	 of	 a	word	 size	 array	we	have	 to	multiply	 the	 pointer	 by	 four.
Similarly,	to	access	locations	of	a	half-word	size	array	we	have	to	multiply	the	pointer	by
two.	For	example,	we	can	correct	program	of	Example	6-17	by	replacing

MOV					POINTER,#2								;POINTER	=	2	to	point	to	location	2	of	array

instruction	with	following	instructions:

MOV					POINTER,#2								;POINTER	=	2

MOV					POINTER,POINTER,LSL#2	;POINTER	is	shifted	left	two	bits	(×4)			

;to	point	to	word	2	of	the	array

	Notice	that	by	shifting	left	a	value	two	bits,	we	multiply	it	by	four.	Next	we	will	see
how	we	can	use	indexed	addressing	with	shifted	registers	to	combine	multiplication	with
the	LDR	and	STR	instructions.

General	format	of	preindexed	address	mode	with	offset	register

The	general	format	of	indexed	addressing	with	shifted	register	for	LDR	and	STR	is
as	follows:

LDR	Rd,[Rm,Rn,<shift>]																;(Shifted	Rn)	+	Rm	is	used	as	the	pointer

STR	Rd,[Rm,Rn,<shift>]																	;(Shifted	Rn)	+	Rm	is	used	as	the	pointer

In	the	above	instructions	<shift>	can	be	any	of	shift	instructions	studied	in	Chapter	3
such	as	LSL,	LSR,	ASR	and	ROR.	Examine	the	following	instructions:

LDR								R1,[R2,R3,LSL#2]														;R2	+(R3 × 4)	is	used	as	the	pointer

																																;content	of	location	R2+(R3×4)	is	loaded	to	R1

STR									R1,[R2,R3,LSL#1]														;R2	+(R3	×	2)	is	used	as	the	pointer

																																																;R1	is	stored	to	location	R2 + (R3×2)

STRB						R1,[R2,R3,LSL#2]														;R2	+(R3 × 4)	is	used	as	the	pointer

																																																;first	byte	of	R1	is	stored	to	location	R2+(R3×4)

LDR								R1,[R2,R3,LSR#2]														;R2	+(R3	/	4)	is	used	as	the	pointer



																																																																;content	of	location	R2+(R3	/	4)	is

																																																;loaded	to	R1

From	 the	 above	 codes	we	 can	 see	 that	 indexed	 addressing	with	 shifted	 register	 is
mostly	 used	 to	multiply	 the	pointer	 by	 a	 power	of	 two	 and	 that	 is	why	 it	 is	 also	 called
indexed	addressing	with	 scaled	 register.	Examine	Example	6-18	 to	 see	how	we	can	use
scaled	register	indexing	to	access	an	array	of	words.

Notice	 that	 scaled	 register	 indexing	 is	 not	 supported	 for	 halfword	 load	 and	 store
instructions.

Example	6-18

Examine	the	value	of	R5	and	R6	after	the	execution	of	the	following	program.

	

POINTER														RN										R2

ARRAY1																RN										R1

AREA			EXAMPLE_6_18,	CODE,	READONLY

ENTRY			

LDR								ARRAY1,	=	MYDATA

MOV					POINTER,#0																																								;	POINTER	=	0

LDR								R4,[ARRAY1,POINTER,LSL#2]						;

	

MOV					POINTER,#1																																								;	POINTER	=	1

LDR								R5,[ARRAY1,POINTER,LSL#2]						;

	

MOV					POINTER,#2																																								;	POINTER	=	2

LDR								R6,[ARRAY1,POINTER,LSL#2]						;

	

HERE						B													HERE

MYDATA														DCD							0x45,0x2489ACf5,0x2489AC23

END

	

Solution:

	

After	running	the	LDR	R4,[ARRAY1,POINTER,LSL#2]]	instruction,	location	0	of



MYDATA	is	loaded	to	R4.	Now	R4=0x45.

Next,	after	running	the	LDR	R5,[ARRAY1,POINTER,LSL#2]	instruction,	location	1	of
MYDATA	is	loaded	to	R5.	Now	R5	=	0x2489ACF5.

Next,	after	running	the	LDR	R6,[ARRAY1,POINTER,LSL#2]	instruction,	location	2	of
MYDATA	is	loaded	to	R6.	So	the	content	of	R6	=	0x2489AC23.

Writeback	sign	(!)	in	preindexed	load	and	store	with	scaled	register

We	 can	 force	 all	 scaled	 register	 load	 and	 store	 instructions	 to	 writeback	 the
calculated	 pointer	 to	 the	 pointing	 register	 by	 putting	 !	 after	 each	 load	 and	 store
instructions.	Examine	the	following	instructions:

LDR								R1,[R2,R3,LSL#2]!												

;R2	+(R3	×4)	is	used	as	the	pointer

																																;content	of	location	R2+(R3×4)	is	loaded	to	R1

																;R2	=	R2	+(R3	×	4)	(R2	is	updated.)

STR									R1,[R2,R3,LSL#1]!												

;R2	+(R3	×2)	is	used	as	the	pointer

																																;R1	is	stored	to	location	R2+(R3	×	2)

																;R2	=	R2	+(R3	×	2)	(R2	is	updated.)

Scaled	register	postindex

The	 following	 instructions	are	 some	examples	of	 scaled	 register	postindex	 in	 load
and	store	instructions:

STR									R1,[R2],R3,LSL	#2												

;store	R1	at	location	R2	of	memory	and	write	back

																																;R2	+	(R3 × 4)	to	R2.

LDR								R1,[R2],R3,LSL	#2												

;load	location	R2	of	memory	to	R1	and	write	back

																																;R2	+	(R3 × 4)	to	R2.



Look-up	table

One	use	of	array	is	for	implementing	look-up	tables.	The	look-up	table	is	a	widely
used	concept	in	microcontroller	programming.	It	allows	access	to	elements	of	a	frequently
used	table	with	minimum	operations.	As	an	example,	assume	that	for	a	certain	application
we	 need	 4	 +	 x2	 values	 in	 the	 range	 of	 0	 to	 9.	 To	 do	 so,	 the	 look-up	 table	 is	 stored	 in
program	memory	space	and	accessed	as	an	array.	This	is	shown	in	Examples	6-19	through
6-21.

Example	6-19

Write	a	program	to	get	the	x	value	from	R9	and	send	x2	+	2x	+	3	to	R10.	Assume	R9	has
the	x	value	of	0–9.	Use	a	look-up	table	instead	of	a	multiply	instruction.

	

Solution:

	AREA	LOOKUP_EXAMP6_19,READONLY,CODE

	ENTRY

	ADR						R2,LOOKUP								;point	to	LOOKUP

	LDRB					R10,[R2,R9]									;R10	=	location	R9	of	lookup	array

HERE						B												HERE																						;stay	here	forever

	

LOOKUP	DCB					3,	6,	11,	18,	27,	38,	51,	66,	83,	102

END

	

	

Example	6-20

Write	a	program	to	get	the	x	value	from	R9	and	send	factorial	of	x	to	R10.	Assume	R9	has
the	x	value	of	0–10.	Use	a	look-up	table	instead	of	a	multiply	instruction.

	

Solution:

AREA	LOOKUP_EXAMP6_20,READONLY,CODE

ENTRY

MOV			R9,#5

ADR			R2,LOOKUP														;point	to	LOOKUP

LDR			R10,[R2,R9,LSL	#2]		;R10	=	location	R9	of	lookup	array



HERE						B					HERE																														;stay	here	forever

	

LOOKUP	DCD					1,	1,	2,	6,	24,	120,	720,	5040,	40320,	362880,	3628800

END

	

	

Example	6-21

Write	a	program	that	calculates	10	to	the	power	of	R2	and	stores	the	result	in	R3.	Assume
R2	has	the	x	value	of	0–6.	Use	a	look-up	table	instead	of	a	multiply	instruction.

	

Solution:

	AREA	LOOKUP_EXAMP_6_21,READONLY,CODE

	ENTRY

	ADR						R1,LOOKUP								;point	to	LOOKUP

	LDR							R3,[R1,R2,LSL	#2]													;R3	=	location	R2	of	lookup	array

HERE						B												HERE																						;stay	here	forever

	

LOOKUP	DCD					1,	10,	100,	1000,	10000,	100000,	1000000

END

	

Writeback	options	of	STM	and	LDM

The	STM	and	LDM	instructions	allow	you	to	store	and	load	multiple	registers	with
a	single	instruction.	We	can	also	specify	the	action	to	be	taken	for	the	pointer.	The	action
can	be	increment	or	decrement	before	or	after	the	pop	is	done.	This	is	shown	in	Table	6-4.

Option Description

IA Increment	After

IB Increment	Before

DA Decrement	After

DB Decrement	Before



Table	6-4:	Options	for	LDM	and	STM	instructions

IA	 stands	 for	 Increment	After	 and	 adds	 four	 (the	 size	 of	 register	 in	 bytes)	 to	 the
pointer	after	load	or	storing	each	register.

IB	stands	 for	 Increment	Before	and	adds	 four	 (the	 size	of	 register	 in	bytes)	 to	 the
pointer	before	load	or	storing	each	register.

DA	stands	for	Decrement	After	and	subtracts	four	(the	size	of	register	in	bytes)	from
the	pointer	after	load	or	storing	each	register.

DB	 stands	 for	Decrement	Before	 and	 subtracts	 four	 (the	 size	 of	 register	 in	 bytes)
from	the	pointer	before	load	or	storing	each	register.

For	further	clarification	assume	that	R1	=	0x100.	Figure	6-9	shows	the	memory	after
running	STM	R1!,{R2,R3}	with	each	of	IA,	IB,	DA	and	DB	options.

Figure	6-	9:	Four	Options	of	STM	and	LDM	in	ARM

	

Notice	 that	 generally	 we	 have	 four	 stack	 structure,	 either	 it	 is	 ascending	 or
descending.	The	stack	is	called	ascending	when	it	is	incremented	after	each	store	(PUSH)
instruction	 and	 decremented	 after	 each	 load	 (POP)	 instruction.	 It	 is	 called	 descending
when	 it	 is	 decremented	 after	 each	 store	 (PUSH)	 instruction	 and	 incremented	 after	 each
load	(POP)	instruction.	The	stack	pointer	can	point	to	the	last	filled	location;	in	this	case
the	stack	is	called	Full	Stack.	The	stack	pointer	can	point	to	the	next	available	location,	as
well;	which	is	called	an	Empty	Stack.	See	Figure	6-10	for	more	clarification.



Figure	6-10:	Four	General	Stack	Structure

To	 implement	 a	 Full	 Ascending	 stack	 we	 have	 to	 use	 STMIB	 because	 the	 stack
pointer	should	increment	on	store	instruction	and	it	should	be	incremented	before	storing
each	 register	because	 it	 should	point	 to	 full	 location.	On	 the	other	hand	we	have	 to	use
LDMDA	 for	 pop	 instruction	 because	 the	 stack	 pointer	 should	 decrement	 on	 load
instruction	and	it	should	be	decremented	before	loading	each	full	location	because	it	was
pointing	 to	 an	 empty	 location	before	decrementing.	Table	6-5	 lists	 appropriate	 load	 and
store	 instruction	 for	 each	 stack	 structure.	 It	 is	 difficult	 and	 prone	 to	 error	 to	 remember
which	load	and	store	should	be	used	with	each	stack	structure.	To	solve	this	problem,	each
of	load	and	store	options	has	alternate	name	which	is	easy	to	remember	when	it	is	used	for
stack	operation.	The	last	two	columns	of	Table	6-5	list	the	alternate	names.

Stack	Structure Load Store
Load

(alternate	Names)

Store

(alternate	Names)

Full	Ascending LDMDA STMIB LDMFA STMFA

Full	Descending LDMIA STMDB LDMFD STMFD

Empty	Ascending LDMDB STMIA LDMEA STMEA

Empty	Descending LDMIB STMDA LDMED STMED



Table	6-	5:	Options	for	LDM	and	STM	instructions

Program	6-2	uses	STM	and	LDM	to	simplify	program	of	Example	6-8.

Program	6-2:	Using	STMFA	and	LDMFA	for	Stack	(Repeat	of	Example	6-8)

;Using	Full	Ascending	Load	and	Store	for	stack

AREA					PROG6_2,	CODE,	READONLY																												

ENTRY								

LDR								R13,=Stack_Top																;load	SP

LDR								R0,=0x125											;R0	=	0x125

LDR								R1,=0x144											;R1	=	0x144

MOV					R2,#0x56														;R2	=	0x56

BL											MY_SUB														;call	a	subroutine

ADD							R3,R0,R1														;R3	=	R0	+	R1	=	0x125	+	0x144	=	0x269

ADD							R3,R3,R2														;R3	=	R3	+	R2	=	0x269	+	0x56	=	0x2BF

HERE						B													HERE																						;stay	here

;–––––––––	

MY_SUB

;––—save	R0,	R1,	and	R2	on	stack	before	they	are	used	by	a	loop

STMFA		R13,{R0-R2}								;save	R0,R1,R2	on	stack	using	Full	Ascending

;––—R0,R1,	and	R2	are	changed

MOV					R0,#0																				;R0=0

MOV					R1,#0																				;R1=0

MOV					R2,#0																				;R2=0

;–––restore	the	original	registers	contents	from	stack

LDMFA	R13,{R0-R2}							

;restore	R0,R1,and	R2	from	stack	using	F.	Ascending

BX											LR																											;return	to	caller

END

It	must	be	noted	that	ARM Cortex	has	PUSH	and	POP	instructions.	See	Appendix	A
for	more	information.

Review	Questions

1.							True	or	false.	In	a	full	stack	the	pointer	points	to	the	last	stored	location.



2.							True	or	false.	In	a	descending	stack	the	pointer	increments	after	each	push.

3.							Write	an	instruction	that	pushes	LR	(R14)	into	an	empty	descending	stack.

4.							Write	an	instruction	that	pops	R10	from	a	full	ascending	stack.





Section	6.5:	ADR,	LDR,	and	PC	Relative	Addressing
In	 indexed	addressing	modes,	any	registers	 including	the	PC	(R15)	register	can	be

used	as	 the	pointer	register.	For	example,	 the	following	 instruction	reads	 the	contents	of
memory	location	PC+4:

LDR								R0,[PC,#4]

In	this	way,	the	data	which	has	a	known	distance	from	the	current	executing	line	can
be	 accessed.	 As	 discussed	 in	 Chapter	 4,	 the	 PC	 register	 points	 8	 bytes	 (2	 instructions)
ahead	 of	 executing	 instruction.	 As	 a	 result,	 “LDR	 R0,[PC,#4]”	 accesses	 a	 memory
location	whose	address	is	4+8	bytes	ahead	of	the	current	instruction.	Generally	speaking,
the	address	of	the	memory	location	which	is	being	accessed	using	“LDR	R0,[PC,offset]”
can	be	found	using	this	formula:	the	address	of	current	instruction	+	8	+	offset.

For	instance,	if	“LDR	R0,[PC,#4]”	is	located	in	address	0x10	the	effective	address
is:	0x10	+	8	+	4	=	0x1C.

This	addressing	mode	can	be	considered	as	a	subset	of	indexed	addressing	modes.	In
ARM	application	notes,	the	program	relative	addressing	mode	is	considered	as	a	separate
addressing	mode.

Implementing	the	ADR	Directive	(LDR	Rn,=value)

The	 ADR	 directive	 uses	 the	 PC	 relative	 addressing	 mode	 to	 load	 registers.	 For
example	see	the	following	program:

AREA					LOOKUP_EXAMPLE,READONLY,CODE

ENTRY

ADR							R2,OUR_FIXED_DATA				;point	to	OUR_FIXED_DATA

LDRB						R0,[R2]																	;load	R0	with	the	contents

;of	memory	pointed	to	by	R2

ADD							R1,R1,R0														;add	R0	to	R1

HERE						B													HERE																						;stay	here	forever

OUR_FIXED_DATA

DCB								0x55,0x33,1,2,3,4,5,6

DCD							0x23222120,0x30

DCW						0x4540,0x50

END

See	Figure	6-11.	At	compile	time,	the	ADR	is	replaced	with	“ADD	R2,PC,#0x08”.
Since	the	instruction	is	in	address	0x00,	the	instruction	accesses	location	0	+	8	+	0x08	=
0x10.	As	shown	in	the	Figure,	0x10	is	the	address	of	OUR_FIXED_DATA.



Figure	6-	11:	Memory	Dump	for	ADR	Instruction

Implementing	the	LDR	Directive

To	 implement	 the	 LDR	 directive,	 assembler	 stores	 the	 value	 as	 a	 fixed	 data	 in
program	 memory	 and	 then	 accesses	 it	 using	 the	 LDR	 instruction	 and	 the	 PC	 relative
addressing	mode.	 Figure	 6-12	 shows	 the	 implementation	 of	 Program	6-3.	 For	 example,
0x12345678	is	stored	in	memory	locations	0x10–0x13,	and	the	LDR	directive	is	replaced
with	LDR	R0,[PC,#0x08].	Since	PC=0,	 the	LDR	R0,	=0x1234567	 is	 located	 at	 address
0x000000.	Now	we	have	0+8+8=16=0x10.

Program	6-3:	LDR	Directive

AREA					EXAMPLE,READONLY,CODE

ENTRY		

LDR								R0,=0x12345678

LDR								R1,=0x86427531

ADD							R2,R0,R1

H1											B													H1

END																												

	

Figure	6-	12:	Memory	Dump	for	LDR	Instruction



The	 same	 way	 for	 the	 LDR	 R1,=0x86427531	 is	 located	 in	 ROM	 address
0x00000004.	 Therefore	 we	 have	 4+8+8=20=0x14,	 which	 is	 the	 address	 of	 the	 data
0x86427531.

Review	Questions

1.							Which	register	is	used	as	the	pointer	in	PC	relative	addressing	mode?

2.							Which	directive	is	more	optimized	ADR	or	LDR?	Why?



Problems
Section	6.1:	ARM	Memory	Map	and	Memory	Access

1.							What	is	the	bus	bandwidth	unit?

2.							Give	the	variables	that	affect	the	bus	bandwidth.

3.							True	or	false.	One	way	to	increase	the	bus	bandwidth	is	to	widen	the	data	bus.

4.							True	or	false.	An	increase	in	the	number	of	address	bus	pins	results	in	a	higher	bus
bandwidth	for	the	system.

5.							Calculate	the	memory	bus	bandwidth	for	the	following	systems.

(a)	ARM	of	100	MHz	bus	speed	and	0	WS

(b)	ARM	of	80	MHz	bus	speed	and	1	WS

6.							Indicate	which	of	the	following	addresses	is	word	aligned.

(a)	0x1200004A (b)	0x52000068 (c)	0x66000082

(d)	0x23FFFF86 (e)	0x23FFFFF0 (f)	0x4200004F

(g)	0x18000014 (h)	0x43FFFFF3 (i)	0x44FFFF05

7.							Show	how	data	is	placed	after	execution	of	the	following	code	using	(a)	little
endian	and		(b)	big	endian.

LDR								R2,=0xFA98E322														

LDR								R1,=0x20000100

STR									[R1],R2

8.							True	or	false.	In	ARM,	instructions	are	always	word	aligned.

9.							True	or	false.	In	a	word	aligned	address	the	lower	digit	of	the	address	is	0,	4,	8,	or
C.

10.			Show	how	many	memory	cycles	does	it	take	to	fetch	the	following	data	into
register

LDR								R1,=0x20000004

																LDRD					[R1],R2

11.			Show	how	many	memory	cycles	does	it	take	to	fetch	the	following	data	into
register

																LDR								R1,=0x20000102

																LDRD					[R1],R2

12.			Show	how	many	memory	cycles	does	it	take	to	fetch	the	following	data	into
register



																LDR								R1,=0x20000103

																LDRD					[R1],R2

13.			Show	how	many	memory	cycles	does	it	take	to	fetch	the	following	data	into
register

LDR								R1,=0x20000006

																LDRH					[R1],R2

14.			Show	how	many	memory	cycles	does	it	take	to	fetch	the	following	data	into
register

																LDR								R1,=0x20000C10

																LDRB						[R1],R2

Section	6.2:	Stack	and	Stack	Usage	in	ARM

15.			True	or	false.	In	ARM	the	R13	is	designated	as	stack	pointer.

16.			When	BL	is	executed,	how	many	locations	of	the	stack	are	used?

17.			When	B	is	executed,	how	many	locations	of	the	stack	are	used?

18.			In	ARM,	stack	pointer	is	_________	register.

19.			Describe	how	the	action	associated	with	the	return	operation	is	performed	in	ARM.

20.			Give	the	size	of	the	stack	in	ARM.

21.			In	ARM,	which	address	is	saved	when	BL	instruction	is	executed.

Section	6.3:	ARM	Bit-Addressable	Memory	Region

22.			Which	memory	regions	of	ARM	are	bit-addressable?

23.			Give	the	bit-addressable	SRAM	region	address	for	generic	ARM.

24.			What	bit	addresses	are	assigned	to	byte	address	of	0x20000004?

25.			What	bit	addresses	are	assigned	to	byte	address	of	0x20000010?

26.			What	bit	addresses	are	assigned	to	byte	address	of	0x200FFFFF?

27.			What	bit	addresses	are	assigned	to	byte	address	of	0x20000020?

28.			What	bit	addresses	are	assigned	to	byte	address	of	0x40000008?

29.			What	bit	addresses	are	assigned	to	byte	address	of	0x4000000C?

30.			What	bit	addresses	are	assigned	to	byte	address	of	0x40000020?

31.			The	following	are	bit	addresses.	Indicate	where	each	one	belongs.

(a)	0x2200004C (b)	0x22000068 (c)	0x22000080

(d)	0x23FFFF80 (e)	0x23FFFF00 (f)	0x4200004C



(g)	0x42000014 (h)	0x43FFFFF0 (i)	0x43FFFF00

32.			Of	the	4G	bytes	of	memory	locations	in	the	ARM,	how	many	of	them	are	also
assigned	a	bit	address	as	well?	Indicate	which	bytes	those	are.

33.			True	or	false.	The	bit-addressable	region	cannot	be	access	in	byte.

34.			True	or	false.	The	bit-addressable	region	cannot	be	access	in	word.	

35.			Write	a	program	to	see	whether	the	D7	bit	of	RAM	location	0x20000020	is	high.	If
so,	send	a	1	to	D1	of	RAM	location	0x20000000.

36.			Write	a	program	to	see	whether	the	D7	bit	of	I/O	location	0x40000000	is	low.		If
so,	send	a	0	to	the	D0	of	location	0x400FFFFF.

37.			Write	a	program	to	set	high	all	the	bits	of	RAM	locations	0x2000000	using	the
following	methods:

(a)	byte	addresses																									(b)	bit	addresses

38.			Write	a	program	to	see	whether	the	SRAM	location	0x20000000	is	divisible	by	8.

39.			Explain	how	the	LDM	instruction	works.

40.			Explain	how	the	STM	instruction	works.

41.			Explain	the	difference	between	LDM	and	LDR	instructions.

42.			Explain	how	the	difference	between	STM	and	STR	instructions.

43.			Explain	the	LDMIA	operation	and	its	impact	on	the	SP.

44.			Explain	the	LDMIB	operation	and	its	impact	on	the	SP.

45.			Explain	the	STMIA	operation	and	its	impact	on	the	SP.

46.			Explain	the	STMIB	operation	and	its	impact	on	the	SP.

Section	6.4:	Advanced	Indexed	Addressing	Mode

47.			True	or	false.	Writeback	is	by	default	enabled	in	preindexed	addressing	mode.

48.			Indicate	the	addressing	mode	in	each	of	the	following	instructions

(a)	LDR	R1,[R5],R2,LSL	#2														(b)	STR	R2,[R1,R0]

(c)	STR	R2,[R1,R0,	LSL	#2]!												(d)	STR	R9,[R1],R0

49.			What	is	an	ascending	stack?

50.			What	is	the	difference	between	an	empty	and	a	full	stack?

51.			Write	an	instruction	that	stores	R0	in	a	full	descending	stack.

52.			Write	an	instruction	that	loads	R9	from	an	empty	descending	stack.

Section	6.5:	ADR,	LDR,	and	PC	Relative	Addressing

53.			Assuming	that	the	instruction	“LDR	R2,[PC,#8]	is	located	in	address	0x300,



calculate	the	address	of	the	memory	location		which	is	accessed.

54.			Using	PC	relative	addressing	mode,	write	an	LDR	instruction	that	accesses	a
memory	location	which	is	0x20	bytes	ahead	of	itself.



Answers	to	Review	Questions
Section	6.1

1.							4	bytes

2.							Compilers	ensure	that	codes	are	word	aligned.

3.							little	endian

4.							1/66	MHz	=	15.15	ns	is	the	bus	clock	period.	Since	the	bus	cycle	time	of	zero	wait
states	is	2	clocks,	we	have	2	×	15.15	=	30.3	ns

5.							1/100	MHz	=	10	ns	is	the	bus	clock	period.	50	ns	-	10	ns	=	40	ns.		The	Number	of
WS	is	40	ns	/	10	ns	=	4.

6.							False

Section	6.2

1.							R13

2.							The	stack	can	be	as	big	as	its	RAM

3.							STM							R13,	{R5-R8}

SUB								R13,	R13,	#16

4.							ADD							R13,	R13,	#16

LDM							R13,	{R5-R8}

5.							It	copies	the	contents	of	locations	0x40000000–0x4000000F	into	locations
0x50000000–0x5000000F	using	the	LDM	and	STM	instructions.

Section	6.3

1.							False

2.							False

3.							False

4.							2MBytes;	locations	0x20000000	to	0x200FFFFF	of	SRAM	and	0x40000000	to
0x400FFFFF	of	GPIO

5.																						

LDR								R0,=0x22000040

LDR								R1,[R0]

CMP						R1,#0

BNE								L1

…

L1:



6.								

(a)										0x23000030	-	0x22000000	=	0x1000030;	0x1000030	/	0x20	=	0x80001;
thus	it	is	in	location	0x20000000	+	0x80001	=	0x20080001

(0x1000030	%	32)	/	4	=	(48	%	32)	/	4	=	16	/	4	=	4;	it	is	D4	of	0x20080001.

(b)										0x1000040	/	0x20	=	0x80002;	it	is	in	location	0x20080002

(0x1000040	%	0x20)	/	4	=	0;	it	is	D0	of	location	0x20080002

(c)											0x1000048	/	0x20	=	80002;	it	is	in	location	0x20080002

(0x1000048	%	0x20)	/	4	=	2;	it	is	D2	of	location	0x20080002

(d)										0x4200003C	-	0x42000000	=	0x03C;	0x03C	/	0x20	=	0x01

(0x3C	%	0x20)	/	4	=	0x1C	/	4	=	7;	it	is	D7	of	0x40000001

(e)										0x43FFFFFC	–	0x42000000	=	0x1FFFFFC;	0x1FFFFFC	/	0x20	=
0xFFFFF

(0x1FFFFFC	%	0x20)	/	4	=	0x1C	/	4	=	7;	D7	of	0x400FFFFF

Section	6.4

1.							True

2.							False

3.							STMED	SP!,{LR}

4.							LDMFA	SP!,{R10}

Section	6.5

1.							PC	(R15)

2.							ADR,	To	implement	the	LDR	directive	the	value	is	stored	in	memory;	as	a	result,	it
uses	more	memory	while	the	ADR	uses	no	memory.

	



	





Chapter	7:	ARM	Pipeline	and	CPU	Evolution
This	 chapter	will	 look	 at	 pipeline	 evolution	 in	ARM	while	 examining	 other	CPU

enhancements.	 In	 Section	 7.1	 the	 ARM’s	 pipelines	 are	 studied.	 Section	 7.2	 explores
various	processors	enhancements.





Section	7.1:	ARM	Pipeline	Evolution
There	 are	many	ways	 available	 to	 processor	 designers	 to	 increase	 the	 processing

power	of	the	CPU.	Here	we	list	some	of	them	that	are	used	in	ARM.

1.	 	 	 	 	 	 	Increase	 the	clock	frequency	of	 the	chip.	One	drawback	of	 this	method	 is	 that	 the
higher	 the	 frequency,	 the	 more	 the	 power	 dissipation	 and	 the	 more	 difficult	 and
expensive	the	design	of	the	microprocessor	and	motherboard.

2.							Increase	the	number	of	data	buses	to	bring	more	information	(code	and	data)	into	the
CPU	 to	 be	 processed.	 For	 example,	 Von	 Neumann	 architecture	 in	 ARM7	 has	 been
replaced	by	Harvard	architecture	in	newer	versions.	See	Chapter	6.	

3.	 	 	 	 	 	 	Change	 the	 internal	 architecture	 of	 the	 CPU	 to	 overlap	 the	 execution	 of	 more
instructions.	 This	 requires	 a	 lot	 of	 transistors.	 There	 are	 two	 trends	 for	 this	 option,
superpipeline	and	superscalar.	In	superpipelining,	the	process	of	fetching	and	executing
instructions	is	split	into	many	small	steps	and	all	are	done	in	parallel.		In	this	way	the
execution	 of	 many	 instructions	 is	 overlapped.	 The	 number	 of	 instructions	 being
processed	at	a	given	time	depends	on	the	number	of	pipeline	stages,	commonly	termed
the	 pipeline	 depth.	 Some	 designers	 use	 as	 many	 as	 8	 stages	 of	 pipelining.	 One
limitation	of	superpipelining	is	that	the	speed	of	the	execution	is	limited	to	the	slowest
stage	 of	 the	 pipeline.	 Compare	 this	 to	 making	 pizza.	 You	 can	 split	 the	 process	 of
making	pizza	into	many	stages,	such	as	flattening	the	dough,	putting	on	the	toppings,
and	baking,	but	the	process	is	limited	to	the	slowest	stage,	baking,	no	matter	how	fast
the	 rest	 of	 the	 stages	 are	performed.	What	happens	 if	we	use	 two	or	 three	ovens	 for
baking	pizzas	 to	speed	up	 the	process?	 	This	may	work	for	making	pizza	but	not	 for
executing	programs,	since	in	the	execution	of	instructions	we	must	make	sure	that	the
sequence	of	 instructions	 is	kept	 intact	 and	 that	 there	 is	no	out-of-step	execution.	The
difficulties	associated	with	a	stalled	pipeline	(a	slowdown	in	one	stage	of	the	pipeline,
which	 prevents	 the	 remaining	 stages	 from	 advancing)	 has	 made	 CPU	 designers
abandon	superpipelining	in	favor	of	superscaling.	In	superscaling,	the	entire	execution
unit	 has	 been	doubled	 and	 each	unit	 has	 5	 pipeline	 stages.	Therefore,	 in	 superscalar,
there	 is	 more	 than	 one	 execution	 unit	 and	 each	 has	 many	 stages,	 rather	 than	 one
execution	 unit	 with	 8	 stages	 as	 in	 the	 case	 of	 a	 superpipelined	 processor.	 In	 some
superscalar	processors,	there	are	two	execution	units	each	with	4	pipeline	stages	instead
of	a	single	execution	unit	with	8	pipeline	stages	as	superpipelining	proponents	would
have	 it.	 	 In	other	words,	 in	superscaling	we	have	 two	(or	even	 three)	execution	units
and	as	the	instructions	are	fetched	they	are	issued	to	the	various	execution	units.	Using
the	analogy	of	pizza,	superscalar	is	like	doubling	or	tripling	the	entire	crew	flattening
the	dough,	putting	toppings	on,	and	baking.	Of	course,	you	will	need	a	lot	more	people
involved	in	the	process	and	you	have	to	have	more	ovens,	but	at	the	same	time	you	are
doubling	or	tripling	the	pizza	output.	In	cases	of	recent	microprocessor	architecture,	a
vast	majority	of	designers	have	chosen	superscaling	over	superpipelining.	This	requires
numerous	transistors	to	duplicate	several	execution	units,	just	like	needing	more	people
in	 our	 pizza-making	 analogy.	 Fortunately,	 advances	 in	 IC	 design	 have	 allowed
designers	 access	 to	 hundreds	 of	 million	 transistors	 to	 throw	 around	 for	 the



implementation	of	powerful	superscaling.	There	are	some	problems	with	superscaling,
such	as	data	dependency	issues,	which	can	be	solved	by	the	compiler.

4.							Combining	more	than	one	core	in	a	single	processor	is	another	way	of	improving	the
speed	 of	 high	 end	 processers.	 Cortex-A	 series	 of	ARM	 supports	 up	 to	 four	 cores	 in
combination	with	each	other.

Next,	we	will	examine	the	issue	of	pipelining.	See	Figure	7-1.

Figure	7-1:	Non-Pipelined	Instruction	Execution	vs.	2-stage	Pipeline	(8086)

More	about	pipelining

In	the	early	CPUs	there	was	no	pipelining.	At	any	given	moment,	it	either	fetched	or
it	 executed.	 It	 could	not	do	both	at	 the	 same	 time.	 In	 the	non-pipelined	CPU,	while	 the
buses	were	fetching	the	instructions	(opcodes)	and	data,	the	CPU	was	sitting	idle,	and	in
the	same	way,	when	the	CPU	was	executing	instructions,	buses	were	sitting	idle.	However,
in	the	early	pipelined	CPU	such	as	8086	the	fetch	and	execute	were	performed	in	parallel
by	 two	 sections	 inside	 the	 CPU	 called	 the	 BIU	 (bus	 interface	 unit)	 and	 EU	 (execution
unit).	

	 For	 the	 concept	 of	 pipelining	 to	 work,	 we	 need	 a	 buffer	 or	 queue	 in	 which	 an
instruction	is	prefetched	and	ready	to	be	executed.	In	some	circumstances,	the	CPU	must
flush	 out	 the	 queue.	 For	 example,	 when	 a	 branch	 (B,	 BNE,	 BCS,	 and	 so	 on)	 or	 call
instruction	is	executed,	the	CPU	starts	to	fetch	codes	from	the	new	memory	location	and
the	code	in	the	queue	that	was	fetched	previously	is	discarded.	In	this	case,	the	execution
unit	 must	 wait	 until	 the	 fetch	 unit	 fetches	 the	 new	 instruction.	 This	 is	 called	 a	 branch
penalty.	The	penalty	 is	an	extra	 instruction	cycle	 to	 fetch	 the	 instruction	 from	 the	 target
location	 instead	of	 executing	 the	 instruction	 right	below	 the	branch.	Remember	 that	 the
instruction	below	the	branch	has	already	been	fetched	and	 is	next	 in	 line	 to	be	executed
when	the	CPU	branches	to	a	different	address.	Note	that	newer	CPUs	have	more	stages	in
their	 pipeline.	 For	 example	 a	 3	 stage	 pipeline	may	 divide	 the	 code	 execution	 to	 Fetch,



Decode	 and	 Execute	 stages.	When	 the	 number	 of	 stages	 in	 a	 pipeline	 increases,	 more
stages	should	be	flushed	out	when	a	branch	instruction	is	executed.	Examine	Example	7-1
to	see	how	branch	penalty	slows	down	the	execution	of	a	code.	Next,	you	will	 see	how
branch	prediction	solves	the	problem.

Example	7-1

How	many	cycles	does	it	take	for	a	3	stage	pipelined	CPU	to	run	3	iteration	of	the
following	code?

MOV					R1,#0

L1												ADD							R2,R2,#1

B													L1

MOV					R3,#3

MOV					R4,#4				

Solution:

	

For	 the	 first	 instruction	 (MOV R1,#0),	 it	 takes	 3	 cycles	 to	 pass	 through	 the	 stages	 of
pipeline	and	be	executed.	After	the	third	cycle,	one	instruction	is	executed	in	each	cycle.
When	the	Branch	instruction	is	executed	in	cycle	5,	the	CPU	flushes	the	pipeline	because
the	 fetch	 and	 decode	 instruction	 in	 cycles	 4	 and	 5	 are	 not	 needed.	 It	 causes	 two	 clock
cycles	branch	penalty.	The	same	scenario	happens	each	time	the	CPU	executes	a	branch.
As	we	can	see	in	the	figure,	It	takes	13	cycles	to	run	7	instructions.

	

Branch	prediction

Branch	 prediction	 is	 another	 new	 feature	 of	 the	 new	 CPUs.	 The	 penalty	 for
branching	is	very	high	for	a	high-performance	pipelined	microprocessor	such	as	the	ARM.
For	example,	 in	the	case	of	the	BNE	(branch	if	not	equal)	 instruction,	 if	 it	branches,	 the



pipeline	must	be	flushed	and	refilled	with	instructions	from	the	target	location.	This	takes
time.	In	contrast,	the	instruction	immediately	below	the	BNE	is	already	in	the	pipeline	and
is	advancing	without	delay.	Some	processors	have	 the	capability	 to	predict	 and	prefetch
code	from	both	possible	 locations	and	have	them	advanced	through	the	pipeline	without
waiting	 (stalling)	 for	 the	 outcome	 of	 the	 zero	 flag.	 The	 ability	 to	 predict	 branches	 and
avoid	the	branch	penalty	can	result	in	a	substantial	reduction	in	the	clock	count	for	a	given
program.	 Some	 CPUs	 have	 branch	 prediction,	 but	 with	 greater	 capability.	 When	 it
encounters	branch	instructions	(such	as	BNE),	it	creates	a	list	of	them	in	what	is	called	the
branch	target	buffer	(BTB).	The	BTB	predicts	the	target	of	the	branch	and	starts	executing
from	there.	When	the	branch	is	executed,	the	result	is	compared	with	what	the	prediction
section	 of	 the	 CPU	 said	 it	 would	 do.	 If	 they	 match,	 the	 branch	 is	 retired.	 If	 not,	 all
instructions	 behind	 the	 branch	 are	 removed	 from	 the	 pool	 and	 the	 correct	 branch	 target
address	is	provided	to	the	BTB.	From	there	the	BTB	refills	the	pipeline	with	instructions
from	the	new	target	address.	See	Example	7-2.

Example	7-2

Show	how	many	cycles	does	it	take	for	a	3-stage	pipelined	CPU	to	run	3	iteration	of	the
code	in	Example	7-1?	Assume	that	the	branch	prediction	unit	has	predicted	all	branches.

Solution:

	

It	takes	9	cycles	to	run	7	instructions.	In	cycles	4	to	8	instructions	are	predicted	by	branch
prediction	unit.

	

Note	that	stores	are	never	performed	speculatively	since	there	is	no	transparent	way
to	undo	 them.	Stores	are	also	never	 re-ordered	among	 themselves.	A	store	 is	dispatched
only	 when	 both	 the	 address	 and	 the	 data	 are	 available	 and	 there	 are	 no	 older	 stores
awaiting	dispatch.

3-stage	pipeline	in	ARM7

Since	the	introduction	of	the	8086	microprocessor	in	1978,	processor	designers	have
come	to	rely	more	and	more	on	the	concept	of	pipelining	to	increase	the	processing	power



of	the	CPU.	ARM7	used	the	concept	of	pipelining	with	three	stages	of	fetch,	decode,	and
execute.	See	Example	7-3.

Example	7-3

Show	how	the	following	code	is	executed	in	ARM7.

MOV					R4,R5

ADD							R1,R2,R3

SUB								R6,R7,R8

Solution:

	

5-stage	pipeline	in	ARM9

As	we	mentioned	earlier	the	ARM7	has	a	3-stage	pipeline.	As	shown	in	Figure	7-2,	the
ARM9	has	extended	the	pipeline	to	5	stages.	They	are:

1.							Fetch

2.							Decode

3.							Execute

4.							Memory

5.							Write

Figure	7-	2:	5-Stage	Pipeline	in	ARM9

Fetch:	In	the	Fetch	stage	the	instructions	are	fetched	from	memory	and	placed	in	the
queue	and	wait	to	be	decoded.	In	this	stage	the	Program	Counter	(PC)	is	also	incremented
by	4	since	the	ARM	instructions	are	4-bytes.

Decode:	 In	 the	decode	stage	 the	 instruction	 is	decoded	and	 the	register	 file	 is	also



accessed	to	get	everything	ready	for	the	Execute	stage.

Execute:	In	this	stage,	any	effective	address	calculation	and	sign	extending	of	a	byte
or	 a	 half-word	 are	 done.	 In	 the	 instructions	 such	 as	 Load	 and	 Store	 this	 stage	 gets
everything	 ready	 for	 the	 next	 stage	 of	 memory	 access.	 In	 instructions	 such	 as	 “ADD
R1,R2,R3”	in	which	all	the	resources	needed	for	the	execution	of	the	instruction	are	ready
before	it	comes	to	this	stage,	the	registers	are	added	and	it	goes	directly	to	the	write-back
stage	to	write	the	result	to	the	register	file.		

Memory:	 For	 instructions	 such	 as	 Load	 and	 Store	 in	 which	 external	 memory
accesses	are	needed,	the	memory	stage	fetches	the	data	from	the	external	memory	and	has
the	data	inside	the	CPU	ready	for	the	next	stage	of	the	write-back.	If	an	instruction	does
not	need	to	access	memory,	 this	stage	is	bypassed	and	the	result	 is	forwarded	to	the	last
stage	of	write-back.	This	means	it	becomes	a	4-stage	pipeline.

Write:	Also	called	write-back	is	the	stage	in	which	the	instruction	is	completed	by
writing	 the	 result	 to	 the	 register	 file	and	 retiring	 the	 instruction.	As	we	 just	 stated,	 if	an
instruction	does	not	need	to	access	memory,	write-back	is	the	stage	right	after	the	execute
stage,	meaning	for	many	instructions	we	really	have	4-stage	pipeline.	

3-stage	vs.	5-stage	pipeline

In	the	3-stage	pipeline	of	ARM7,	the	execution,	the	memory	access,	and	the	writing
the	result	to	register	file	are	all	performed	by	the	Execute	stage.	In	the	5-stage	pipeline,	the
CPU	decouples	the	memory	access	and	execute	stage.	With	the	two	new	stages	of	memory
and	write-back,	 the	ARM9	 increases	 the	 processing	 power	 of	 the	CPU	by	 allowing	 the
CPU	to	work	concurrently	on	5	instructions	instead	of	3	instructions	at	a	given	time.	This
is	a	major	enhancement	of	the	ARM9	over	ARM7.			

Review	Questions

1.							What	is	superpipelining?

2.							What	is	the	limitation	of	superpipeline?

3.							What	is	superscaling?

4.							True	or	false.	The	5-stage	pipeline	has	better	performance	than	the	3-stage
pipeline.

5.							Give	the	names	of	the	5-stage	pipeline	in	ARM9.





Section	7.2:	Other	CPU	Enhancements
There	 are	many	 other	ways	 available	 to	microprocessor	 designers	 to	 increase	 the

processing	power	of	the	CPU.	Next,	we	examine	some	of	them.

Superscalar	CPUs

Another	unique	feature	of	the	many	of	new	CPUs	is	its	superscalar	architecture.	A
large	number	of	transistors	are	used	to	put	more	than	one	execution	unit	inside	the	CPU.	
As	the	instructions	are	fetched,	they	are	issued	to	these	execution	units.	Figure	7-3	shows
the	concept	of	superscalar.

Figure	7-	3:	Superscalar	CPUs

Issuing	two	instructions	at	the	same	time	to	different	execution	units	can	work	only
if	the	execution	of	one	does	not	depend	on	the	other	one,	in	other	words,	if	there	is	no	data
dependency.	As	an	example,	look	at	the	following	instructions.

ADD							R1,R2,R3																													

SUB								R4,R1,R5																													

AND							R6,R7,R8																													

MOV					R9,R10	

In	the	above	code,	the	ADD	and	SUB	instructions	cannot	be	issued	to	two	execution
units	since	R1,	the	destination	of	the	first	instruction,	is	used	immediately	by	the	second
instruction.	This	is	called	read-after-write	dependency	since	the	SUB	instruction	wants	to
read	the	R1	contents,	but	 it	must	wait	until	after	 the	ADD	is	finished	writing	it	 into	R1.
The	problem	is	that	ADD	will	not	write	into	R1	until	the	last	stage	of	the	pipeline,	and	by
then	 it	 is	 too	 late	 for	 the	 pipeline	 of	 the	 SUB	 instruction.	 This	 prevents	 the	 SUB
instruction	from	advancing	in	the	pipeline,	therefore	causing	the	pipeline	to	be	stalled	until
the	ADD	finishes	writing	and	then	the	SUB	instruction	can	advance	through	the	pipeline.
This	kind	of	data	dependency	raises	the	clock	count	for	the	SUB	instruction.	What	if	the
instructions	are	rescheduled?	We	will	discuss	out	of	order	execution	next	in	this	chapter.

ADD							R1,R2,R3

AND							R6,R7,R8																													



SUB								R4,R1,R5																													

MOV					R9,R10	

If	 they	 are	 rescheduled	 as	 shown	above,	 each	 can	be	 issued	 to	 separate	 execution
units,	allowing	parallel	execution	of	both	instructions	by	two	different	units	of	the	CPU.
Since	 the	 clock	 count	 for	 each	 instruction	 is	 one,	 having	 two	 execution	 units	 leads	 to
executing	 two	 instructions	by	pairing	 them	together,	 thereby	using	only	one	clock	count
for	 two	 instructions.	 In	 the	 case	 of	 the	 above	 program,	 if	 it	 is	 run	 on	 the	 CPU	 with
superscalar	 it	 will	 take	 only	 2	 clocks	 instead	 of	 4,	 assuming	 that	 two	 instructions	 are
paired	 together.	 This	 reordering	 of	 instructions	 to	 take	 advantage	 of	 the	 two	 internal
execution	units	of	the	CPU	can	be	done	by	compiler	or	CPU itself	and	is	called	instruction
scheduling.	Currently,	some	compilers	are	being	equipped	to	do	instruction	scheduling	to
remove	dependencies.	The	process	of	issuing	two	instructions	to	the	two	execution	units	is
commonly	referred	to	as	instruction	pairing.	

Superpipelined	and	superscalar

Some	microprocessors	 use	 a	 10-stage	 pipeline	 for	 the	 CPU.	 In	 contrast	 to	 the	 5-
pipestage,	although	each	pipe	stage	of	the	10-pipestage	performs	less	work,	there	are	more
stages.	 This	 means	 that	 in	 such	 processors,	 more	 instructions	 can	 be	 worked	 on	 and
finished	 at	 a	 time.	 These	 CPUs	 with	 their	 10-	 or	 12-stage	 pipeline	 are	 referred	 to	 as
superpipelined.	 Since	 they	 also	 have	 multiple	 execution	 units	 capable	 of	 working	 in
parallel,	they	are	also	superscalar.		Another	advantage	of	the	superpipelined	concept	is	that
it	can	achieve	a	higher	clock	rate	(frequency)	with	the	given	transistor	 technology.	They
also	 use	what	 is	 called	 out-of-order	 execution	 to	 increase	 the	 performance	 of	 the	CPU.
This	is	explained	next.

Decoupling	and	out-of-order	execution

In	CPU	architecture,	when	one	of	 the	pipeline	stages	 is	stalled,	 the	prior	stages	of
fetch	and	decode	are	also	stalled.	In	other	words,	the	fetch	stage	stops	fetching	instructions
if	 the	 execution	 stage	 is	 stalled,	 due,	 for	 example,	 to	 a	 delay	 in	 memory	 access.	 This
dependency	 of	 fetch	 and	 execution	 has	 to	 be	 resolved	 in	 order	 to	 increase	 CPU
performance.	That	is	exactly	what	many	designers	have	done	with	the	CPU	and	is	called
decoupling	 the	 fetch	 and	 execution	 phases	 of	 the	 instructions.	 In	 these	 processors,
instructions	are	fetched	from	memory	and	placed	into	a	pool	called	the	 instruction	pool.
See	Figure 7-4.

Figure	7-	4:	CPU	Instruction	Execution

This	fetch/decode	of	the	instructions	is	done	in	the	same	order	as	the	program	was



coded	by	the	programmer	(or	compiler).	However,	when	they	are	placed	in	the	instruction
pool	 they	can	be	executed	 in	any	order	as	 long	as	 the	data	needed	 is	available.	 In	other
words,	if	there	is	no	dependency,	the	instructions	are	executed	out	of	order,	not	in	the	same
order	 as	 the	 programmer	 coded	 them.	 Such	 a	 speculative	 execution	 can	 go	 20–30
instructions	deep	into	the	program.	It	is	the	job	of	the	retire	unit	to	provide	the	results	to
the	 programmer’s	 (visible)	 registers	 (e.g.,	 R0,	 R1)	 according	 to	 the	 order	 in	 which	 the
instructions	were	coded.		Again,	it	is	important	to	note	that	the	instructions	are	fetched	in
the	same	order	that	they	were	coded,	but	executed	out	of	order	if	there	is	no	dependency,
and	ultimately	retired	in	the	same	order	as	they	were	coded.	This	out-of-order	execution
can	boost	performance	in	many	cases.	Look	at	Example	7-4.

Example	7-4

The	following	ARM	code	(a)	sets	the	pointer	for	three	different	arrays,	and	the	counter
value,	(b)	gets	each	element	of	ARRAY_1,	adds	a	fixed	value	of	100	to	it,	and	stores	the
result	in	ARRAY_2,	and	(c)	complements	the	element	and	stores	it	in	ARRAY_3.	Analyze
the	execution	of	the	code	in	light	of	the	out-of-order	execution	and	branch	prediction
capabilities	of	an	ARM	CPU.

	

(i1)																									LDR								R1,=ARRAY_1				;load	pointer

(i2)																									LDR								R2,=ARRAY_2				;load	pointer

(i3)																									LDR								R3,=ARRAY_3				;load	pointer

(i4)																									MOV					R4,#COUNT								;load	the	counter

(i5)									AGAIN	LDR								R5,[R1]																	;load	the	element

(i6)																									ADD							R5,R5,#100										;add	the	fix	value

(i7)																									ADD							R1,R1,#4														;update	the	pointer

(i8)																									STR									R5,[R2]																	;store	the	result

(i9)																									ADD							R2,R2,#4														;update	the	pointer

(i10)																							MVN					R5,R5																					;complement	the	result

(i11)																							STR									R5,[R3]																	;and	store	it

(i12)																							ADD							R3,R3,#4														;update	the	pointer

(i13)																							SUBS					R4,R4,#4														;

(i14)																							BNE								AGAIN																		;stay	in	the	loop

(i15)

	

Solution:

	



The	fetch/decode	unit	fetches	and	puts	instructions	into	the	pool.	Since	there	is	no
dependency	for	instructions	i1	through	i5,	they	are	dispatched,	executed,	and	retired
except	for	i5.	Notice	that	the	pointer	values	of	i1	to	i4	are	immediate	values;	therefore,
they	are	embedded	into	the	instruction	when	the	fetch/decode	unit	gets	them.		Now	i5	is	a
memory	fetch	that	can	take	many	clocks,	depending	on	whether	the	needed	data	is	located
in	cache	or	main	memory.	Meanwhile	i6,	i8,	i10,	and	i11	must	wait	until	the	data	is
available.	However	i7,	i9,	and	i12	can	be	executed	out	of	order.	More	importantly,	the
BNE	instruction	is	predicted	to	go	to	the	target	address	of	AGAIN	and	i5,	i6,	…	are
dispatched	once	more	for	the	next	iteration.	This	time	the	memory	fetch	will	take	very	few
clocks	since	in	the	previous	data	fetch,	the	CPU	read	some	bytes	of	data	into	the	cache.
This	process	will	go	on	until	the	last	round	of	looping	where	R4	becomes	zero	and	falls
through.	At	this	time,	due	to	misprediction,	all	the	instructions	belonging	to	instructions
i5,	i6,	i7,	…	(start	of	the	loop)	are	removed	and	the	whole	pipeline	restarts	with
instructions	belonging	to	i15,	i16,	and	so	on.	

	

Due	 to	 the	 fact	 that	 memory	 fetches	 (due	 to	 cache	misses)	 can	 take	many	 clock
cycles	and	result	in	underutilization	of	the	CPU,	out-of-order	execution	is	a	way	of	finding
something	 to	 do	 for	 the	CPU.	Simply	 put,	 the	 idea	 of	 out-of-order	 execution	 is	 to	 look
deep	into	the	stream	of	instructions	and	find	the	ones	that	can	be	executed	ahead	of	others,
provided	that	resources	are	available.	Again,	it	 is	important	to	note	that	these	processors
will	not	immediately	provide	the	results	of	out-of-order	executions	to	programmer-visible
registers	such	as	R0,	R1,	and	so	on,	since	it	must	maintain	the	original	order	of	the	code.
Instead,	the	results	of	out-of-order	executions	are	stored	in	the	pool	and	wait	to	be	retired
in	the	same	order	as	they	were	coded.	Therefore,	programmer-visible	registers	are	updated
in	the	same	sequence	as	expected	by	the	programmer.	

Register	renaming

There	are	some	cases	 in	which	 instructions	are	not	really	dependent	on	each	other
but	there	is	a	kind	of	implicit	dependency	called	register	dependency.	See	Example	7-5.

Example	7-5

For	the	following	code,	indicate	the	instructions	that	can	be	executed	in	parallel	or	out	of
order.

	

(i1)	LDR		R4,[R2]																;load	R4	from	memory	pointed	to	by	R2

(i2)	ADD		R3,R4,R7												;R4+R7–>R3

(i3)	ADD		R6,R8,R10									;R8+R10–>R6

(i4)	SUB		R5,R1,R9												;R1-R9–>R5

(i5)	ADD		R6,R12,#1									;R12+1–->R6



	

Solution:

	

Instruction	i2	cannot	be	executed	until	the	data	is	brought	in	from	memory	(either	cache	or
main	memory	DRAM).	Therefore,	i2	is	dependent	on	i1	and	must	wait	until	the	R4
register	has	the	data.		However,	instructions	i3	and	i4	can	be	executed	out	of	order	and
parallel	with	each	other	since	there	is	no	dependency	among	them.	Notice	that	i5	is	not
really	dependant	on	i3	because	i5	does	not	use	any	of	data	generated	by	i3.	But	i5	and	i3
cannot	be	executed	out	of	order	or	in	parallel	because	R6	is	modified	by	both	of	i3	and	i5.
This	kind	of	dependency	is	called	register	dependency	and	is	solved	by	a	method	called
register	renaming.

	

In	the	following	code	none	of	the	instructions	can	be	executed	in	parallel	because	of
using	R1	in	all	instructions:

MOV					R1,#5

ADD							R3,R1,#2

MOV					R1,#6

ADD							R4,R1,#2

If	you	examine	the	above	code	carefully	you	will	see	that	the	first	two	lines	of	code
are	 independent	 from	 the	 second	 two	 lines	 of	 code	 and	 we	 can	 remove	 the	 implicit
dependency	by	changing	R1	to	another	register	such	as	R2	in	the	last	two	lines	of	code:

MOV					R1,#5

ADD							R3,R1,#2

MOV					R2,#6

ADD							R4,R2,#2

Renaming	 the	 registers	before	 issuing	 the	 instructions	 to	execution	unit	 is	done	 in
many	of	new	advanced	CPU	and	it	is	called	register	renaming.

Putting	them	all	together	in	an	ARM	CPU

In	Figure	7-5	you	can	see	a	top-level	diagram	of	the	ARM	Cortex	A9	processor.	It
has	most	of	the	parts	discussed	in	this	chapter.



Figure	7-	5:	Top-level	diagram	of	the	ARM	Cortex	A9	processor

Bus	frequency	vs.	internal	frequency	in	CPU

Frequently	 you	 may	 see	 an	 advertisement	 for	 a	 1-GHz	 or	 2-GHz	 CPUs.	 	 It	 is
important	to	note	that	the	stated	frequency	is	the	internal	frequency	of	the	CPU	and	not	the
bus	frequency.		This	is	due	to	the	fact	that	designing	a	1-GHz	motherboard	is	very	difficult
and	expensive.	Such	a	design	requires	a	very	fast	logic	family	and	memory	in	addition	to	a
massive	 simulation	 to	 avoid	 crosstalk	 and	 signal	 radiation.	 The	 bus	 frequency	 for	 such
systems	is	currently	less	than	1	GHz.

Review	Questions

1.							True	or	false.	The	ARM	instruction	set	is	in	triadic	form.	

2.							True	or	false.	The	branch	prediction	task	is	performed	by	circuitry	inside	the	CPU.

3.							Why	are	some	CPUs	called	a	superscalar	processor?

4.							Instruction	scheduling	is	done	by	________.

5.							Out	of	order	execution	is	arranged	by	________.



Problems
Section	7.1:	ARM	Pipeline	Evolution

1.							The	ARM7	uses	a	pipeline	of	_______	stages.

2.							Give	the	names	of	the	pipeline	stages	in	the	ARM7

3.							The	ARM9	uses	a	pipeline	of	_______	stages.

4.							Give	the	names	of	the	pipeline	stages	in	the	ARM9

Section	7.2:	Other	CPU	Enhancements

5.							The	number	of	pipeline	stages	in	a	superpipeline	system	is	________	(less,	more)
than	in	a	superscalar	system.

6.							Which	has	one	or	more	execution	units,	superpipeline	or	superscalar?

7.							Which	part	of	on-chip	cache	in	the	ARM	is	write	protected,	data	or	code?

8.							What	is	instruction	pairing,	and	when	can	it	happen?

9.							What	is	data	dependency,	and	how	is	it	avoided?

10.			True	or	false.	Instructions	are	fetched	according	to	the	order	in	which	they	were
written.

11.			True	or	false.	Instructions	are	executed	according	to	the	order	in	which	they	were
written.

12.			True	or	false.	Instructions	are	retired	according	to	the	order	in	which	they	were
written.

13.			The	visible	registers	R0,	R1,	and	so	on,	are	updated	by	which	unit	of	the	CPU?

14.			True	or	false.	Among	the	instructions,	STRs	(store)	are	never	executed	out	of	order.



Answers	to	Review	Questions
Section	7.1

1.							In	superpipelining,	the	process	of	fetching	and	executing	instructions	is	split	into
many	small	steps	and	all	are	done	in	parallel.	In	this	way	the	execution	of	many
instructions	is	overlapped.

2.							The	speed	of	the	execution	is	limited	to	the	slowest	stage	of	the	pipeline.

3.							In	superscaling,	the	entire	execution	unit	has	been	doubled

4.							True	

5.							Fetch,	decode,	execute,	memory,	write	back				

Section	7.2

1.							True																																																						

2.							True

3.							Since	it	has	two	execution	units	(pipelines)	capable	of	executing	two	instructions
with	one	clock

4.							circuitry	inside	the	CPU	and	the	compiler													

5.							the	CPU



	



Appendix	A:	ARM	Cortex-M3	Instruction	Description





Section	A.1:	List	of	ARM	Cortex-M3	Instructions
ADC																																		Add	with	Carry

ADCS																																Add	with	Carry	(and	update	the	flags)

ADD																																	ADD

ADDS																																ADD	and	update	the	flags

ADR																																		Load	PC-Relative	Address

AND																																	Logical	AND

ANDS																															Logical	AND		(update	flags)

ASR																																		Arithmetic	Shift	right

ASRS																																Arithmetic	Shift	right	(update	the	flags)

B																																						Branch	(unconditional	jump)

Bxx																																			Branch	Conditional

BFC																																		Bit	Field	Clear

BFI																																			Bit	Field	Insert

BIC																																			Bit	Clear

BICS																																	Bit	Clear	(update	flags)

BKPT																																Breakpoint

BL																																					Branch	with	Link	(this	is	Call	instruction)

BLX																																			Branch	Indirect	with	Link

BX																																				Branch	Indirect	(BX	LR	is	used	for	Return)

CBNZ																																Compare	and	Branch	on	Non-Zero

CBZ																																		Compare	and	Branch	on	Zero

CDP																																		Coprocessor	Data	processing

CLREX																															Clear	Exclusive

CLZ																																			Count	Leading	Zero

CMN																																Compare	Negative

CMP																																	Compare

CPSID																															Change	processor	ID	and	Disable	Interrupt

CPSIE																																							Change	Processor	State	and	Enable	Interrupt

DMB																																	Data	Memory	Barrier

DSB																																		Data	Synchronization	Barrier



EOR																																			Exclusive	OR

EORS																																	Exclusive	OR	and	update	the	flags

ISB																																			Instruction	Synchronization	Barrier

IT																																					If-Then	Condition	Block

LDC																																		Load	Coprocessor

LDM																																	Load	Multiple	registers

LDMDB																													Load	Multiple	registers	and	Decrement	Before	each	access

LDMEA																																			Load	Multiple	registers	from	Empty	Ascending

LDMFD																													Load	Multiple	registers	Full	Descending

LDMIA																														Load	Multiple	registers	and	Increment	after	each	Access

LDR																																		Load	Register

LDR	Rx,=Value																		Load	Register	with	32-bit	value

LDRB																																Load	Register	Byte

LDRBT																																									Load	Register	Byte	with	Translation

LDREX,	LDREXB,	LDREXH				Load	Register	Exclusive

LDRH																																Load	Register	Halfword

LDRSB																															Load	Register	signed	Byte

LDRSH																														Load	Register	Signed	Halfword

LDRT																																	Load	Register	with	Translation

LSL																																			Logical	Shift	Left

LSLS																																		Logical	Shift	Left	(update	the	flags)

LSR																																			Logical	Shift	Right

LSRS																																	Logical	Shift	Right	(update	the	flags)

MCR																																		Move	to	Coprocessor	from	ARM	Register

MLA																																	Multiply	Accumulate

MLS																																		Multiply	and	Subtract

MOV																																		Move	(ARM7)

MOV																																		Move	(ARM	Cortex)

MOVS																															Move	(and	update	flags)

MOVT																															Move	Top

MOVW																													Move	16-bit	constant



MRC																																		Move	to	ARM	Register	from	Coprocessor

MRS																																									Move	to	general	Register	from	Special	register

MSR																																									Move	to	Special	register	from	general	Register

MUL																																	Unsigned	Multiplication

MVN																																Move	Negative

MVNS																														Move	Negative	and	update	the	flags

NOP																																	No	Operation

ORN																																	Logical	OR	Not

ORNS																															OR	Not	and	update	flags

ORR																																		Logical	OR

ORRS																																Logical	OR	and	update	the	flags

POP																																		POP	register	from	Stack

PUSH																																PUSH	register	onto	stack

RBIT																																	Reverse	Bits

REV																																		Reverse	byte	order	in	a	word

RV16																																Reverse	byte	order	in	16-bit

REVSH																														Reverse	byte	order	in	bottom	halfword	and	sign	extend

ROR																																		Rotate	Right

RORS																																Rotate	Right	(update	the	flags)

RRX																																		Rotate	Right	with	extend

RRXS																																									Rotate	Right	with	extend	(update	the	flags)

RSB																																		Reverse	Subtract

RSBS																																	Reverse	Subtract	and	update	the	flags

SBC																																		Subtract	with	Carry	(Borrow)

SBCS																																				Subtract	with	Carry	(Borrow)	and	update	the	flags

SBFX																																	Sign	Bit	Field	extract

SDIV																																	Signed	Divide

SEV																																		Send	Event

SMLAL																														Signed	Multiply	Accumulate	Long

SMULL																														Signed	Multiply	Long

SSAT																																	Sign	Saturate



STM																																	Store	Multiple

STMDB																														Store	Multiple	register	and	Decrement	Before

STMEA																													Store	Multiple	register	Empty	Ascending

STMIA																														Store	Multiple	register	Empty	Ascending

STMFD																													Store	Multiple	register	Full	Descending

STR																																			Store	Register

STRB																																	Store	Register	Byte

STRBT																															Store	Register	Byte	with	Translation

STRD																																Store	Register	Double	(two	words)

STREX,	STREXB,	STREXH					Store	Register	Exclusive

STRH																																Store	Register	Halfword

STRT																																	Store	Register

SUB																																		Subtract

SUBS																																Subtract

SVC																																		supervisor	Call	(Software	Interrupt)

SXTB																																	Sign	Extend	byte

SXTH																																Sign	Extend	Halfword

TBB																																		Table	Branch	Byte

TBH																																		Table	Branch	halfword

TEQ																																			Test	Equivalence

TST																																			Test

UBFX																																Unsigned	Bit	filed	extract

UDIV																																Unsigned	Divide

UMLAL																													Unsigned	Multiply	with	Accumulate

UMULL																													Unsigned	Multiply	Long

USAT																																Unsigned	Saturate

UXBT																																Zero	extend	a	byte

UXTH																																Zero	extend	halfword

WFE																																	Wait	for	event

WFI																																		Wait	for	interrupt

	





Section	A.2:	ARM	Cortex-M3	Instruction	Description
	

ADC						Add	with	Carry

Flags:		Unaffected.

Format:	ADC		Rd,Rn,Op2													;Rd	=	Rn	+	Op2	+	C

Function:	If	C	=	1	prior	to	this	instruction,	then	after	execution	of	this	instruction,	Op2	is
added	to	Rn	plus	1	and	the	result	is	placed	in	Rd.	If	C	=	0,	Op2	is	added	to	Rn	plus	0.
Used	widely	in	multiword	additions.	After	the	execution	the	flags	are	not	updated.	The
ADCS	instruction	updates	the	flags.

Example	1:

LDR								R0,=0xFFFFFFFB															;R0=0xFFFFFFFB

LDR								R1,=0xFFFFFFFF																;R1=0xFFFFFFFF

MOV					R2,#3																																					;R2=3

MOV					R3,#4																																					;R3=4

ADDS					R4,R0,R1																														;R4=R0+R1,	C=1

ADC							R5,R2,R3																														;R5=R2+R3+C=R2+R3+1

ADCS			Add	with	Carry	(and	update	the	flags)

Flags:		Affected:	N,	Z,	V,	C.

Format:														ADC		Rd,Rn,Op2																;Rd	=	Rn	+	Op2	+	C

Function:											If	C=1	prior	to	this	instruction,	then	after	execution	of	this	instruction,
Op2	is	added	to	Rn	plus	1	and	the	result	is	placed	in	Rd.	If	C	=	0,	Op2	is	added	to	Rn	plus
0.	Used	widely	in	multiword	additions.	Notice	the	S	indicates	the	flags	will	be	updated.	

Example	1:

LDR								R0,=0xFFFFFFFB															;R0=0xFFFFFFFB

LDR								R1,=0xFFFFFFFF																;R1=0xFFFFFFFF

MOV					R2,#3																																					;R2=3

MOV					R3,#4																																					;R3=4

ADDS					R4,R0,R1																														;R4=R0+R1,	C=1

ADCS					R5,R2,R3																														;R5=R2+R3+C=3+4+1,	Z=0,N=0,C=0,

ADD					ADD

Flags:		Unaffected

Format:														ADD	Rd,Rn,Op2																;Rd	=	Rn	+	Op2



Function:											Adds	source	operands	together	and	places	the	result	in	destination.		This
will	not	update	the	flags.	To	update	the	flags	we	must	use	ADDS.

Example	1:

LDR								R0,=0xFFFFFFFF																;R0=0xFFFFFFFB

MOV					R1,#0x5																																;R1=0x5

ADD							R2,R0,R1																													

;R2=R0+R1=0xFFFFFFFFB+0x5=00000000

;flags	unchanged

Example	2:

LDR								R0,=0xFFFFFFFF																;R0=0xFFFFFFFF

ADD							R2,R0,#0xF1						

;R2=R0+0xF1=R1=0xFFFFFFFF+0xF1=000000F0

;flags	unchanged

ADDS			ADD	and	update	the	flags

Flags:		Affected:	N,	Z,	V,	C.

Format:														ADDS		Rd,Rn,Op2													;Rd=Rn+Op2	and	update	the	flags

Function:											Add	source	operands	together	and	places	the	result	in	destination	and
update	the	flags.	Next,	we	examine	the	cases	of	signed	and	unsigned	numbers.

Unsigned	addition:

In	addition	of	unsigned	numbers,	the	status	of	C,	Z,	N,	and	V	may	change,	but	only	C	and
Z	are	of	any	use	to	programmers.		The	most	important	of	these	flags	is	C.	It	becomes	1
when	there	is	carry	from	D31	out	in	a	32-bit	(D0–D31)	operation.

Example	1:

MOV					R1,#0x45														;R1=0x45

ADDS					R1,R1,#0x4F							;R1=0x94	(0x45+0x4F=0x94),C=0,Z=0

Example	2:

MOV					R2,#0xFE														;R2=0xFE

MOV					R3,#0x75														;R3=0x75

ADDS					R4,R2,R3														;R4=0xFE+0x75=0x73,C=0,Z=0																																			

Example	3:

LDR								R0,=0xFFFFFFFF																;R0=0xFFFFFFFB

MOV					R1,#0x01														;R1=0x1



ADDS					R2,R0,R1													

;R2=R0+R1=0xFFFFFFFFF+0x1=	00000000,	C=1,	Z=1

Example	4:

LDR								R0,=0xFFFF126F																;R0=0xFFFF126F

LDR								R1,=0xFFFF46D4															;R1=0xFFFF46D4

ADDS					R2,R0,R1													

;R1=0xFFFF126F	+	0xFFFF46D5=0xFFFF5943,	C=1,	Z=0

Signed	addition:

In	addition	of	signed	numbers,	the	status	of	V,	Z,	and	N	must	be	noted.	Special	attention
should	be	given	to	the	overflow	flag	(V)	since	this	indicates	if	there	is	an	error	in	the	result
of	the	addition.	There	are	two	rules	for	setting	V	in	signed	number	operation.		The
overflow	flag	is	set	to	1:

1.							If	there	is	a	carry	from	D30	to	D31	and	no	carry	from	D31	out	in	a	32-bit	operation

2.							If	there	is	a	carry	from	D31	out	and	no	carry	from	D30	to	D31	in	a	32-bit	operation

Notice	that	if	there	is	a	carry	both	from	D31	out	and	from	D30	to	D31,	then	V	=	0	in	32-
bit	operations.		

Example	5:

MOV					R1,#+8																		;R1=0x00000008

MOV					R2,#+4																		;R2=0x00000004

ADDS					R3,R1,R2														;R3=0x0000000C	N=0,V=0,C=0

Notice	N	=	D31	=	0	since	the	result	is	positive	and	V	=	0	since	there	is	neither	a	carry
from	D30	to	D31	nor	any	carry	beyond	D31.		Since	V	=	0,	the	result	is	correct	[(+8)	+
(+4)	=	(+12)].

Example	6:

LDR								R1,=0x+42FFFFFF													;R1=0x42FFFFFF,	(a	positive	number)

LDR								R2,=0x+45FFFFFF													;R2=0x45FFFFFF		(a	positive	number)

ADDS					R3,R2,R1																														;R3=0x88FFFFFE,	C=0,	N=1,	Z=0,	and	V=1

In	Example	6,	the	correct	result	should	be	+,	but	the	result	is	–.	The	V	=	1	is	an	indication
of	this	error.	Notice	that	N	=D31	=	1	since	the	result	is	negative;	V	=	1	since	there	is	a
carry	from	D30	to	D31and	C	=	0.

Example	7:

LDR								R0,=-12																	;R0=0xFFFFFFF4

LDR								R1,=+17																;R1=0x00000011



ADDS					R2,R1,R2														;R2=00000005	(which	is	+5	and	correct)	

;N=0,Z=0,V=0,	and	C=1

Notice	that	V	=	0	since	there	is	a	carry	from	D30	to	D31	and	a	carry	from	D31	out.

Example	8:

LDR								R0,=-30																	;R0=0xFFFFFFE2

LDR								R1,=+14																;R2=0x0000000E

ADDS					R2,R1,R0														;R2=FFFFFFF0	(which	is	-16	and	correct)

;N=1,Z=0,V=0,	and	C=0

V	=	0	since	there	is	no	carry	from	D31	out	nor	any	carry	from	D30	to	D31.

Example	9:

LDR								R1,=-126														;R1=0xFFFFFF82

LDR								R2,=-127														;R2=0xFFFFFF81

ADDS					R3,R2,R1														;R3=0xFFFFFF03															

;(which	is	-253	and	correct),N=1,Z=0	and	V=0,	C=1

V	=	0	since	there	is	carry	from	D31	out	and	carry	from	D30	to	D31.

ADR																						Load	PC-Relative	Address				

Flags:		Unaffected:	

Format:														ADR		Rd,label					;Rd=	address	of	label					

Function:											This	allows	loading	into	Rd	register	an	address	relative	to	the	current	PC
(program	counter).	The	label	target	address	must	be	within	the	-4,095	to	+4,096	bytes
from	the	address	in	PC	register.	That	is	no	farther	than	1024	instructions	in	either	direction
of	backward	or	forward.

Example:

ADR							R3,MyMessage

HERE						B													HERE

MyMessage							DCB								“Hello”

AND																						Logical	AND			

Flags:		Unaffected

Format:														AND		Rd,Rn,Op2															;Rd=	Rn	ANDed	Op2

Function:											Performs	logical	AND	on	the	operands,	bit	by	bit,	storing	the	result	in
the	destination.	This	will	not	update	the	flags.	To	update	the	flags	we	must	use	ANDS.
Notice	that	C	flag	is	updated	during	calculation	of	Op2	when	LSR	or	LSL	are	used.



Inputs Output

X Y X	AND	Y

0 0 0

0 1 0

1 0 0

1 1 1

	

Example	1:

MOV					R0,#0x39														;R0=0x39

MOV					R1,#0x0F														;R1=0x0F

AND							R2,R1,R0														;R2=09

;39										0011	1001

;0F										0000	1111

;—											–––

;09										0000	1001		Flags	unchanged

Example	2:

MOV					R0,#0x37														;R0=0x37

AND							R1,R0,#0x0F							;R1	=	R0	ANDed	0x0F	=	07

;37										0011	0111

;0F										0000	1111

;—											–––

;07										0000	0111		Flags	unchanged

ANDS																			Logical	AND				(update	flags)

Flags:		Affected:	N,Z,C

Format:														AND		Rd,Rn,Op2															;Rd=	Rn	ANDed	Op2

Function:	Performs	logical	AND	on	the	operands,	bit	by	bit,	storing	the	result	in	the
destination.	This	will	also	update	the	flags.	Notice	that	C	flag	is	updated	during
calculation	of	Op2	when	LSR	or	LSL	are	used.

Inputs Output

X Y X	AND	Y



0 0 0

0 1 0

1 0 0

1 1 1

Example	1:

MOV					R0,#0x39														;R0=0x00000039

MOV					R1,#0x0F														;R1=0x0000000F

ANDS				R3,R1,R0														;R3=0x00000009

																																;39										0011	1001

																																;0F										0000	1111

																																;—											–––

;09										0000	1001												Z=0,N=0,	C=unchanged

Example	2:

MOV					R1,#0x39														;R1=0x00000039

MOV					R2,#0xC6													;R2=0x000000C6

ANDS				R3,R1,R2														;R3=00000000

;39										0011	1001

;C6										1100	0110

;—											–––

;00										0000	0000												Z=1,	N=0

Example	3:

LDR								R2,=0xFFFFFF82

LDR								R3,=0xFFFFFF81

ANDS				R4,R2,R3														;R4=0xFFFFFF80,	Z=0,	N=1

Example	4:

LDR								R1,=0x55555555

LDR								R2,=0xAAAAAAAA

ANDS				R3,R2,R1														;R3=00000000	Z=1,	N=0

ASR																							Arithmetic	Shift	right

Flags:		Unaffected.	Except	C



Format:														ASR	Rd,	Rm,	Rn

Function:											As	each	bit	of	Rm	register	is	shifted	right,	the	LSB	is	removed	and	the
empty	bits	filled	with	the	sign	bit	(MSB).	The	number	of	bits	to	be	shifted	right	is	given
by	Rn	and	the	result	is	placed	in	Rd	register.	The	flags	are	unchanged.	To	update	the	flags
use	ASRS	instruction.

Example	1:

LDR								R2,=0xFFFFFF82

ASR								R0,R2,#6														;R0=R2	is	shifted	right	6	times

;now,	R0	=	0xFFFFFFFE

Example	2:

LDR								R0,=0x2000FF18

MOV					R1,	#12

ASR								R2,R0,R1														;R2=R0	is	shifted	right	R1	number	of	times.

;now,	R2	=	0x0002000F

Example	3:

LDR								R0,=0x0000FF18

MOV					R1,	#16

ASR								R2,R0,R1														;R2=R0	is	shifted	right	R1	number	of	times

;now,	R2	=	0x00000000

ASR	arithmetic	shift	is	used	for	signed	number	shifting.		ASR	essentially	divides	Rm	by	a
power	of	2	for	each	bit	shift.					

ASRS																				Arithmetic	Shift	right	(update	the	flags)

Flags:		N,Z,	and	C.

Format:														ASR	Rd,	Rm,	Rn

Function:											As	each	bit	of	Rm	register	is	shifted	right,	the	LSB	is	copied	to	C	flag
and	the	empty	bits	filled	with	the	sign	bit	(MSB).	The	number	of	bits	to	be	shifted	right	is
given	by	Rn	and	the	result	is	placed	in	Rd	register.		The	ASRS	updates	the	flags.

Example	1:

LDR								R2,=0xFFFFFF82

ASRS						R0,R2,#6														;R0=R2	is	shifted	right	6	times.

;now,	R0=	0xFFFFFFFE,	C=0,	N=1,	Z=0

Example	2:



LDR								R0,=0x2000FF18

MOV					R1,	#12

ASRS						R2,R0,R1														;R2=R0	is	shifted	right	R1	number	of	times.

;now,	R2=	0x0002000F,	C=1,	N=0,	Z=0

Example	3:

LDR								R0,=0x0000FF18

MOV					R1,	#16

ASRS						R2,R0,R1														;R2=R0	is	shifted	right	R1	number	of	times.

;now,	R2=	0x00000000,	C=1,	N=0,	Z=1

ASRS	arithmetic	shift	is	used	for	signed	number	shifting.		ASRS	essentially	divides	Rm
by	a	power	of	2	for	each	bit	shift.

B																													Branch	(unconditional	jump)

Flags:		Unchanged.

Format:														B	target																;jump	to	target	address

Function:	This	instruction	is	used	to	transfer	control	unconditionally	to	a	new	address.
The	difference	between	B	and	BL	is	that	the	BL	instruction	saves	the	address	of	the	next
instruction	to	LR	(the	link	register,	R14).	For	ARM7,	the	target	address	is	calculated		by
(a)	shifting	the	24-bit	signed	(2’s	comp)	offset	left	two	bits,	(b)	sign-extend	the	result	to
32-bit,	and	(c)	add	it	to	contents	of	PC	(program	counter).	This	means	the	target	address
could	be	within	the	–32M	bytes	to	+32M	bytes	of	address	space	from	the	current	program
counter.	For	ARM	Cortex	M3.	the	target	address		must	be	within	–16MB	to	+16	MB
address	space	from	current	instruction.		

Bxx																							Branch	Conditional

Flags:		Unaffected.

Format:														Bxx	target		;jump	to	target	upon	condition

Function:											Used	to	jump	to	a	target	address	if	certain	conditions	are	met.	In	ARM7,
the	target	address	cannot	be	more	than	–32MB	to	+32MB	bytes	away.		For	ARM	Cortex
M3.	the	target	address		must	be	within	–16MB	to	+16	MB	address	space	from	current
instruction.	The	conditions	are	indicated	by	the	flag	register.	The	conditions	that	determine
whether	the	jump	takes	place	can	be	categorized	into	three	groups:

1.							flag	values,

2.							the	comparison	of	unsigned	numbers,	and

3.							the	comparison	of	signed	numbers.

Each	is	explained	next.

1.							“B	condition”	where	the	condition	refers	to	flag	values.	The	status	of	each	bit	of



the	flag	register	has	been	decided	by	execution	of	instructions	prior	to	the	jump.	The
following	“B	condition”	instructions	check	if	a	certain	flag	bit	is	raised	or	not.

Instruction Condition

BCS Branch	if	Carry	Set jump	if	C=1

BCC Branch	if	Carry	Clear jump	if	C=0

BEQ Branch	if	Equal jump	if	Z=1

BNE Branch	if	Not	Equal jump	if	Z=0

BMI Branch	if	Minus/Negative jump	if	N=1

BPL Branch	if	Plus/Positive jump	if	N=0

BVS Branch	if	Overflow jump	if	V=1

BVC Branch	if	No	overflow jump	if	V=0

	

2.							“B	condition”	where	the	condition	refers	to	the	comparison	of	unsigned	numbers.	
After	a	compare	(CMP		Rn,Op2)	instruction	is	executed,	C	and	Z	indicate	the	result
of	the	comparison,	as	follows:

	 C Z

Rn	>	Op2 1 0

Rn	=	Op2 1 1

Rn	<	Op2 0 0

	

Since	the	operands	compared	are	viewed	as	unsigned	numbers,	the	following	“B
condition”	instructions	are	used.

Instruction Condition

BHI Branch	if	Higher															 jump	if	C=1	and	Z=0

BEQ Branch	if	Equal jump	if	C=1	and	Z=1

BLS Branch	if	Lower	or	same jump	if	C=0	or	Z=1

In	reality,	the	“CMP	Rn,	Op2”	is	a	subtract	instruction	(Rn-Op2).	After	the	subtraction
the	result	is	discarded	and	flags	are	changed	according	to	the	result.	Notice	in	ARM	the
subtract	affects	the	C	flag	setting	differently	from	the	x86	and	other	CPUs.	See	the	SUB



instruction.

3.							“B	condition”	where	the	condition	refers	to	the	comparison	of	signed	numbers.		In
the	case	of	the	signed	number	comparison,	although	the	same	instruction,	“CMP
Rn,Op2”,	is	used,	the	flags	used	to	check	the	result	are	as	follows:	

Rn	>	Op2 V=N	or	Z=0

Rn	=	Op2 Z=1

Rn	<	Op2 V	inverse	of	N

	

Consequently,	the	“B	condition”	instructions	used	are	different.		They	are	as	follows:

Instruction 	

BGE Branch	Greater	or	Equal
jump	if	N=1	and	V=1	or	N=0	and	V=0

(V=N)

BLT Branch	Less	than
jump	if	N=1	and	V=0	or	N=0	and	V=1

(N	not	equal	to	V)

BGT Branch	Greater	than
jump	if	Z=0	and	either			N=1	and	V=1	or	N=0	and

V=0

(N=V)

BLE Branch	Less	or	Equal
jump	if	Z=1	or	N=1	and	V=0.	Or	N=0	and	V=1

(Z=1	or	N	not	equal	to	V)

BEQ Branch	if	Equal jump	if	Z	=	1

All	“B	condition”	instructions	are	short	jumps,	meaning	that	the	target	address	cannot	be
more	 than	 -32M	bytes	backward	or	+32M	bytes	 forward	 from	 the	PC	of	 the	 instruction
following	the	jump.		In	ARM	Cortex	M3	it	is	16MB	in	each	direction.	What	happens	if	a
programmer	needs	to	use	a	“B	condition”	to	go	to	a	target	address	beyond	the	-32MB	to
+32MB	 range?	The	 solution	 is	 to	 use	 the	 “BX	 condition,	Rm”	 since	Rm	 can	 be	 32-bit
address	and	covers	the	entire	4GB	address	space	of	the	ARM.	This	is	shown	next.	

LDR								R4,=MYTARGET

ADDS					R1,R2,R3

BXEQ					R4											;branch	to	address	held	by	R4	if	Z=1

MYTRGT															SUBS					R7,#4

NOP

NOP



….

	 C Z N V

Rn	>	Op2 0 0 0 N

Rn	=	Op2 0 1 0 N

Rn	<	Op2 1 0 1 Inverse	of	N

BFC																							Bit	Field	Clear

Flags:		Unaffected.

Format:														BFC	Rd,	#LSB,	#Width

Function:											Clears	selected	bits	of	Rd.	The	start	location	of	the	Rd	bit	is	indicated	by
#LSB	and	must	be	in	the	range	of	0–31.	How	many	bits	should	be	cleared	is	indicated	by
#Width	and	must	be	in	the	range	of	1–32.

Example	1:

LDR								R1,=0xFFFFFFFF																;R1=0xFFFFFFFF

BFC								R1,#2,#14																												;now	R1=0xFFFF0003

Example	2:

LDR								R2,=0x999999999													;R2=0x99999999

BFC								R2,#8,#24																												;now	R2=0x00000099

BFI																								Bit	Field	Insert

Flags:		Unaffected.

Format:														BFI	Rd,	Rn,	#LSB,	#Width

Function:											Selected	bits	of	Rn	are	copied	to	Rd.	The	start	location	of	the	Rd	bit	is
indicated	by	#LSB	and	must	be	in	the	range	of	0	–	31.	How	many	bits	should	be	copied	is
indicated	 by	 #Width	 and	must	 be	 in	 the	 range	 of	 1–32.	 The	 start	 bit	 location	 of	 Rn	 is
always	bit	0	(D0).

Example:

LDR								R1,=0xABCDABCD												;R1=0xABCDABCD

LDR								R2,=0x12345678																;R2=0x12345678

BFI										R1,R2,#4,#8																								;now	R1=0xABCDA78D

…

BIC																								Bit	Clear

Flags:		Unaffected.



Format:														BIC	Rd,	Rn,Op2		;Rd=Rn	ANDed	with	NOT	of	Op2

Function:											Selected	bits	of	Rn	are	cleared	and	placed	in	Rd.	The	Op2	provides	the
bits	selection.	If	the	selected	bits	in	Op2	are	high	then	corresponding	bits	in	Rn	are	cleared
and	the	result	is	placed	in	Rd.	If	the	selected	bits	in	Op2	are	low	the	corresponding	bits	in
Rn	are	left	unchanged	and	the	result	is	placed	in	Rd.	In	reality,	the	BIC	performs	the	AND
operation	 on	 the	 bits	 of	Rn	with	 the	 complement	 of	 the	 bits	 in	Op2.	 The	BIC	will	 not
update	the	flags.	To	update	the	flags	we	must	use	BICS.

Inputs Output

X Y X	AND	(NOT
Y)

0 0 0

0 1 0

1 0 1

1 1 0

Example:

LDR								R1,=0xFFFFFF00																;R1=0xFFFFFF00

LDR								R2,=0x99999999																;R2=0x9999999

BIC									R3,R2,R1																														;now	R3=0x00000099

BICS					Bit	Clear	(update	flags)

Flags:		N	and	Z.

Format:														BICS	Rd,	Rn,	Op2														;Rd=Rn	ANDed	with	NOT	of	Op2

Function:											Selected	bits	of	Rn	are	cleared	and	placed	in	Rd.	The	Op2	provides	the
selected	bits.	If	the	selected	bits	in	Op2	is	high	then	the	corresponding	bits	in	Rn	is	cleared
and	the	result	is	placed	in	Rd.	If	the	selected	bits	in	Op2	is	low	them	the	corresponding
bits	in	Rn	is	left	unchanged	and	the	result	is	placed	in	Rd.	In	reality,	the	BICS	performs
the	AND	operation	on	the	bits	of	Rn	with	the	complement	of	the	bits	in	Op2	and	updates
the	flags.

Inputs Output

X Y X	AND	(NOT
Y)

0 0 0

0 1 0



1 0 1

1 1 0

Example	1:

LDR								R1,=0xFFFFFF00																;R1=0xFFFFFF00

LDR								R2,=0x99999999																;R2=0x9999999

BICS							R3,R2,R1																														;now	R3=0x00000099,	N=0,	Z=0

Example	2:

LDR								R0,=0xFFFFFFFF																;R0=0xFFFFFFFF

LDR								R1,=0x01234567																;R1=0x01234567

BICS							R2,R1,R0																														;now	R2=0,	N=0,	Z=1

Example	3:

MOV					R0,#0																																					;R0=0

LDR								R1=0x99999999																	;R1=0x99999999

BICS							R2,R1,R0																														;now	R2=0x99999999,	N=1,	Z=0

BKPT			Breakpoint

Flags:		Unaffected.

Format:														BKPT	#imme_value

Function:											used	by	compiler	to	insert	breakpoint	into	programs.	Upon	execution	of
the	BKPT	instruction	the	program	enters	the	Debug	mode.	See	your	ARM compiler	for
more	information

BL										Branch	with	Link	(this	is	Call	instruction)

Flags:		Unchanged.

Format:														BL	Subroutine_Addr							;transfer	control	to	a	subroutine

Function:											Transfers	control	to	a	subroutine.	This	instruction	saves	the	address	of
the	instruction	after	the	BL	in	R14	(link	register).		At	the	end	of	the	subroutine	the	control
to	 the	 instruction	 after	 the	BL	 is	 achieved	 by	 copying	 the	 LR	 (R14)	 register	 to	 PC.	 In
ARM7,	the	target	address	cannot	be	more	than	–32MB	to	+32MB	bytes	away.		For	ARM
Cortex	M3.	 the	 target	 address	 	must	 be	within	 –16MB	 to	 +16	MB	 address	 space	 from
current	instruction.

Example:

LDR								R7,=20000000

BL											DELAY			;Call	subroutine	MY_DELAY



ADD							R3,#4					;address	of	this	instruction	is	saved	in	R14

…

…

DELAY			SUBS					R7,#4

NOP

NOP

MOV					PC,R14		;Return,	could	have	used	“BX	LR”	instruction

BLX																							Branch	Indirect	with	Link

Flags:		Unaffected.

Format:														BLX	Rm																	;transfer	control	to	a	subroutine	whose

;address	is	given	by	Rm

Function:	 	 	 	 	 	 	 	 	 	 	Transfers	 control	 to	 a	 subroutine	whose	address	 is	given	by	 the	Rm
register.	 This	 instruction	 saves	 the	 address	 of	 the	 instruction	 after	 the	 BL	 in	 R14	 (link
register).	 At	 the	 end	 of	 the	 subroutine	 the	 control	 to	 the	 instruction	 after	 the	 BL	 is
achieved	 by	 copying	 the	 LR	 (R14)	 register	 to	 PC.	 One	 can	 use	 “BX	 LR”	 as	 return
instruction.	 Notice	 the	 difference	 between	 this	 instruction	 and	 “BL	 Target_Addr”
instruction.	 In	 the	 “BL	 Target_Addr”	 instruction	 the	 target	 address	 of	 the	 subroutine	 is
given	 right	 there.	 However,	 in	 the	 “BLX	 	 Rm”	 instruction,	 the	 target	 address	 of	 the
subroutine	is	held	by	register	Rm.

Example:

ADR							R2,DELAY

BLX									R2											;Call	subroutine	pointed	to	by	R2

ADD							R3,#4					;address	of	this	instruction	is	saved	in	R14

…

…

DELAY			SUBS					R1,#4

NOP

NOP

BX											LR											;return

BX																										Branch	Indirect	(BX	LR	is	used	for	Return)

Flags:		Unchanged.

Format:														BX	Rm																			;BX	LR	is	used	for	Return	from	a	subroutine

Function:											The	most	widely	usage	of	this	instruction	is	in	the	form	of	“BX	LR”	for



the	purpose	of	return	instruction	at	the	end	of	subroutine.

Example:

LDR								R1,=20000000

BL											DELAY																			;Call	subroutine	MY_DELAY

ADD							R3,#4																					;address	of	this	instr.	is	saved	in	R14

…

…

DELAY			SUBS					R1,#4

NOP

NOP

BX											LR																											;return	to	caller

CBNZ			Compare	and	Branch	on	Non-Zero

Flags:		Unchanged.

Format:														CBNZ	Rn,	Target

Function:											Transfers	control	to	the	target	location	if	Rn	is	not	equal	to	zero.	The	Rn
must	be	in	the	range	of	R0–R7	and	target	address	cannot	be	farther	than	130	bytes	away
from	the	instruction.	This	instruction	compares	the	Rn	with	zero	and	jumps	only	if	Rn	is
not	zero.	The	comparison	has	no	effect	on	flags.	This	can	be	used	for	loops	in	which	the
body	of	the	loop	is	no	more	than	20	instructions.

Example	1:

MOV					R1,#10																		;R1=10

L1												NOP

NOP

NOP

SUB								R1,R1,1																	;R1=R1-1

CBNZ					R1,L1

CBZ							Compare	and	Branch	on	Zero

Flags:		Unaffected.

Format:														CBZ	Rn,	Target

Function:											Transfers	control	to	the	target	location	if	Rn	is	zero.	The	Rn	must	be	in
the	 range	of	R0–R7	and	 target	 address	 cannot	 be	 farther	 than	130	bytes	 away	 from	 the
instruction.		This	instruction	compares	the	Rn	with	zero	and	jumps	only	if	Rn	is	zero.	The
comparison	has	no	effect	on	flags.	This	can	be	used	to	test	a	register	value	after	reading	a



port.

Example	1:

LDR								R0,=MYPORT_ADR										;R0	=	MYPORT	address

HERE						LDR								R2,[R0]																	;read	from	MYPORT

CBZ								R2,HERE															;keep	reading	MYPORT	until	it	is	zero					

CDP						Coprocessor	Data	processing

See	ARM	Cortex-M	Manual.

CLREX	Clear	Exclusive	

See	ARM	Cortex-M	Manual.

CLZ							Count	Leading	Zero	

Flags:		Unchanged.

Format:														CLZ	Rd,Rn

Function:											Scans	the	Rn	register	contents	from	most	significant	bit	(D31)	toward
least	significant	bit	(D0)	until	it	find	the	first	HIGH.	The	number	of	binary	zero	bits	before
it	encounters	the	first	binary	HIGH	is	placed	in	Rd.

Example:

LDR								R3,=0x01FFFFFF

CLZ									R1,R3					;R1=7	since	there	are	7	zeros	before	the	first	binary	1

CMN					Compare	Negative

Flags:		Affected:	V,	N,	Z,C.

Format:														CMN	Rn,Op2						;sets	flags	as	if	“Rn	+	Op2”

;Notice,	the	Rn	-(-Op2)=Rn+Op2

Function:	Compares	Rn	register	value	with	the	negative	of	Op2	value.	This	is	done	by	Rn
-	(negative	of	Op2)	which	is	Rn	-	(-Op2)	=	Rn	+	Op2.	The	Rn	and	Op2	operands	are	not
altered.	 	 In	 other	 words,	 the	 CMN	 adds	 the	 Op2	 to	 Rn	 (Rn+Op2)	 and	 sets	 the	 flags
accordingly.	This	is	the	same	as	ADDS	instruction	except	the	operands	are	unchanged	and
the	result	is	discarded.	See	Bxx	instruction	for	possible	cases	of	comparison.

CMP																						Compare

Flags:		Affected:	V,	N,	Z,	C.

Format:														CMP	Rn,Op2																						;sets	flags	as	if	“Rn-Op2”

Function:											Compares	two	operands.	The	operands	are	not	altered.		Performs
comparison	by	subtracting	the	Op2	operand	from	the	Rn	and	updates	flags	as	if	SUBS
were	performed.	As	we	can	see	in	SUBS,	the	CMP	perform	the	operation	of	Rn	+	2’s



comp	of	Op2	and	sets	the	flags	according	to	the	result.	See	Bxx	instruction	for	possible
cases	of	comparison.

CPSID																		Change	processor	ID	and	Disable	Interrupt

Flags:		Unaffected

Format:														CPSID	iflag											;iflag	is	i	in	PRIMASK	or	f	in	FAULTMASK	

Function:											Used	for	disabling	the	interrupt	flags	in	PRIMASK	or	FAULTMASK
registers.	See	ARM	Cortex	manual.

CPSIE																			Change	Processor	State	and	Enable	Interrupt

Flags:		Unaffected

Format:														CPSIE	iflag											;iflag	is	i	in	PRIMASK	or	f	in	FAULTMASK

Function:											Used	for	enabling	the	interrupt	flags	in	PRIMSK	or	FAULTMASK
registers.		See	ARM	Cortex	manual.

DMB																					Data	Memory	Barrier

Flags:		Unaffected

Format:														DMB

Function:											It	makes	sure	that	all	the	explicit	memory	accesses	prior	to	DMB
instruction	are	completed	before	the	explicit	memory	accesses	after	the	DMB.	See	ARM
Cortex	manual.

DSB																						Data	Synchronization	Barrier

Flags:		Unaffected

Format:														DSB

Function:	It	makes	sure	that	all	the	explicit	memory	accesses	prior	to	DSB	instruction	are
completed	before	the	DSB	instruction	is	executed.	See	ARM	Cortex	manual.

EOR						Exclusive	OR

Flags:		Unaffected

Format:														EOR		Rd,Rn,Op2															

Function:											Performs	logical	Ex-OR	on	the	Rn	and	Op2	operands,	bit	by	bit,	storing
the	result	in	the	Rd.	This	will	not	update	the	flags.	Use	EORS	instruction	to	updates	the
flags.

Inputs Output

X Y X	EOR	Y

0 0 0



0 1 1

1 0 1

1 1 0

Example	1:

MOV					R0,#0xAA												;R0=0xAA

EOR								R2,R0,#0xFF							;now,	R2=0x55

;AA									1010	1010

;FF										1111	1111

;—											–––

;55										0101	0101												flags	unchanged

Example	2:

LDR								R0,=0xAAAAAAAA										;R0=0xAAAAAAAA

LDR								R1,=0x55555555																;R1=0x55555555

EOR								R2,R1,R0																														;R2=0xFFFFFFFF

;AA									1010	1010

;55										0101	0101

;—											–––

;FF										1111	1111												flags	unchanged

The	“EOR	Rd,Rx,Rx”	can	be	used	to	clear	Rd.

Example	3:

MOV					R1,#0x55

EOR								R2,R1,R1														;R2=0

;55										0101	0101

;55										0101	0101

;—											–––

;00										0000	0000												flags	unchanged

To	complement	the	bits	of	Rn,	EX-OR	it	with	0xFF.

Example	4:

LDR								R0,=0xAAAAAAAA										;R0=0xAAAAAAAA

LDR								R1,=0xFFFFFFFF																;R1=0xFFFFFFFF



EOR								R2,R1,R0														;R2=0x55555555

;AA									1010	1010

;FF										1111	1111

;—											–––

;55										0101	0101												flags	unchanged

EORS			Exclusive	OR	and	update	the	flags

Flags:		Affected:	C,	V,	N,	Z

Format:														EORS		Rd,Rn,Op2													

Function:											Performs	logical	Ex-OR	on	the	Rn	and	Op2	operands,	bit	by	bit,	storing
the	result	in	the	Rd.	After	the	execution	the	flags	are	updated.

Inputs Output

X Y X	EOR	Y

0 0 0

0 1 1

1 0 1

1 1 0

Example	1:

MOV					R0,#0xAA												;R0=0xAA

EORS					R2,R0,#0xFF							;now,	R2=0x55

;AA									1010	1010

;FF										1111	1111

;—											–––

;55										0101	0101												N=0,	C=0,Z=0,V=0

Example	2:

LDR								R0,=0xAAAAAAAA										;R0=0xAAAAAAAA

LDR								R1,=0x55555555																;R1=0x55555555

EORS					R2,R1,R0																														;R2=0xFFFFFFFF

;AA									1010	1010

;55										0101	0101

;—											–––



;FF										1111	1111												N=1,	C=0,Z=0,V=0

The	“EOR	Rd,Rx,Rx”	can	be	used	to	clear	Rd.

Example	3:

MOV					R1,#0x55

EORS					R2,R1,R1														;R2=0x0

;55										0101	0101

;55										0101	0101

;—											–––

;00										0000	0000												N=0,	C=0,Z=1,V=0

ISB								Instruction	Synchronization	Barrier

Flags:		Unaffected.

Format:														ISB

Function:											It	flushes	the	pipeline	to	make	sure	the	instructions	executed	right	after
the	ISB	instruction	are	fetched	fresh	from	the	cache	or	memory.	

IT											If-Then	Condition	Block

Flags:		Unaffected

Format:														See	ARM	manual

Function:											It	allows	the	execution	of	up	to	four	instruction	after	the	IT	to	be
conditional.

LDC							Load	Coprocessor

See	the	ARM	Manual

LDM					Load	Multiple	registers

Flags:		Unaffected.

Format:														LDM		Rn,	{Rx,Ry,..}

Function:	 	 	 	 	 	 	 	 	 	 	Loads	into	registers	from	consecutive	memory	locations.	The	starting
address	of	memory	location	is	given	by	Rn	register.	The	destination	registers	separated	by
comma	and	placed	in	braces.	In	the	ARM	Cortex,	the	stack	is	descending	meaning	that	as
information	is	pushed	onto	stack	the	stack	pointer	is	decremented.	This	IA	(Increment	the
address	after	each	Access)	is	the	default	for	loading	(Poping).		This	instruction	is	widely
used	for	Poping	(loading)	multiple	words	from	descending	stack	into	CPU	registers.

Example:

;Assume	the	following	memory	locations	with	the	contents:

;12000=(46)



;12001=(10)

;12002=(38)

;12003=(82)

;12004=(56)

;12005=(50)

;12006=(58)

;12007=(15)

;12008=(63)

;12009=(60)

;1200A=(68)

;1200B=(39)

;1200C=(79)

;1200D=(70)

;1200E=(75)

;1200F=(92)

LDR								R7,=0x12000

LDM							R7,{R0,R2,R4}				

;now,	R0=0x82381046,	R2=0x15585056,	…

;the	contents	of	memory	locations	0x12000-0x12003	are

;moved	to	register	R0,and	the	contents	of	memory

;locations	0x12004-0x12007	are	moved	to	register

;R2,	and	so	on.	Therefore	we	have	R0=0x82381046,

;R2=0x15585056,	and	R4=0x39686063.

LDMDB														Load	Multiple	registers	and	Decrement	Before	each	access

Flags:		Unaffected.

Format:														LDMDB		Rn,	{Rx,Ry,…}

Function:	This	is	the	same	as	LDMEA	(load	multiple	registers	from	Empty	Ascending)
used	for	cases	in	which	the	stack	is	ascending.	See	LDMEA	instruction.	

	

LDMEA															Load	Multiple	registers	from	Empty	Ascending

Flags:		Unaffected.



Format:														LDMEA		Rn,	{Rx,Ry,…}

Function:	Loads	into	registers	from	consecutive	memory	locations.	The	starting	address
of	memory	location	is	given	by	Rn	register.	The	destination	registers	separated	by	comma
and	placed	in	braces.	In	the	ARM	Cortex,	the	default	for	stack	is	descending	meaning	that
as	information	are	pushed	onto	stack	the	stack	pointer	is	decremented.	The	IA	(Increment
the	address	after	each	Access)	is	the	default.		If	we	change	the	default	of	descending	stack
to	ascending	stack	then	we	have	to	use	the	EA	(Empty	Ascending).	The	ascending	stack
means	as	information	are	pushed	onto	stack	the	stack	pointer	is	incremented.	The	LDMEA
is	used	for	Poping	(loading)	multiple	words	from	ascending	stack	into	CPU	registers.

LDMFD															Load	Multiple	registers	Full	Descending

Flags:		Unaffected.

Format:														LDMFD		Rn,	{Rx,Ry,..}

Function:											This	is	the	same	as	LDM	and	LDMIA.

LDMIA																Load	Multiple	registers	and	Increment	after	each	Access

Flags:		Unaffected.

Format:														LDM		Rn,	{Rx,Ry,..}

Function:	 This	 is	 the	 same	 as	 the	 LDM	 instructions.	 In	 the	ARM	Cortex,	 the	 stack	 is
descending	 meaning	 that	 as	 information	 are	 pushed	 onto	 stack	 the	 stack	 pointer	 is
decremented.		This	IA	(Increment	the	address	after	each	Access)	is	the	default.	We	use	this
for	Poping	(loading)	multiple	words	from	descending	stack	into	CPU	registers.	

LDR																						Load	Register

Flags:		Unaffected.

Format:														LDR		Rd,[Rx]																							;load	into	Rd	a	word	from	memory

																;location	pointed	to	be	Rx

Function:	 	 	 	 	 	 	 	 	 	 	Loads	into	destination	register	the	contents	of	four	memory	locations.
The	 [Rx]	points	 to	 address	of	memory	 location.	This	 is	widely	used	 to	 load	32-bit	 data
from	memory	into	Rd	register	of	the	ARM	since	in	the	“MOV	Rd,#immediate_value”	the
immediate	value	cannot	be	larger	than	0xFF.	

Example:

;Assume	the	following	memory	locations	with	the	contents:

;12000=(46)

;12001=(10)

;12002=(38)

;12003=(82)																							

LDR	R0,=0x12000



LDR	R1,[R0]																								

;now,	R1=82381046.

LDR	Rx,=Value														Load	Register	with	32-bit	value

Flags:		Unaffected.

Format:														LDR	Rd,=32_bit_value				;load	Rd	with	32-bit	value

Function:											Loads	into	destination	register	a	32-bit	immediate	value.	This	is	widely
used	 to	 load	 32-bit	 immediate	 value	 into	 Rd	 register	 of	 the	 ARM	 since	 in	 the	 “MOV
Rd,#immediate_value”	the	immediate	value	cannot	be	larger	than	0xFF.	

Example:

LDR								R0,=0x1200000																		;R0=0x1200000	

LDR								R1,=0x2FFFF																							;R1=0x2FFFF

LDR								R0,=0xFFFFFFFF																;R0=0xFFFFFFFF															

LDR								R1,=200000000																		;R1=200000000

LDRB																			Load	Register	Byte

Flags:		Unaffected.

Format:														LDRB		Rd,[Rx]																					;load	into	Rd	a	byte	from	memory

																;location	pointed	to	be	Rx

Function:											Loads	into	destination	register	the	contents	of	a	single	memory	location
indicated	by	Rx.			

Example:

;Assume	the	following	memory	locations	with	the	contents:

;12000=(46)

;12001=(10)

;12002=(38)

;12003=(82)

LDR								R0,=0x12000

LDRB						R1,[R0]																																																																

;now,	R0=00000046	

LDRBT	Load	Register	Byte	with	Translation

Flags:		Unaffected.

Format:														LDRBT		Rd,[Rx]

Function:											Loads	into	Rd	register	a	byte	from	memory	location	pointed	to	by	Rx



and	zero-extends	the	byte	to	32-bit	word.	That	means	a	zero	is	copied	to	all	the	upper	24
bits	of	the	Rd	register.	Used	for	unprivileged	memory	access.

Example:

;Assume	the	following	memory	locations	with	the	contents:

;12000=(46)

;12001=(10)

;12002=(38)

;12003=(82)

LDR								R0,=0x12000

LDRBT			R1,[R0]	;now,	R1=00000046

	

LDREX,	LDREXB,	LDREXH					Load	Register	Exclusive

Function:	They	are		used	with	STREX,	STREXB,	and	STREXH		instructions	to	perform
CPU	synchronization	operation.	See	ARM	Cortex	manual.

LDRH			Load	Register	Halfword

Flags:		Unaffected.

Format:														LDRH	Rd,[Rx]																					;load	into	Rd	a	2-byte	from	memory

																;location	pointed	to	be	Rx

Function:											Loads	into	destination	register	the	contents	of	the	two	consecutive
memory	locations	(halfword)	indicated	by	Rx.			

Example:

;Assume	the	following	memory	locations	with	the	contents:

;12000=(46)

;12001=(10)

;12002=(38)

;12003=(82)

LDR								R0,=0x12000

LDRH					R1,[R0]

;now,	R0=00001046

LDRSB																Load	Register	signed	Byte

Flags:		Unaffected.

Format:														LDRSB	Rd,[Rx]



Function:											Loads	into	Rd	register	a	byte	from	memory	location	pointed	to	by	Rx
and	sign-extends	the	byte	to	32-bit	word.	That	means	the	sign	(D7)	of	the	byte	is	copied	to
all	the	upper	24	bits	of	the	Rd	register.			

Example	1:

;Assume	the	following	memory	locations	with	the	contents:

;12000=(85)

;12001=(10)

;12002=(38)

;12003=(82)

LDR								R0,=0x12000

LDRB						R1,[R0]	;now		R1=FFFFFF85	because	MSB	of	85	is	1

Example	2:

;Assume	the	following	memory	locations	with	the	contents:

;12000=(15)

;12001=(20)

;12002=(3F)

;12003=(82)

LDR								R0,=0x12000

LDRB						R1,[R0]	;now,	R1=00000015	because	MSB	of	15	is	0

	

LDRSH																																Load	Register	Signed	Halfword

Flags:		Unaffected.

Format:														LDRSH	Rd,[Rx]

Function:											Loads	into	Rd	register	a	half-word	(2-byte)	from	memory	location
pointed	to	by	Rx	and	sign-extends	it	to	32-bit	word.	That	means	the	sign	(D15)	of	the	16-
bit	operand	is	copied	to	all	the	upper	16	bits	of	the	Rd	register.			

Example	1:

;Assume	the	following	memory	locations	with	the	contents:

;12000=(46)

;12001=(F3)

;12002=(38)

;12003=(82)



LDR								R0,=0x12000

LDRB						R1,[R0]	;now,	R0=FFFFF346	because	MSB	of	F3	is	1

Example	2:

;Assume	the	following	memory	locations	with	the	contents:

;12000=(4F)

;12001=(23)

;12002=(18)

;12003=(B2)

LDR								R0,=0x12000

LDRB						R1,[R0]	;now,	R1=0000234F	because	MSB	of	23	is	0

LDRT																			Load	Register	with	Translation

Flags:		Unaffected

Format:														LDRT		Rd,[Rx]

Function:											Loads	into	Rd	register	a	byte	from	memory	location	pointed	to	by	Rx
and	zero-extends	the	byte	to	32-bit	word.	That	means	a	zero	is	copied	to	all	the	upper	24
bits	of	the	Rd	register.	Used	for	unprivileged	memory	access.

Example:

;Assume	the	following	memory	locations	with	the	contents:

;12000=(46)

;12001=(10)

;12002=(38)

;12003=(82)

LDR								R0,=0x12000

LDRB						R1,[R0]	;now,	R1=00000046

LSL																								Logical	Shift	Left

Flags:		Unaffected.

Format:														LSL	Rd,	Rm,	Rn

Function:	As	each	bit	of	Rm	register	is	shifted	left,	the	MSB	is	removed	and	the	empty
bits	are	filled	with	zeros.	The	number	of	bits	to	be	shifted	left	is	given	by	Rn	and	the	result
is	placed	in	Rd	register.	The	LSL	does	not	updates	the	flags.



Example	1:

LDR								R2,=0x00000010

LSL										R0,R2,#8														;R0=R2	is	shifted	left	8	times

;now,	R0=	0x00001000,	flags	not	changed

Example	2:

LDR								R0,=0x00000018

MOV					R1,	#12

LSL										R2,R0,R1														;R2=R0	is	shifted	left	R1	number	of	times

;now,	R2=	0x000018000,	flags	not	changed

Example	3:

LDR								R0,=0x0000FF18

MOV					R1,	#16

LSL										R2,R0,R1														;R2=R0	is	shifted	left	R1	number	of	times

;now,	R2=	0xFF180000,	flags	not	changed

The	logical	shift	left	used	for	unsigned	number	shifting.	LSL	essentially	multiplies	Rm
by	a	power	of	2	for	each	bit	shift.

LSLS																					Logical	Shift	Left	(update	the	flags)

Flags:		Affected.

Format:														LSLS	Rd,	Rm,	Rn

Function:											As	each	bit	of	Rm	register	is	shifted	left,	the	MSB	is	copied	to	C	flag	and
the	empty	bits	are	filled	with	zeros.	The	number	of	bits	to	be	shifted	left	is	given	by	Rn
and	the	result	is	placed	in	Rd	register.	The	LSLS	updates	the	flags.

Example	1:

LDR								R2,=0x00000010

LSLS							R0,R2,#8														;R0=R2	is	shifted	left	8	times

;now,	R0=	0x00001000,	C=0,	N=0,	Z=0

Example	2:

LDR								R0,=0x00000018

MOV					R1,	#12

LSLS							R2,R0,R1														;R2=R0	is	shifted	left	R1	number	of	times

;now,	R2=	0x000018000,	C=0,	N=0,	Z=0

Example	3:



LDR								R0,=0x000FFF18

MOV					R1,	#16

LSLS							R2,R0,R1														;R2=R0	is	shifted	left	R1	number	of	times

;now,	R2=	0xFF180000,	C=1,	Z=0,	N=0

The	logical	shift	left	used	for	unsigned	number	shifting.	LSLS	essentially	multiplies	Rm
by	a	power	of	2	for	each	bit	shift.

LSR																							Logical	Shift	Right

Flags:		Unaffected.

Format:														LSR	Rd,	Rm,	Rn

Function:											As	each	bit	of	Rm	register	is	shifted	right,	the	LSB	is	removed	and	the
empty	bits	are	filled	with	zeros.	The	number	of	bits	to	be	shifted	left	is	given	by	Rn	and
the	result	is	placed	in	Rd	register.		The	LSR	does	not	update	the	flags.

Example	1:

LDR								R2,=0x00001000

LSR									R0,R2,#8														;R0=R2	is	shifted	right	8	times

;now,	R0=	0x00000010,	C=0

Example	2:

LDR								R0,=0x000018000

MOV					R1,	#12

LSR									R2,R0,R1														;R2=R0	is	shifted	right	R1	number	of	times

;now,	R2=	0x00000018,	C=0

Example	3:

LDR								R0,=0x7F180000

MOV					R1,	#16

LSR									R2,R0,R1														;R2=R0	is	shifted	right	R1	number	of	times

;now,	R2=0x00007F18,	C=0

The	logical	shift	right	used	for	shifting	unsigned	numbers.	LSR	essentially	divides	Rm	by
a	power	of	2	for	each	bit	shift.

LSRS																					Logical	Shift	Right	(update	the	flags)

Flags:		Affected.



Format:														LSRS	Rd,	Rm,	Rn

Function:											As	each	bit	of	Rm	register	is	shifted	right,	the	LSB	is	copied	to	C	flag
and	the	empty	bits	are	filled	with	zeros.	The	number	of	bits	to	be	shifted	left	is	given	by
Rn	and	the	result	is	placed	in	Rd	register.	The	LSRS	updates	the	flags.

Example	1:

LDR								R2,=0x00001FFF

LSRS							R0,R2,#8														;R0=R2	is	shifted	right	8	times

;now,	R0=	0x0000001F,	C=1,	N=0,	Z=0

Example	2:

LDR								R0,=0x00000018

MOV					R1,	#12

LSRS							R2,R0,R1														;R2=R0	is	shifted	right	R1	number	of	times

;now,	R2=	0x000000000,	C=0,	N=0,	Z=1,

Example	3:

LDR								R0,=0x000FFF18

MOV					R1,	#16

LSRS							R2,R0,R1														;R2=R0	is	shifted	right	R1	number	of	times

;Now,	R2=	0x0000000F,	C=1,	Z=0,N=0

The	logical	shift	right	used	for	shifting	unsigned	numbers.	LSRS	essentially	divides	Rm
by	a	power	of	2	for	each	bit	shift.

MCR																					Move	to	Coprocessor	from	ARM	Register

See	ARM	Manual.

MLA																					Multiply	Accumulate

Flags:																		Unaffected

Format:														MLA	Rd,Rs1,Rs2,Rs3		;	Rd=	(Rs1	×	Rs2)	+	Rs3

Function:											Multiplies	an	unsigned	word	held	by	Rs1	by	a	unsigned	word	in	Rs2	and
the	result	is	added	to	Rs3	and	placed	in	Rd.

Example:

MOV					R0,#0x20														;R0=0x20

MOV					R1,#0x50														;R1=0x50

MOV					R2,#0x10														;R2=0x10

MLA							R4,R0,R1,R2								;now	R4=	(0x20	×	0x50)+10=	0xA10



MLS																					Multiply	and	Subtract

Flags:	Unaffected

Format:														MLS	Rd,Rm,Rs,Rn		;	Rd=	Rn	-(Rs	×	Rm)

Function:											Multiplies	an	unsigned	word	held	by	Rm	by	a	unsigned	word	in	Rs	and
the	result	is	subtracted	from	Rn	and	placed	in	Rd.

Example:

MOV					R0,#0x20														;R0=0x20

MOV					R1,#0x50														;R1=0x50

LDR								R2,=0x1000									;R2=0x1000								

MLS							R4,R0,R1,R2								;now	R4=	0x1000-(0x20×0x50)=0x600

MOV																					Move			(ARM7)

Flags:		Unaffected.

Format:														MOV		Rd,#imm_value			;	Rd=imm_Value	<	0x200

Function:											Load	the	Rd	register	with	an	immediate	value.	The	immediate	value
cannot	be	larger	than	0xFF	(0–255).	After	the	execution	the	flags	are	not	updated.	The
MOVS	instruction	updates	the	flags.

Example	1:

MOV					R0,#0x25														;R0=0x25

MOV					R1,#0x5F														;R1=0x5F

To	load	the	ARM	register	with	value	larger	than	0xFF	we	must	use	the	“LDR	Rd,=
32_bit_data.”		For	example,	we	can	use	LDR	R2,=0xFFFFFFFF.

Example	2:

LDR								R0,=0x2000000																		;R0=0x2000000

MOV																					Move			(ARM	Cortex)

Flags:		Unaffected.

Format:														MOV		Rd,#imm_val									;Rd=imm_val	(imm_val<0x10000)

Function:													Load	the	Rd	register	with	an	immediate	value.	The	immediate	value
cannot	be	larger	than	0xFFFF	(0–65535).

Example:

MOV																					R1,#0xF459									;R1=0xF459

To	load	the	ARM	register	with	value	larger	than	0xFFFF	we	must	use	the	“LDR	Rd,=
32_bit_data.”	For	example	we	can	use	LDR	R2,=0xFFFFFFF.



MOVS																		Move	(and	update	flags)

Flags:		Affected:	C,	N,	Z

Format:														MOV		Rd,#immediate_value

Function:	Load	the	Rd	register	with	an	immediate	value	and	update	the	flags.

Example:										

MOVS			R0,#0x25														;R0=0x25,	N=0,Z=0,	and	C=0

MOVS			R0,#0x0																;R0=0x0,	N=0,Z=1,	and	C=0

MOVT																		Move	Top

Flags:		Unaffected.

Format:														MOVT		Rd,#imm_value	;imm_value	<	0x10000

Function:											Loads	the	upper	16-bit	of	Rd	register	with	an	immediate	value.	The
immediate	value	cannot	be	larger	than	0xFFFF	(0–65535).		The	lower	16-bit	of	the	Rd
register	remains	unchanged.

Example:

LDR								R0,=0x25579934																;R0=0x25579934

MOVT			R0,#0xAAAA																						;R0=0xAAAA9934

MOVW																Move	16-bit	constant

Flags:		Unaffected.

Format:														MOVW		Rd,#imm_value															;imm_value	<	0x10000

Function:											Load	the	Rd	register	with	an	immediate	value.	The	immediate	value
cannot	be	larger	than	0xFFFF	(0–65535).

Example:

MOVW	R1,#0x5555									;R1=0x5555

To	load	the	ARM	register	with	value	larger	than	0xFFFF	we	must	use	the	“LDR	Rd,=
32_bit_data.”	For	example	we	can	use	LDR	R2,=0xFFFFFFF.

MRC																					Move	to	ARM	Register	from	Coprocessor

See	ARM	manual

MRS																						Move	to	general	Register	from	Special	register

Flags:		Unaffected.

Format:														MRS		Rd,special_reg							;copy	special_reg	to	Rd

Function:											Copies	the	contents	of	a	special	function	register	to	a	general-purpose
register.	This	instruction	along	with	the	MSR	is	widely	used	to	modify	the	special	function



registers	such	as	CONTROL,	PRIMASK,	and	ISPR.	This	is	the	only	way	we	can	access
the	special	function	registers.

Example:

MRS							R1,CONTROL						;R1=CONTROL

AND							R1,#0x00														;mask	the	lower	8	bits

MSR							CONTROL,R1

MSR																						Move	to	Special	register	from	general	Register

Flags:		Unaffected.

Format:														MSR	special_reg,	Rn							;copy	special_reg	to	Rn

Function:	Copies	the	contents	of	a	general-purpose	register	to	special	function	register.
This	instruction	along	with	the	MRS	is	widely	used	to	modify	the	contents	of	special
function	registers	such	as	CONTROL,	PRIMASK,	and	ISPR.	This	is	the	only	way	we	can
access	the	special	function	registers.

Example:

MRS							R1,CONTROL						;R1=CONTROL

AND							R1,#0x00														;mask	the	lower	8	bits

MSR							CONTROL,R1						;mask	the	lower	8	bits	of	CONTROL	reg.

MUL																						Unsigned	Multiplication

Flags:																		Affected:	N,	Z,		Unaffected:	C,	V

Format:														MUL	Rd,Rn,Rm																	;Rd	=	Rn	×	Rm

Function:											Multiplies	a	word	in	register	Rn	by	a	word	in	register	Rm	and	places	the
result	in	Rd.

Example	1:

MOV					R0,#100																;R0=100

MOV					R1,#200																;R1=200

MUL						R3,R0,R1														;R3	=	R0	x	R1	=	100	x	200	=20000

Example	2:

LDR								R0,=10000											;R0=10000

LDR								R1,=20000											;R1=20000

MUL						R3,R0,R1														;R3	=	R0	x	R1=	10000	x	20000	=	200000000

MVN																					Move	Negative

Flags:																		Unaffected.



Format:														MVN	Rd,Op2																					;Rd	=	1’s	comp.	of	Op2

Function:	Places	in	Rd	the	negation	(the	1’s	complement)	of	Op2.	Each	bit	of	Op2	is
inverted	(logical	NOT)	and	placed	in	Rd	while	flags	remain	unchanged.

Example	1:

MOV					R0,#0xAA												;R0=0xAA

MVN					R2,R0																					;now,	R2=0xFFFFFF55

Example	2:

LDR								R0,=0xAAAAAAAA										;R0=0xAAAAAAAA

MVN					R1,R0																																					;R1=0x55555555

Example	3:

MVN					R0,#0x0F														;R0=0xFFFFFFF0

Example	4:

MVN					R2,#0x0																;R0=0xFFFFFFFF	widely	used	to	load	Rx	with	all	1s

MVNS																		Move	Negative	and	update	the	flags

Flags:																		N	and	Z	are	affected

Format:														MVNS	Rd,Op2				;Rd	=	1’s	comp.	of	Op2	and	update	flags

Function:											Places	in	Rd	the	negation	(the	1’s	complement)	of	Op2.	Each	bit	of	Op2
is	inverted	(logical	NOT)	and	placed	in	Rd	and	N	and	Z	flags	are	updated.

Example	1:

MOV					R0,#0xAA												;R0=0xAA

MVNS			R2,R0																					;now,	R2=0xFFFFFF55,	N=1,	Z=0

	Example	2:

LDR								R0,=0xAAAAAAAA										;R0=0xAAAAAAAA

MVNS			R1,R0																																					;R1=0x55555555,	Z=0	and	N=0

Example	3:

LDR								R0,=0xFFFFFFFF																;R0=0xFFFFFFFF

MVNS			R1,R0																																					;R1=0x00000000,	N=0	and	Z=1

Example	4:

MVN					R2,0x0																			;R0=0xFFFFFFFF,	N=1,	Z=0

NOP						No	Operation

Flags:		Unaffected.



Format:														NOP

Function:	Performs	no	operation.	Sometimes	used	for	timing	delays	to	waste	clock
cycles.	Updates	PC	(program	counter)	to	point	to	next	instruction	following	NOP.	In	some
ARM	CPUs,	the	pipeline	removes	the	NOP	before	it	reaches	the	execution	stage.

ORN																						Logical	OR	Not

Flags:		Unaffected.

Format:														ORN	Rd,Rn,Op2																;Rd	=	Rn	ORed	with	1’s	comp	of	Op2

Function:											Performs	the	OR	operation	on	the	bits	of	Rn	with	the	complement	of	the
bits	in	Op2.	The	ORN	will	not	update	the	flags.	To	update	the	flags	we	must	use	ORNS.

Inputs Output

A B A	OR	(NOT
B)

0 0 1

0 1 0

1 0 1

1 1 1

Example	1:

LDR								R1,=0xFFFFFF00																;R1=0xFFFFFF00

LDR								R2,=0x99999999																;R2=0x9999999

ORN							R3,R2,R1																														;now	R3=0x999999FF

Example	2:

MOV					R1,#0																																					;R1=0

LDR								R0=0xFFFFFFFF																	;R0=0xFFFFFFFF

ORN							R2,R1,R0																													;now,	R2=0x0

ORNS																			OR	Not	and	update	flags

Flags:		N	and	Z	are	affected

Format:														ORNS	Rd,Rn,Op2														;Rd	=	Rn	ORed	with	1’s	comp	of	Op2

Function:											Performs	the	OR	operation	on	the	bits	of	Rn	with	the	complement	of	the
bits	in	Op2	and	updates	the	flags.	The	result	is	placed	in	Rd.

Inputs Output

A	OR	(NOT



A B B)

0 0 1

0 1 0

1 0 1

1 1 1

	

Example	1:

LDR								R1,=0xFFFFFF00																;R1=0xFFFFFF00

LDR								R2,=0x99999999																;R2=0x9999999

ORNS				R3,R2,R1																														;now,	R3=0x999999FF,	N=1,	Z=0

Example	2:

LDR								R0,=0xFFFFFFFF																;R0=0xFFFFFFFF

LDR								R1,=0x01234567																;R1=0x01234567

ORNS				R2,R1,R0																														;now,	R2=0x01234567,	N=0,	Z=0

Example	3:

MOV					R1,#0																																					;R1=0

LDR								R0=0xFFFFFFFF																	;R0=0xFFFFFFFF

ORNS				R2,R1,R0																														;now,	R2=0x0,	N=0,	Z=1

ORR																						Logical	OR

Flags:		Unaffected

Format:														ORR	Rd,Rn,Op2																	;Rd=	Rn	ORed	Op2

Function:											Performs	logical	OR	on	the	bits	of	Rn	and	Op2,	and	places	the	result	in
Rd.		Often	used	to	turn	a	bit	on.	ORR	will	not	update	the	flags.

Example	1:

MOV					R0,#0xAA												;R0=0xAA

ORR							R2,R0,#0x55							;now,	R2=0xFF

Example	2:

LDR								R0,=0x00010203																;R0=00010203

LDR								R1,=0x30303030

ORR							R2,R0,R1																														;R2=0x30313233



Example	3:

LDR								R0,=0x55555555																;R0=0x55555555

LDR								R1,=0xAAAAAAAA										;R0=0xAAAAAAAA

ORR							R2,R1,R0																														;R1=0xFFFFFFFF

ORRS																			Logical	OR	and	update	the	flags

Flags:		N	and	Z	are	affected.

Format:														ORRS	Rd,Rn,Op2	;Rd=	Rn	ORed	Op2	,update	the	flags

Function:		Performs	logical	OR	on	the	bits	of	Rn	and	Op2,	and	places	the	result	in	Rd.
Often	used	to	turn	a	bit	on.	ORRS	updates	the	flags.

Inputs Output

X Y X	OR	Y

0 0 0

0 1 1

1 0 1

1 1 1

Example	1:

MOV					R0,#0xAA												;R0=0xAA

ORRS					R2,R0,#0x55							;now,	R2=0xFF,	N=0,Z=0

Example	2:

LDR								R0,=0x00010203																;R0=00010203

LDR								R1,=0x30303030

ORRS					R2,R0,R1																														;R2=0x30313233	N=0,	Z=0

Example	3:

LDR								R0,=0x55555555																;R0=0x55555555

LDR								R1,=0xAAAAAAAA										;R0=0xAAAAAAAA

ORRS					R2,R1,R0																														;R1=0xFFFFFFFF		N=1,	Z=0

POP																							POP	register	from	Stack

Flags:		Unaffected.

Format:														POP	{reg_list}				;reg_reg	=	words	off	top	of	stack

Function:											Copies	the	words	pointed	to	by	the	stack	pointer	to	the	registers	indicated



by	 the	 reg_list	 and	 increments	 the	 SP	 by	 4,	 8,	 12,	 16,	…	 depending	 on	 the	 number	 of
registers	in	the	reg_list.

Example:

POP							{R1}																								;POP	the	top	word	of	stack	to	R1

POP							{R1,R4,R7}											;POP	the	top	3	words	of	stack	to	R1,R4,R7

POP							{R2-R6}																	;POP	the	top	5	words	of	stack	to	R2-R6

POP							{R0,R5}																	;POP	the	top	2	words	of	stack	to	R0	and	R5

POP							{R0-R7}																	;POP	the	top	8	words	of	stack	to	R0-R7

The	POP	instruction	is	synonyms	for	LDMIA.

PUSH																			PUSH	register	onto	stack

Flags:		Unaffected.

Format:														PUSH		{reg_list}																;PUSH	reg_list	onto	stack

Function:	Copies	the	contents	of	registers	stated	in	reg_list	onto	the	stack	and	decrements
SP	by	4,	8,	12,	16,	…	depending	on	the	number	of	registers	in	reg_list.

Example:

PUSH					{R1}																								;PUSH	the	R1	onto	top	of	stack

PUSH					{R1,R4,R7}											;PUSH	R1,R4,R7	onto	top	of	stack

PUSH					{R2-R6}																	;PUSH	the	R2,R3,R4,R5,R6	onto	top	of	stack

PUSH					{R0,R5}																	;PUSH	the	R0	and	R5	onto	top	of	stack

PUSH					{R0-R7}																	;PUSH	the	R0	through	R7	onto	top	of	stack

The	PUSH	instruction	is	synonyms	for	STMDB.

RBIT																				Reverse	Bits

Flags:																		Unaffected.

Format:														RBIT	Rd,Rn										;Reverse	the	bit	order	of	Rn	and	place	in	Rd

Function:											Reverses	the	bit	position	order	of	the	32-bit	value	in	Rn	register	and
place	the	result	in	Rd.

Example:

MOV					R1,#0x5F

RBIT							R2,R1																					;now,	R2=0xF5000000

REV																						Reverse	byte	order	in	a	word

Flags:																		Unaffected

Format:														REV	Rd,Rn											;Reverse	the	byte	of	Rn	and	place	it	in	Rd



Function:											Reverses	the	byte	position	order	of	the	32-bit	value	in	Rn	register	and
places	the	result	in	Rd.	This	can	be	used	to	convert	from	little	endian	to	big	endian	or	from
big	endian	to	little	endian.

Example:

LDR								R1,=0x12345678

REV								R2,R1																					;now,	R2=0x78564312

RV16																			Reverse	byte	order	in	16-bit

Flags:																		Unaffected

Format:														REV16	Rd,Rn																						;Reverse	the	bits	if	Rn	and	place	it	in	Rd

Function:											Reverses	the	16-bit	position	order	of	the	32-bit	value	in	Rn	register	and
places	the	result	in	Rd.	This	can	be	used	to	convert	16-bit	little	endian	to	big	endian	or
from	16-bit	big	endian	to	little	endian.

Example:

LDR								R1,=0x559922FF

RV16						R2,R1																					;now,	R2=0x22FF5599

REVSH																Reverse	byte	order	in	bottom	halfword	and	sign	extend

Flags:																		Unaffected

Format:														REVSH	Rd,Rn	;Rd=Reverse	the	byte	and	sign	extend	Rn

Function:											Reverses	the	16-bit	position	order	of		Rn	register	and	after	sign	extending
to	32-bit	it	is	placed	in	Rd.	This	can	be	used	to	convert	a	signed	16-bit	little	endian	to	32-
bit	signed	big	endian	or	from	signed	16-bit	big	endian	to	32-bit	signed	little	endian.

Example:

LDR								R1,=0x559922FF

REVSH			R2,R1																					;now,	R2=0x22FF5599

ROR																						Rotate	Right

Flags:																		Unaffected.

Format:														ROR	Rd,Rm,Rn		;Rd=rotate	Rm	right	Rn	bit	positions

Function:											As	each	bit	of	Rm	register	shifts	from	left	to	right,	they	exit	from	the
right	end	(LSB)	and	enter	from	left	end	(MSB).	The	number	of	bits	to	be	rotated	right	is
given	by	Rn	and	the	result	is	placed	in	Rd	register.	The	ROR	does	not	update	the	flags.



Example	1:

LDR								R2,=0x00000010

ROR							R0,R2,#8														;R0=R2	is	rotated	right	8	times

;now,	R0	=	0x10000000,	C=0

Example	2:

LDR								R0,=0x00000018

MOV					R1,	#12

ROR							R2,R0,R1														;R2=R0	is	rotated	right	R1	number	of	times

;now,	R2	=	0x01800000,	C=0

Example	3:

LDR								R0,=0x0000FF18

MOV					R1,	#16

ROR							R2,R0,R1														;R2=R0	is	rotated	right	R1	number	of	times

;Now,	R2	=	0xFF180000,	C=0

RORS																			Rotate	Right	(update	the	flags)

Flags:																		C,	N,	Z	are	affected.

Format:														RORS	Rd,Rm,Rn															;Rd=rotate	Rm	right	Rn	bit	positions

Function:											As	each	bit	of	Rm	register	shifts	from	left	to	right,	they	exit	from	the
right	end	(LSB)	and	enters	from	left	end	(MSB).	In	addition	as	each	bit	exits	the	LSB,	a
copy	is	of	it	is	given	to	C	flag.	The	number	of	bits	to	be	rotated	right	is	given	by	Rn	and
the	result	is	placed	in	Rd	register.	The	RORS	updates	the	flags.

Example	1:

LDR								R2,=0x00000010

RORS					R0,R2,#8														;R0=R2	is	rotated	right	8	times

;now,	R0=	0x01000000,	C=0,	N=0,	Z=0

Example	2:

LDR								R0,=0x00000018

MOV					R1,	#12

RORS					R2,R0,R1														;R2=R0	is	rotated	right	R1	number	of	times



;now,	R2=	0x01800000,	C=0,	N=0,	Z=0

Example	3:

LDR								R0,=0x0000FF18

MOV					R1,	#16

RORS					R2,R0,R1														;R2=R0	is	rotated	right	R1	number	of	times

;now,	R2=	0xFF180000,	C=1,	N=0,	Z=0

RRX																						Rotate	Right	with	extend

Flags:		Unaffected.

Format:														RRX	Rd,Rm										;Rd=rotate	Rm	right	1	bit	position

Function:											Each	bit	of	Rm	register	is	shifted	from	left	to	right	one	bit.	The	RRX
does	not	update	the	flags.

Example:

LDR								R2,=0x00000002

RRX								R0,R2																					;R0=R2	is	shifted	right	one	bit

;now,	R0=0x00000001

RRXS																				Rotate	Right	with	extend	(update	the	flags)

Flags:																		Affected.

Format:														RRXS	Rd,Rm																							;Rd=rotate	Rm	right	1	bit	position

Function:											Each	bit	of	Rm	register	is	shifted	from	left	to	right	one	bit.	The	RRXS
updates	the	flags.

Example	1:

LDR								R2,=0x00000002

RRXS						R0,R2					;R0=R2	is	shifted	right	one	bit

;now,	R0=0x00000001

RSB							Reverse	Subtract

Flags:		Unaffected



Format:														RSB		Rd,	Rn,	Op2															;Rd	=	Op2	-	Rn

Function:											Subtracts	the	Rn	from	the	Op2	and	puts	the	result	in	the	Rd.	The	RSB
has	no	effect	on	flags.	The	steps	for	subtraction	performed	by	the	internal	hardware	of	the
CPU	are	as	follows:

1.							Takes	the	2’s	complement	of	the	Rn

2.							Adds	this	to	the	Op2

3.							Places	the	result	in	Rd

The	Op2	and	Rn	operands	remain	unchanged	by	this	instruction.

Example:

LDR								R0,=0x55555555																;R0=0x55555555

LDR								R1,=0x99999999																;R1=0x99999999

RSB								R2,R0,R1														;R2=R1-R0

;For	“RSB	R2,R0,R1”	we	have:

;R2=R1-R0=0x99999999	-	0x55555555	=

;R2=0x99999999	+	2’s	comp	of	0x55555555

;R2=0x99999999	+	0xAAAAAAAB	=	0x44444444	

;			0x99999999

;	-	0x55555555

;			–––––

;			0x44444444

RSBS																				Reverse	Subtract	and	update	the	flags

Flags:		Affected:	V,	N,	Z,	C.

Format:														RSBS		Rd,	Rn,	Op2												;Rd	=	Op2	-	Rn

Function:											Subtracts	the	Rn	from	the	Op2	and	puts	the	result	in	the	Rd.		The	RSBS
updates	the	flags.

The	steps	for	subtraction	performed	by	the	internal	hardware	of	the	CPU	are	as	follows:

1.							Takes	the	2’s	complement	of	the	Rn

2.							Adds	this	to	the	Op2

3.							Places	the	result	in	the	Rd

The	Rn	and	Op2	operands	remain	unchanged	by	this	instruction.

Example:

LDR								R0,=0x55555555																;R0=0x55555555



LDR								R1,=0x99999999																;R1=0x99999999

RSB								R2,R0,R1																														;R2=R1-R0

;For	“RSB	R2,R0,R1”	we	have:

;R2=R1-R0=0x99999999	-	0x55555555	=

;R2=0x99999999		+	2’s	comp	of	0x55555555

;R2=0x99999999	+	0xAAAAAAAB	=	0x44444444	

;			0x99999999

;	-	0x55555555

;			–––––

;			0x44444444				C=0,	N=0,	Z=0,	V=0

SBC																							Subtract	with	Carry	(Borrow)

Flags:		Unaffected

Format:														SBC		Rd,Rn,Op2																	;Rd	=	Rn	–	Op2	–	(1–	C)

Function:											Subtracts	the	Op2	operand	from	the	Rn,	placing	the	result	in	Rd.		If	C	=
0,	it	subtracts	1	from	the	result;	otherwise,	it	operates	like	SUB.	The	SBC	has	no	effect	on
flags.This	is	used	widely	for	multiword	(64-bit)	subtraction.

Example:

LDR								R0,=0x55555555																;R0=0x55555555

LDR								R1,=0x99999999																;R1=0x99999999

SUBS					R2,R0,R1														;R2=R0	-	R1

MOV					R3,#0x09														;R3=0x09

SBC								R4,R3,#03												;R4=R3	-	0x3						

;For	SUBS	we	have:

;R2=R1	-	R0	=	0x55555555	-	0x99999999	=

;R2=0x55555555	+	2’s	comp	of	0x99999999

;R2=0x55555555	+	0x66666667	=	0xBBBBBBBC		C=0

;For	SBC	we	have:

;R4=R3-0x3=0x09	-	0x3	-(1	-	C)	=	9	-	3	-	1

;R4=	0x9	+2’comp.	of	-4	=	0x9	+	0xFFFFFFFC	=	0x05

;			0x0000000955555555

;	-	0x0000000399999999

SBCS																				Subtract	with	Carry	(Borrow)	and	update	the	flags



Flags:		C,Z,N,V

Format:														SBCS		Rd,Rn,Op2														;Rd	=	Rn	–	Op2	–	(1–	C)

Function:											Subtracts	the	Op2	operand	from	the	Rn,	placing	the	result	in	Rd.		If	C	=
0,	it	subtracts	1	from	the	result;	otherwise,	it	executes	like	SUB.	The	SBCS	updates	the
flags.	This	is	used	widely	for	multiword	(64-bit)	subtraction.

Example:

LDR								R0,=0x55555555																;R0=0x55555555

LDR								R1,=0x99999999																;R1=0x99999999

SUBS					R2,R0,R1														;R2=R0-R1

MOV					R3,#0x09														;R3=0x09

SBCS						R4,R3,#03												;R4=R3-0x3								

;For	SUBS	we	have:

;R2=R1-R0=0x55555555	-	0x99999999	=

																																;R2=0x55555555	+	2’s	comp	of	0x99999999

;R2=0x55555555	+	0x66666667	=	0xBBBBBBBC		C=0

;For	SBCS	we	have:

;R4=R3-0x3=0x09	-	0x3	-(1	-	C)	=	9	-	3	-	1

;R4=	0x9	+2’comp.	of	-4	=	0x9	+	0xFFFFFFFC	=	0x05

;			0x0000000955555555

;	-	0x0000000399999999

;			––––––

;		0x1	0000005BBBBBBBC		C=0,	Z=0,	V=0,	N=0

SBFX																				Sign	Bit	Field	extract

Flags:		Unaffected

Format:														SBFX		Rd,Rn,#LSB,#Width

Function:											Extracts	the	bit	field	from	the	Rn	register	and	then	after	sign	extending	it
is	placed	in	Rd.	The	#LSB	indicates	which	bit	and	#Width	indicates	how	many	bits.

Example	1:

LDR								R0,=0x00000543																;R0=0x00000543

SBFX						R2,R0,#8,#4																								;now,	R2=0x00000005

Example	2:

LDR								R0,=0x00000C43															;R0=0x00000C43



SBFX						R2,R0,#4,#8																								;now,	R2=0xFFFFFFC4

SDIV																					Signed	Divide

Flags:		Unaffected	

Format:														SDIV	Rd,Rn,Rm																	;Rd=	Rn/Rm

Function:	Divides	a	signed	integer	word	in	Rn	by	another	signed	integer	word	in	Rm.	The
quotient	result	is	placed	in	Rd.	If	value	in	Rn	register	is	not	divisible	by	the	value	in	Rm
register,	the	result	is	rounded	to	zero	and	placed	in	Rd.	Divide	by	zero	causes	interrupt
type	3.

Example:

LDR								R0,=-20000										;R0=-20000

LDR								R1,=-1000												;R1=-1000

SDIV						R2,R0,R1														;now,	R2	=	-2000/-1000=	2

SEV																							Send	Event

Flags:		Affected.	

Format:														SEV							

Function:	Sends	signal	to	all	the	processors	in	the	multiprocessors	system.	See	the	ARM
Cortex	manual.			

SMLAL																Signed	Multiply	Accumulate	Long

Flags:																		Unaffected

Format:														SMLAL		Rdlo,Rdhi,Rn,Rm	;Rdhi:Rdlo=(Rm	×	Rn)	+	(Rdhi:Rdlo)

Function:											Multiplies	signed	words	in	Rn	and	Rm	register,	adds	the	64-bit	result	to
Rdhi:Rdlo	register,	and	saves	the	final	result	in	Rdhi:Rdlo.	The	Rdlo	(low)	and	Rdhi(high)
are	the	lower	word	and	higher	word	of	a	64-bit	value.

Example	1:

LDR								R0,=0																																				

LDR								R1,=0x23

LDR								R2,=-5000

LDR								R3,=-4000

SMLAL	R0,R1,R2,R3								;now,	R3:R2=	(R3:R2)+	(R1	×	R0)

;=	0x2300000000	+	(-5000	×	-4000)

;=	0x2300000000	+	20000000

;=	0x23000000	+	0x1312D00	=	0x2301312D00

;=>	R0	=	0x1312D00	and	R1	=	0x23



SMULL																Signed	Multiply	Long

Flags:		Unaffected

Format:														SMULL	Rdlo,Rdhi,Rn,Rm		;Rdhi:Rdlo	=	Rm	×	Rn

Function:											Multiplies	signed	words	in	Rn	and	Rm	register,	and	saves	the	result	in
Rdhi:Rdlo.	The	Rdl	(low)	and	Rdh(high)	are	the	lower	word	and	higher	word	of	a	64-bit
value.

Example:

LDR								R0,=-20000										;R0=-20000	(signed	2’s	comp)

LDR								R1,=-1000000					;R0=-100000	(signed	2’s	comp)

SMLAL		R2,R3,R0,R1								;now,	R3:R2=	R1	×	R0	=	-20000	×	-1000000	=

;20000000000	=0x4A817C800	=>	R3	=	0x4	and

;R2	=	0xA817C800

SSAT																				Sign	Saturate

Flags:		Unaffected.

Format:														SSAT	Rd,#n,Rm,shift#

Function:											Used	for	saturation	operation.	See	ARM	Cortex	manual.

STM																						Store	Multiple

Flags:		Unaffected.

Format:														STM		Rn,	{Rx,Ry,…}

Function:											Stores	registers	Rx,	Ry,…	into	consecutive	memory	locations.	The
starting	address	of	memory	location	is	given	by	Rn	register.	The	source	registers	are
separated	by	comma	and	placed	in	braces.	In	the	ARM	Cortex,	the	default	stack	is
descending	meaning	that	as	information	are	pushed	onto	stack	the	stack	pointer	is
decremented.	This	IA	(Increment	the	address	After	each	access)	is	the	default.	This
instruction	is	widely	used	for	Pushing	(storing)	multiple	registers	into	ascending	stack.

Example:

LDR								R7,=0x12000

LDR								R0,=0x82381046																;R0=0x82381046

LDR								R2,=0x15585056																;R2=0x15585056

LDR								R4,=0x39686063																;R4,=0x39686063

STM							R7,{R0,R2,R4}																					;now,	R2=0x15585056,	..

;The	contents	of	registers	R0,R2,	and	R4	are	stored	into

;consecutive	memory	locations	starting	at	an	address	given	by	R7.



;The	R0	contents	are	stored	into	memory	locations	0x12000-0x12003,

;the	R2	contents		are	stored	into	memory	locations	0x12004	through

;0x12007,	and	so	on.	This	is	shown	below.

;12000=(46)

;12001=(10)

;12002=(38)

;12003=(82)

;12004=(56)

;12005=(50)

;12006=(58)

;12007=(15)

;12008=(63)

;12009=(60)

;1200A=(68)

;1200B=(39)

STMDB															Store	Multiple	register	and	Decrement	Before

Flags:		Unaffected.

Format:														STMDB		Rn,{Rx,Ry,…}

Function:											Stores	registers	Rx,	Ry,…	into	consecutive	memory	locations.	The
starting	address	of	memory	location	is	given	by	Rn	register.	The	source	registers	are
separated	by	comma	and	placed	in	braces.	In	the	ARM	Cortex,	the	default	stack	is
descending	meaning	that	as	information	are	pushed	onto	stack	the	stack	pointer	is
decremented.		Since	IA(Increment	the	address	After	each	access)	is	the	default	we	need	to
use	DB	(Decrement	the	address	Before	each	access)	is	to	overwrite	the	default.		This
instruction	is	widely	used	for	Pushing	(storing)	multiple	registers	into	Descending	stack.

Example:

LDR								R7,=0x12000

LDR								R0,=0x39686063																;R0=0x39686063

LDR								R2,=0x15585056																;R2=0x15585056

LDR								R4,=0x82381046																;R4,=0x82381046

STMDB	R7,{R0,R2,R4}				

;The	contents	of	registers	R0,R2,	and	R4	are	stored	into

;consecutive	memory	locations	starting	at	an	address	given	by	R7.



;The	R0	contents	are	stored	into	memory	locations	0x11FFF-0x11FFC,

;the	R2	contents		are	stored	into	memory	locations	0x11FFB

;through	0x11FF8,	and	so	on.	This	is	shown	below.

;11FF4=(46)

;11FF5=(10)

;11FF6=(38)

;11FF7=(82)

;11FF8=(56)

;11FF9=(50)

;11FFA=(58)

;11FFB=(15)

;11FFC=(63)

;11FFD=(60)

;11FFE=(68)

;11FFF=(39)

STMEA															Store	Multiple	register	Empty	Ascending

Flags:		Unaffected.

Format:														STMEA		Rn,{Rx,Ry,…}

Function:	This	is	same	as	STM.

STMIA	Store	Multiple	register	Empty	Ascending

Flags:		Unaffected.

Format:														STMIA		Rn,{Rx,Ry,…}

Function:											This	is	same	as	STM.

STMFD																															Store	Multiple	register	Full	Descending

Flags:		Unaffected.

Format:														STMFD		Rn,{Rx,Ry,…}

Function:	This	is	another	name	for	STMDB.	The	FD	is	for	pushing	onto	Full	Descending	
stacks

STR																							Store	Register

Flags:		Unaffected.

Format:														STR	Rd,[Rx]																									;Store	Rd	into	memory	location	pointed	to



be	Rx

Function:											Stores	Rd	register	into	four	consecutive	memory	locations.	The	[Rx]
points	to	starting	address	of	memory	location.	This	is	widely	used	to	store	32-bit	register
into	memory	locations.	

Example:

LDR								R1,=0x82381046																;R1=0x82381046

LDR								R0,=0x12000																							;R0=0x12000

STR									R1,[R0]																																	;now,

;12000=(46)

;12001=(10)

;12002=(38)

;12003=(82)																							

STRB																			Store	Register	Byte

Flags:		Unaffected.

Format:														STRB	Rd,[Rn]

Function:											Stores	the	lowest	byte	of	the	Rd	register	into	a	single	memory	location
indicated	by	Rn.			

Example:

LDR								R1,=0x82381046																;R1=0x82381046

LDR								R0,=0x12000																							;R0=0x12000

STRB						R1,[R0]																																	;now,	12000=(46)

	

STRBT																Store	Register	Byte	with	Translation

Flags:		Unaffected.

Format:														STRBT

Function:											Stores	the	lowest	byte	of	the	Rd	register	into	a	single	memory	location
indicated	by	Rn.	This	is	the	same	as	STRB	but	is	used	for	unprivileged	memory	access.
See	ARM	Cortex	manual.

Example:

																LDR								R1,=0x82381046																;R1=0x82381046

LDR								R0,=0x12000																							;R0=0x12000

STRBT				R1,[R0]



;now,	12000=(46)

	

STRD																			Store	Register	Double	(two	words)

Flags:		Unaffected.

Format:														STRD		Rd,[Rn]

Function:											Stores	two	registers	of	Rd	and	Rd+1	into	8	consecutive	memory
locations	indicated	by	Rn.		Rd	can	be	R0,	R2,	R4,	R6,	R8,	R10,	or	R12.

Example:

LDR								R2,=0x12000

LDR								R0,=0x82381046																;R0=0x82381046

LDR								R1,=0x15585056																;R1=0x15585056

STRD						R0,R1,[R2]											;store	R0	and	R1	into	memory	locations	starting

																;at	an	address	given	by	R2.	Now,	we	have:

;12000=(46)

;12001=(10)

;12002=(38)

;12003=(82)

;12004=(56)

;12005=(50)

;12006=(58)

;12007=(15)

STREX,	STREXB,	STREXH																						Store	Register	Exclusive

Function:	They	are	used	with	LDREX,	LDREXB,	and	LDREXH	instructions	to	perform
CPU	synchronization	operation.	See	ARM	Cortex	manual.

STRH																			Store	Register	Halfword

Flags:		Unaffected.

Format:														STRH	Rd,[Rn]

Function:											Stores	the	lower	2	bytes	of	the	Rd	register	into	two	consecutive	memory
locations	indicated	by	Rn.			

Example:

LDR								R1,=0x82381046																;R1=0x82381046

LDR								R0,=0x12000																							;R0=0x12000



STRB						R1,[R0]																																	;now,	12000=(46),	and		12001=(10)

STRT																			Store	Register

Flags:		Unaffected

Format:														STRT	Rx,[Rn]

Function:											Stores	Rx	register	into	memory	location	pointed	to	by	Rx.	This	is	the
same	as	STR	but	is	used	for	unprivileged	memory	access.	See	ARM	Cortex	manual.

Example:

LDR								R1,=0x82381046																;R1=0x82381046

LDR								R0,=0x12000																							;R0=0x12000

STRT						R1,[R0]

;now,	12000=(0x82381046)

SUB																							Subtract

Flags:		Unaffected

Format:														SUB		Rd,	Rn,	Op2														;Rd	=	Rn	–	Op2

Function:											Subtracts	the	Op2	from	the	Rn	and	puts	the	result	in	the	Rd.		Has	no
effect	on	flags.	The	steps	for	subtraction	performed	by	the	internal	hardware	of	the	CPU
are	as	follows:

1.							Takes	the	2’s	complement	of	the	Op2

2.							Adds	this	to	the	Rn

3.							Place	the	result	in	the	Rd

The	Rd	and	Op2	operands	remain	unchanged	by	this	instruction.

Example:

LDR								R0,=0x55555555																;R0=0x55555555

LDR								R1,=0x99999999																;R1=0x99999999

SUB								R2,R1,R0														;R2=R1-R0

;For	“SUB	R2,R1,R0”	we	have:

;R2=R1-R0=0x99999999	-	0x55555555	=

;R2=0x99999999	+	2’s	comp	of	0x55555555

;R2=0x99999999	+	0xAAAAAAAB	=	0x44444444

;			0x99999999

;	-	0x55555555

;			–––––



;			0x44444444

SUBS																				Subtract

Flags:		Affected:	V,	N,	Z,	C.

Format:														SUB		Rd,	Rn,	Op2														;Rd	=	Rn	–	Op2

Function:											Subtracts	the	Op2	from	the	Rn	and	puts	the	result	in	the	Rd.	The	SUBS
updates	the	flags.	The	steps	for	subtraction	performed	by	the	internal	hardware	of	the	CPU
are	as	follows:

1.							Takes	the	2’s	complement	of	the	Op2

2.							Adds	this	to	the	Rn

3.							Place	the	result	in	the	Rd

	

The	Rd	and	Op2	operands	remain	unchanged	by	this	instruction.

Example:

LDR								R0,=0x55555555																;R0=0x55555555

LDR								R1,=0x99999999																;R1=0x99999999

SUBS					R2,R1,R0														;R2=R1-R0

;For	“SUBS	R2,R1,R0”	we	have:

;R2=R1	-	R0	=	0x99999999	-	0x55555555	=

;R2=0x99999999	+	2’s	comp.	of	0x55555555

;R2=0x99999999	+	0xAAAAAAAB	=	0x44444444

;			0x99999999

;	-	0x55555555

;			––––—

;			0x44444444				C=1,	Z=0,	N=0,	V=0

SVC																							supervisor	Call	(Software	Interrupt)

Flags:		Unaffected.

Format:														SVC	#imm_value

Function:											It	is	used	by	application	software	to	get	services	from	operating	systems
(OS).	This	is	like	the	SWI	(software	interrupt)	instruction	in	ARM7.

SXTB																				Sign	Extend	byte

Flags:		Unaffected.

Format:														SXTB		Rd,Rm



Function:	Converts	a	signed	byte	in	Rm	into	a	signed	word	by	copying	the	sign	bit	(D7)
of	Rm	into	all	the	bits	of	Rd.	Used	widely	to	convert	a	signed	byte	in	Rm	to	a	signed	word
to	avoid	the	overflow	problem	in	signed	number	arithmetic.

Example:

MOV					R1,#0xFB													;R1=0xFB	which	is	2’s	complement	of	-5

SXTB						R0,R1					;now,	R0=0xFFFFFFFB

;R1=	0000	0000	0000	0000	0000	0000	1111	1011

;now	R0=0xFFFFFFFB

;R0	=	1111	1111	1111	1111	1111	1111	1111	1011

SXTH																			Sign	Extend	Halfword

Flags:		Unaffected.

Format:														SXTH		Rd,Rm

Function:	Converts	a	signed	halfword	in	Rm	into	a	signed	word	by	copying	the	sign	bit
(D15)	of	Rm	into	all	the	bits	of	Rd.	Used	widely	to	convert	a	signed	halfword	(16-bit)	in
Rm	to	a	signed	word	to	avoid	the	overflow	problem	in	signed	number	arithmetic.

Example:

;assume	R1=0xFFFB	which	is	2’s	complement	of	-5

SXTH		R0,R1								;now,	R0=0xFFFFFFFB

;R1=	0000	0000	0000	0000	1111	1111	1111	1011

;now,	R0=0xFFFFFFFB

;R0	=	1111	1111	1111	1111	1111	1111	1111	1011

TBB																						Table	Branch	Byte

Flags:		Unaffected.

Format:														TBB	[Rn,	Rm]

Function:	Branches	forward	using	table	of	single	byte	offset	using	PC-relative	addressing
mode.	Rn	has	starting	address	of	the	table	and	Rm	is	an	index	into	the	table.		See	ARM
Cortex	M3	manual.

TBH																						Table	Branch	halfword

Flags:		Unaffected.

Format:														TBH	[Rn,	Rm,	LSL	#1]

Function:	Branches	forward	using	table	of	halfword	offset	using	PC-relative	addressing
mode.	Rn	has	starting	address	of	the	table	and	Rm	is	an	index	into	the	table.	The	“LSL	#
1”	shifts	left	the	address	once	to	make	it	halfword	aligned	address.	See	ARM	Cortex	M3



manual.

TEQ																						Test	Equivalence

Flags:		Affected:	N	and	Z

Format:														TEQ		Rn,Op2							;performs	Rn	Ex-OR	Op2

Function:	Performs	a	bitwise	logical	Ex-OR	on	Rn	and	Op2,	setting	flags	but	leaving	the
contents	of	both	Rn	and	Op2	unchanged.	While	the	EORS	instruction	changes	the
contents	of	the	destination	and	the	flag	bits,	the	TEQ	instruction	changes	only	the	flag	bits.
This	is	widely	used	to	see	if	two	registers	are	equal.

Example	1:

TEQ								R1,R2																					;check	to	see	if	R1=R2.	If	so	Z=1.	R1	and	R2

;remain	unchanged

Example	2:

TEQ								R2,#0x01														;check	to	see	if	D0	of	R2	is	1,	if	so	Z=1.	R2

;remains	unchanged

Example	3:

TEQ								R1,#0xFF														;check	to	see	if	D7_D0	of	R1	are	1s,

;if	so	Z=1.	R1	remains	unchanged

TST																							Test

Flags:		Affected:	N	and	Z

Format:														TST		Rn,Op2								;performs	Rn	AND	Op2

Function:											Performs	a	bitwise	logical	AND	on	Rn	and	Op2,	setting	flags	but	leaving
the	contents	of	both	Rn	and	Op2	unchanged.	While	the	ANDS	instruction	changes	the
contents	of	the	destination	and	the	flag	bits,	the	TST	instruction	changes	only	the	flag	bits.
To	test	whether	a	bit	of	Rn	is	0	or	1,	use	the	TST	instruction	with	an	Op2	constant	that	has
that	bit	set	to	1	and	all	other	bits	cleared	to	0.

Example	1:

TST									R1,#0x01														;check	to	see	if	D0	of	R1	is	zero,	if	so	Z=1.	

																;R1	remain	unchanged

Example	2:

TST									R1,#0xFF														;check	to	see	if	any	bits	of	R1	is	zero,	if	so

;Z=1.	R1	remain	unchanged

	

UBFX																				Unsigned	Bit	filed	extract



Flags:		Unaffected.

Format:														UBFX		Rd,Rn,#LSB,#Width

Function:	Extracts	the	bit	field	from	the	Rn	register	and	then	zero	extends	it	and	places	in
Rd.	The	#LSB	indicates	from	which	bit	and	#Width	indicates	how	many	bits.

Example	1:

LDR								R0,=0x00077555																;R0=0x00077555

UBFX					R2,R0,#8,#4																								;now,	R2=0x00000005

Example	2:

LDR								R0,=0x12345678																;R0=0x12345678

UBFX					R2,R0,#8,#12																						;now,	R2=0x00000456

UDIV																				Unsigned	Divide

Flags:		Unaffected	

Format:														UDIV	Rd,Rn,Rm																;Rd=	Rn/Rm

Function:	Divides	an	unsigned	integer	word	in	Rn	by	another	unsigned	integer	word	in
Rm.	The	quotient	result	is	placed	in	Rd.	If	value	in	Rn	register	is	not	divisible	by	the	value
in	Rm	register,	the	result	is	rounded	to	zero	and	placed	in	Rd.	Divide	by	zero	causes
exception	interrupt.

Example	1:

LDR								R0,=100																;R0=100

LDR								R1,=2000

UDIV					R2,R1,R0														;now,	R2=R1/R0=2000/100=20

Example	2:

LDR								R0,=20000											;R0=20000

UDIV					R2,R0,#100										;now,	R2=2000/100=20

UMLAL																Unsigned	Multiply	with	Accumulate

Flags:		Unaffected

Format:	UMLAL	RdLo,RdHi,Rn,Rm	;RdHi:RdLo=(Rm	×	Rn)	+	(RdHi:RdLo)

Function:	Multiplies	unsigned	words	in	Rn	and	Rm	register,	adds	the	64-bit	result	to
RdHi:RdLo	registers,	and	saves	the	final	result	in	RdHi:RdLo.	The	RdLo	(low)	and
RdHi(high)	are	the	unsigned	lower	word	and	higher	word	of	the	64-bit	value.

Example:

LDR								R0,=20000											;R0=20000



LDR								R1,=1000

LDR								R2,=5000

LDR								R3,=4000

UMLAL	R2,R3,R0,R1								;now,	R3:R2=	R1	×	R0	+	R3:R2

UMULL																Unsigned	Multiply	Long

Flags:		Unaffected

Format:														UMULL	RdLo,RdHi,Rn,Rm	;RdHi:RdLo	=	Rm	×	Rn

Function:											Multiplies	unsigned	words	in	Rn	and	Rm	registers,	and	saves	the	result
in	RdHi:RdLo.	The	RdLo	(low)	and	RdHi(high)	are	the	lower	word	and	higher	word	of	a
64-bit	value.

Example:

LDR								R0,=20000											;R0=20000

LDR								R1,=10000											;R1=10000

LDR								R2,=50000											;R2=50000

LDR								R3,=40000											;R3=40000

UMLAL	R2,R3,R0,R1								;now,	R3:R2=	R1	×	R0

USAT																			Unsigned	Saturate

Flags:		Unaffected

Format:														USAT	Rd,#n,Rm,shift#

Function:	Used	for	unsigned	saturation	operation.	See	ARM	Cortex	manual.

UXBT																			Zero	extend	a	byte

Flags:		Unaffected	

Format:														UXBT	Rd,Rm

Function:	Zero	extends	a	byte	in	Rm	and	places	in	Rd.	Used	widely	to	convert	a		byte	in
Rm	to	word	for	signed	number	operations.

Example:

MOV					R1,#0xFB													;R1=0xFB

UXBT					R0,R1					;now,	R0=0x00000000FB

;R1=	0000	0000	0000	0000	0000	0000	1111	1011

;now	R0=0x000000FB

;R0	=	0000	00000	0000	0000	0000	0000	1111	1011

UXTH																			Zero	extend	halfword



Flags:		Unaffected	

Format:														UXTH	Rd,Rm

Function:		Zero	extends	a	halfword	in	Rm	and	places	in	Rd.	Used	widely	to	convert	a
halfword	in	Rm	to	word	for	signed	number	operations.

Example:

;assume	R1=0xFFFB

UXTH		R0,R1							;now,	R0=0x00000FFFB

;R1=	0000	0000	0000	0000	1111	1111	1111	1011

;now,	R0=0x0000FFFB

;R0	=	0000	0000	0000	0000	1111	1111	1111	1011

WFE																						Wait	for	event

Flags:		Unaffected	

Format:														WFE

Function:		Used	by	power	management.	See	ARM	Cortex	M3	manual.

WFI																							Wait	for	interrupt

Flags:		Unaffected	

Format:														WFI

Function:	Suspends	execution	until	one	of	the	following	events	occurs:

1.							a	non-masked	interrupt	occurs	and	is	taken,

2.							an	interrupt	masked	by	PRIMASK	becomes	pending,

3.							a	Debug	Entry	request.

See	ARM	Cortex	manual.

	



	



Appendix	B:	ARM	Assembler	Directives





Section	B.1:	List	of	ARM	Assembler	Directives
	

ALIGN

AREA

DCB	directive	(define	constant	byte)

DCD	directive	(define	constant	word)

DCW	directive	(define	constant	half-word)

ENDP	or	ENDFUNC

ENTRY

EQU	(Equate)

EXPORT	or	GLOBAL

EXTRN	(External)

FUNCTION	or	PROC

INCLUDE

RN	(equate)





Section	B.2:	Description	of	ARM	Assembler	Directives
Directives,	or	as	they	are	sometimes	called,	pseudo-ops	or	pseudo-instructions,	are

used	by	 the	assembler	 to	 translate	Assembly	 language	programs	 into	machine	 language.
Unlike	the	microprocessor’s	instructions,	directives	do	not	generate	any	opcode;	therefore,
no	memory	locations	are	occupied	by	directives	in	the	final	hex	version	of	the	assembly
program.	To	summarize,	directives	give	directions	to	the	assembler	program	to	tell	it	how
to	 generate	 the	 machine	 code;	 instructions	 are	 assembled	 into	 machine	 code	 to	 give
instructions	to	the	CPU	at	execution	time.	The	following	are	descriptions	of	the	some	of
the	most	widely	used	directives	 for	 the	ARM	assembler.	They	are	given	 in	alphabetical
order	for	ease	of	reference.

ALIGN

Format:															

ALIGN			n													;n	is	any	power	of	2	from	20	to	231

This	is	used	to	make	sure	data	is	aligned	in	32-bit	word	or	16-bit	half	word	memory
address.	If	n	is	not	specified,	ALIGN	sets	the	current	location	to	the	next	word	(four	byte)
boundary.	The	following	uses	ALIGN	to	make	the	data	word	and	half	word	aligned:

ALIGN			4														;	The	next	instruction	is	word	(4	bytes)	aligned		

ALIGN																			;	The	next	instruction	is	word	(4	bytes)	aligned		

ALIGN			2														;	The	next	instruction	is	half	word	(2	bytes)	aligned									

Notice	that,	this	ALIGN	directive	should	not	be	confused	with	the	ALIGN	attribute
of	the	AREA	directive.

AREA

Format:

AREA					sectionname						attribute,	attribute,	…

The	AREA	 directive	 tells	 the	 assembler	 to	 define	 a	 new	 section	 of	memory.	 The
memory	can	be	code	or	data	and	can	have	attributes	such	as	ReadOnly,	ReadWrite,	and	so
on.	This	 is	widely	used	 to	define	one	or	more	blocks	of	 indivisible	memory	for	code	or
data	to	be	used	by	the	linker.	Every	assembly	language	program	has	at	least	one	AREA.

The	following	line	defines	a	new	area	named	MY_ASM_PROG1	which	has	CODE
and	READONLY	attributes:

AREA					MY_ASM_PROG1												CODE,	READONLY

Among	 widely	 used	 attributes	 are	 CODE,	 DATA,	 READONLY,	 READWRITE,
COMMON,	and	ALIGN.	The	following	describes	these	widely	used	attributes.

CODE	 is	 an	 attribute	 given	 to	 an	 area	 of	 memory	 used	 for	 executable	 machine
instruction.	Since	it	is	used	for	code	section	of	the	program	it	is	by	default	READONLY
memory.	In	ARM	Assembly	language	we	use	this	area	to	write	our	instructions.



DATA	 is	an	attribute	given	 to	an	area	of	memory	used	for	data	and	no	 instruction
(machine	 instructions)	can	be	placed	 in	 this	area.	Since	 it	 is	used	for	data	section	of	 the
program	 it	 is	 by	default	 a	READWRITE	memory.	 In	ARM	Assembly	 language	we	use
this	area	to	set	aside	SRAM	memory	for	scratch	pad	and	stack.

READWRITE	 is	an	attribute	given	 to	an	area	of	memory	which	can	be	read	from
and	written	to.	Since	it	is	READWRITE	section	of	the	program	it	is	by	default	for	DATA.	
In	ARM	Assembly	language	we	use	this	area	to	set	aside	SRAM	memory	for	scratch	pad
and	stack.

READONLY	 is	 an	 attribute	 given	 to	 an	 area	 of	memory	which	 can	 only	 be	 read
from.	Since	it	is	READONLY	section	of	the	program	it	is	by	default	for	CODE.		In	ARM		
Assembly	language	we	use	this	area	to	write	our	instructions	for	machine	code	execution.

COMMON	is	an	attribute	given	to	an	area	of	DATA	memory	section	which	can	be
used	commonly	by	several	program	codes.	We	do	not	initialize	the	COMMON	section	of
the	 memory	 since	 it	 is	 used	 by	 compiler	 exclusively.	 The	 compiler	 initializes	 the
COMMON	memory	area	with	all	zeros.

ALIGN	 is	 another	 attribute	 given	 to	 an	 area	 of	memory	 to	 indicate	 how	memory
should	be	allocated	according	to	the	addresses.	When	the	ALIGN	is	used	for	CODE	and
READONLY	it	aligned	in	4-bytes	address	boundary	by	default	since	the	ARM	instructions
are	 all	 32-bit	 (4-bytes)	 word.	 The	 ALIGN	 attribute	 of	 AREA	 has	 a	 number	 after	 like
ALIGN=3	which	indicates	the	information	should	be	placed	in	memory	with	addresses	of
23,	that	is	0x50000,	0x50008,	0x50010,	0x50020,	and	so	on.	This	ALIGN	attribute	of	the
AREA	should	not	be	confused	with	the	ALIGN	directive.

DCB	directive	(define	constant	byte)

Format:

label																						DCB								n													;n	between	-128	to	256	,	byte	or	string

The	 DCB	 directive	 allocates	 a	 byte	 size	 memory	 and	 initializes	 the	 values	 for
reading	only.

MYVALUE												DCB								5																														;MYVALUE	=	5		

MYMSAGE										DCB								“HELLO	WORLD”															;string

DCD	directive	(define	constant	word)

Format:															

label																						DCD							n												

The	 DCD	 directive	 allocates	 a	 word	 size	 memory	 and	 initializes	 the	 values	 for
reading	only.	The	data	is	32	bit	aligned.

MYDATA														DCD							0x200000,	0xF30F5,	5000000,	0xFFFF9CD7

DCW	directive	(define	constant	half-word)

Format:															



label																						DCB								n												

The	DCW	directive	allocates	a	half-word	size	memory	and	initializes	the	values	for
reading	only.

MYDATA														DCW						0x20,	0xF230,	5000,	0x9CD7

END	

Every	program	must	have	an	entry	and	an	END	point.	The	labels	for	the	entry	and
end	points	must	match.	The	END	directive	tells	the	assembler	that	it	has	reached	the	end
of	source	file.

												AREA			PROG_C2,	CODE,	READONLY

ENTRY

…

END						

ENDP	or	ENDFUNC

The	ENDFUNC	or	ENDP	directive	informs	the	assembler	that	it	has	reached	the	end
of	a	function.	ENDFUNC	and	ENDP	are	the	same.	See	FUNCTION	or	PROC	directives.

ENTRY

The	ENTRY	directive	 shows	 the	 entry	 point	 of	 a	 program	 to	 the	 assembler.	Each
program	must	have	one	entry	point.

												AREA			PROG_C2,	CODE,	READONLY

ENTRY

…

END						

EQU	(Equate)

To	assign	a	fixed	value	to	a	name,	one	uses	the	EQU	directive.	The	assembler	will
replace	each	occurrence	of	the	name	with	the	value	assigned	to	it.

DATA1		EQU							0x39																							;the	way	to	define	hex	value

PORTB		EQU							0xF0018000									;SFR	Port	B	address

SUM1				EQU							0x40000120									;assign	RAM	loc	to	SUM1													

Unlike	 data	 directives	 such	 as	DCB,	DCD,	 and	 so	 on,	 EQU	 does	 not	 assign	 any
memory	storage;	therefore,	it	can	be	defined	at	any	time	and	at	any	place,	and	can	even	be
used	within	the	code	segment.

EXPORT	or	GLOBAL

To	inform	the	assembler	that	a	name	or	symbol	will	be	referenced	by	other	modules



(in	 other	 files),	 it	 is	 marked	 by	 the	 EXPORT	 or	 GLOBAL	 directives.	 If	 a	 module	 is
referencing	a	name	outside	itself,	 that	name	must	be	declared	as	EXTRN	(or	IMPORT).
Correspondingly,	 in	 the	 module	 where	 the	 variable	 is	 defined,	 that	 variable	 must	 be
declared	as	EXPORT	or	GLOBAL	in	order	to	allow	it	to	be	referenced	by	other	modules.
See	the	EXTRN	directive	for	examples	of	the	use	of	both	EXTRN	and	EXPORT.

EXTRN	(External)

The	EXTRN	directive	is	used	to	indicate	that	certain	variables	and	names	used	in	a
module	 are	 defined	 by	 another	 module.	 In	 the	 absence	 of	 the	 EXTRN	 directive,	 the
assembler	would	search	for	the	definition	and	give	an	error	when	it	couldn’t	find	it.	The
format	of	this	directive	is:

EXTRN			name

	The	following	example	shows	how	the	EXPORT	and	EXTERN	directives	are	used:

;from	the	main	program:

EXTRN			MY_FUNC

…

BL											MY_FUNC										

…

;–––––––––––––

;MY_FUNC	is	located	in	a	different	file:

AREA					OUR_EXAMPLE,CODE,READONLY

EXTRN			DATA1

EXPORT																MY_FUNC

MY_FUNC											FUNCTION

…

LDR								R1,=DATA1

…

ENDFUNC

Notice	 that	 the	 EXTRN	 directive	 is	 used	 in	 the	 main	 procedure	 to	 show	 that
MY_FUNC	 is	 defined	 in	 another	 module.	 This	 is	 needed	 because	 MY_FUNC	 is	 not
defined	 in	 that	 module.	 Correspondingly,	 MY_FUNC	 is	 defined	 as	 GLOABAL	 in	 the
module	where	 it	 is	 defined.	 EXTRN	 is	 used	 in	 the	MY_FUNC	module	 to	 declare	 that
operand	DATA1	has	been	defined	in	another	module.	Correspondingly,	DATA1	is	declared
as	GLOBAL	in	the	calling	module.

FUNCTION	or	PROC

Often,	a	group	of	Assembly	language	instructions	will	be	combined	into	a	procedure



so	that	it	can	be	called	by	another	module.	The	FUNCTION	and	ENDFUNC	directives	are
used	to	indicate	the	beginning	and	end	of	the	procedure.	See	the	following	example:

MY_FUNC											FUNCTION

…

…

ENDFUNC

INCLUDE

When	there	is	a	group	of	macros	written	and	saved	in	a	separate	file,	the	INCLUDE
directive	can	be	used	to	bring	them	into	another	file.			

RN	(equate)

This	 is	used	to	define	a	name	for	a	register.	The	RN	directive	does	not	set	aside	a
separate	storage	for	the	name,	but	associates	a	register	with	that	name.	The	following	code
shows	how	we	use	RN:

VAL1						RN										R1											;define	VAL1	as	a	name	for	R1

VAL2						RN										R2											;define	VAL2	as	a	name	for	R2

SUM						RN										R3											;define	SUM	as	a	name	for	R3

	

AREA			PROG_2_1,	CODE,	READONLY

ENTRY																		

MOV					VAL1,	#0x25																							;R1	=	0x25

MOV					VAL2,	#0x34																							;R2	=	0x34

ADD							SUM,	VAL1,VAL2														;add	R2	to	R1	and	place	it	in	R3

HERE						B													HERE

END



	



Appendix	C:	Macros
What	is	a	macro	and	how	is	it	used?

There	 are	 applications	 in	 Assembly	 language	 programming	 where	 a	 group	 of
instructions	performs	a	task	that	is	used	repeatedly.	For	example,	you	might	need	to	add
three	 registers	 together.	 So	 it	 does	 not	make	 sense	 to	 rewrite	 them	 every	 time	 they	 are
needed.	 Therefore,	 to	 reduce	 the	 time	 that	 it	 takes	 to	write	 these	 codes	 and	 reduce	 the
possibility	 of	 errors,	 the	 concept	 of	macros	was	born.	Macros	 allow	 the	 programmer	 to
write	the	task	(set	of	codes	to	perform	a	specific	job)	once	only	and	to	invoke	it	whenever
it	is	needed,	wherever	it	is	needed.

MACRO	definition

Every	macro	definition	must	have	three	parts,	as	follows:

MACRO

[$label]																	macroName	parameter1,parameter2,…,parameterN

…												…

…												…

MEND

The	 MACRO	 directive	 indicates	 the	 beginning	 of	 the	 macro	 definition	 and	 the
MEND	 directive	 signals	 the	 end.	 What	 goes	 in	 between	 the	 MACRO	 and	 MEND
directives	 is	 called	 the	 body	 of	 the	macro.	 The	 name	must	 be	 unique	 and	must	 follow
Assembly	 language	 naming	 conventions.	 The	 parameters	 are	 names,	 or	 parameters,	 or
even	 registers	 that	 are	 mentioned	 in	 the	 body	 of	 the	macro.	 After	 the	macro	 has	 been
written,	 it	can	be	 invoked	(or	called)	by	its	name,	and	appropriate	values	are	substituted
for	 parameters.	 For	 example	 you	 might	 want	 to	 have	 an	 instruction	 that	 adds	 three
registers.	The	following	is	a	macro	for	the	purpose:

MACRO

ADD3VAL													$DEST,$ARG1,$ARG2,$ARG3

ADD																							$DEST,$ARG1,$ARG2

ADD																							$DEST,$DEST,$ARG3

MEND

The	 above	 code	 is	 the	 macro	 definition.	 Note	 that	 parameters	 $DEST,	 $ARG1,
$ARG2,	and	$ARG3	are	mentioned	in	the	body	of	the	macro.	To	distinguish	parameters
they	must	start	with	$.	In	the	following	example,	the	macro	is	invoked	by	its	name	with
the	user’s	actual	data:

AREA	OURCODE,READONLY,CODE

ENTRY



MOV					R1,#5

MOV					R2,#2

ADD3VAL													R0,R1,R2,#5

The	instruction	“ADD3VAL	R0,R1,R2,#5”	invokes	the	macro.

The	assembler	expands	the	macro	by	providing	the	following	code	in	the	.LST	file:

	3	00000008	E0810002								ADD				R0,R1,R2

	4	0000000C	E2800005								ADD				R0,R0,#5

Default	Values	for	parameters

We	can	define	default	values	for	parameters	as	shown	below:

MACRO

ADD3VAL													$DEST,$ARG1=R3,$ARG2,$ARG3=#5

ADD							$DEST,$ARG1,$ARG2

ADD							$DEST,$DEST,$ARG3

MEND

To	 use	 the	 default	 value	 we	 put	 a	 |	 instead	 of	 the	 parameter	 while	 invoking	 the
macro:

ADD3VAL													R0,R1,R2,|

The	above	code	uses	the	default	value	of	$ARG3	which	is	set	to	#5.

Using	labels	in	macros

In	 the	discussion	of	macros	so	 far,	examples	have	been	chosen	 that	do	not	have	a
label	or	name	in	the	body	of	the	macro.	This	is	because	if	a	macro	is	expanded	more	than
once	in	a	program	and	there	is	a	label	in	the	label	field	of	the	body	of	the	macro,	the	same
label	would	be	generated	more	than	once	and	an	assembler	error	would	be	generated.	To
address	the	problem	we	can	give	a	unique	label	to	the	macro	when	we	invoke	it,	as	shown
below:

	MACRO

$lbl			OUR_MACRO									

	CMP					R1,#5

	BEQ							$lbl

	MOV				R1,#1

$lbl

	MEND

	



	AREA				OURCODE,READONLY,CODE

	ENTRY

	MOV				R1,#3

label1				OUR_MACRO

	MOV				R1,#5

label2				OUR_MACRO

HERE						B												HERE

The	assembler	expands	the	macro	by	providing	the	following	code	in	the	.LST	file:

20	00000000																										AREA	OURCODE,READONLY,CODE

21	00000000																						ENTRY

22	00000000	E3A01003								MOV		R1,#3

23	00000004									label1			OUR_MACRO

3	00000004	E3510005								CMP		R1,#5

4	00000008	0A000000								BEQ		label1

5	0000000C	E3A01001								MOV		R1,#1

6	00000010									label1

24	00000010	E3A01005								MOV		R1,#5

25	00000014									label2			OUR_MACRO

3	00000014	E3510005								CMP		R1,#5

4	00000018	0A000000								BEQ	label2

5	0000001C	E3A01001								MOV	R1,#1

6	00000020									label2

26	00000020	EAFFFFFE

HERE			B			HERE

	In	cases	 that	 there	are	more	 than	one	 label	 in	a	macro	 the	 lines	can	be	 labeled	as
shown	below:

MACRO

$lbl									OUR_MACRO			

CMP						R1,#5

BEQ								$lbl.equal

MOV					R1,#1

B													$lbl.next



$lbl.equal

MOV					R1,#2

$lbl.next

MEND

	

AREA					OURCODE,READONLY,CODE

ENTRY

MOV					R1,#3

label1				OUR_MACRO

MOV					R1,#5

label2				OUR_MACRO

HERE						B													HERE

The	assembler	expands	the	macro	by	providing	the	following	code	in	the	.LST	file:

13	00000000																																							AREA	OURCODE,READONLY,CODE

14	00000000																ENTRY

15	00000000	E3A01003								MOV	R1,#3

16	00000004									label1		OUR_MACRO

3	00000004	E3510005								CMP	R1,#5

4	00000008	0A000001								BEQ	label1equal

5	0000000C	E3A01001								MOV	R1,#1

6	00000010	EA000000								B			label1next

7	00000014									label1equal

8	00000014	E3A01002								MOV	R1,#2

9	00000018									label1next

17	00000018	E3A01005								MOV	R1,#5

18	0000001C									label2		OUR_MACRO

3	0000001C	E3510005								CMP	R1,#5

4	00000020	0A000001								BEQ	label2equal

5	00000024	E3A01001								MOV	R1,#1

6	00000028	EA000000								B			label2next

7	0000002C									label2equal



8	0000002C	E3A01002								MOV	R1,#2

9	00000030									label2next

19	00000030	EAFFFFFE

HERE			B			HERE

Conditional	macros

We	can	pass	condition	into	macros,	as	well:

	MACRO

$lbl										OurMacro$cond													

	CMP					R1,#5

	B$cond																$lbl.equal

MOV					R1,#1

$lbl.equal

	MEND

	

	AREA	OURCODE,READONLY,CODE

	ENTRY

	MOV				R1,#3

label1				OurMacroEQ						;in	the	macro	check	equality

	MOV				R1,#3

label2				OurMacroLO						;in	the	macro	check	if	is	lower

HERE						B												HERE

The	assembler	expands	the	macro	by	providing	the	following	code	in	the	.LST	file:

10	00000000																AREA	OURCODE,READONLY,CODE

11	00000000																ENTRY

12	00000000	E3A01003								MOV			R1,#3

13	00000004									label1			OurMacroEQ

3	00000004	E3510005								CMP			R1,#5

4	00000008	0A000000								BEQ			label1equal

5	0000000C	E3A01001								MOV			R1,#1

6	00000010									label1equal

14	00000010	E3A01003								MOV			R1,#3



15	00000014									label2		OurMacroLO

3	00000014	E3510005								CMP			R1,#5

4	00000018	3A000000								BLO			label2equal

5	0000001C	E3A01001								MOV			R1,#1

6	00000020									label2equal

16	00000020	EAFFFFFE

									HERE						B				HERE

Notice	 that	 the	 first	B$cond	 is	 substituted	with	BEQ	while	 the	 second	B$cond	 is
substituted	with	BLO	since	the	conditions	EQ	and	LO	are	used	respectively.

INCLUDE	directive

Assume	that	there	are	several	macros	that	are	used	in	every	program.	Must	they	be
rewritten	 every	 time?	 The	 answer	 is	 no	 if	 the	 concept	 of	 the	 INCLUDE	 directive	 is
known.	The	INCLUDE	directive	allows	a	programmer	to	write	macros	and	save	them	in	a
file,	 and	 later	 bring	 them	 into	 any	 file.	 For	 example,	 assuming	 that	 some	 widely	 used
macros	were	written	and	then	saved	under	the	filename	“MYMACRO1.S”,	the	INCLUDE
directive	can	be	used	to	bring	this	file	into	any	“.asm”	file	and	then	the	program	can	call
upon	 any	 of	 the	 macros	 as	 many	 times	 as	 needed.	 In	 the	 following	 example	 the
ADD3VAL	macro	 is	defined	 in	 the	MyMACRO.s	file	and	 it	 is	used	 in	 the	example.asm
file.

Figure	C.	1:	Defining	a	Macro	in	an	Include	File



Macros	vs.	subroutines
Macros	 and	 subroutines	 are	 useful	 in	 writing	 assembly	 programs,	 but	 each	 has

limitations.	Macros	 increase	code	size	every	 time	 they	are	 invoked.	For	example,	 if	you
call	 a	 10-instruction	 macro	 10	 times,	 the	 code	 size	 is	 increased	 by	 100	 instructions;
whereas,	 if	 you	 call	 the	 same	 subroutine	 10	 times,	 the	 code	 size	 is	 only	 that	 of	 the
subroutine	 instructions.	On	 the	other	hand,	 a	 function	call	 takes	3	clocks	and	 the	 return
instruction	takes	3	clocks	to	get	executed.	So,	using	functions	adds	around	6	clock	cycles.
The	subroutines	might	use	stack	space	as	well	when	called,	while	the	macros	do	not.



	



Appendix	D:	Flowcharts	and	Pseudocode
Flowcharts

If	 you	 have	 taken	 any	 previous	 programming	 courses,	 you	 are	 probably	 familiar
with	 flowcharting.	 	 Flowcharts	 use	 graphic	 symbols	 to	 represent	 different	 types	 of
program	operations.	These	symbols	are	connected	 together	 into	a	 flowchart	 to	 show	 the
flow	of	execution	of	a	program.		The	more	commonly	used	symbols	are	as	follows:

Start	and	End	points

Start	 and	 End	 points	 are	 commonly	 represented	 as	 rounded	 rectangles	 or	 ovals
containing	the	words	“Start”	or	“End”.		Small	circle	is	another	way	to	show	them.

Figure	D-	1:	Start	and	End	Points

Decisions

The	conditions	are	represented	in	diamonds.

Figure	D-	2:	a	Decision	that	Compares	A	with	B

Process

The	processing	steps	are	represented	using	rectangles.

Figure	D-	3:	a	Process	Sample

Inputs	and	outputs

Inputs	and	outputs	are	represented	as	parallelogram.

Figure	D-	4:	an	Output	Sample

Subroutines

Calling	subroutines	are	represented	as	shown	below

Figure	D-	5:	a	Subroutine	Call	Sample



Pseudocode
Flowcharting	 has	 been	 standard	 practice	 in	 industry	 for	 decades.	 However,	 some

find	limitations	in	using	flowcharts,	such	as	the	fact	that	you	can’t	write	much	in	the	little
boxes,	 and	 it	 is	 hard	 to	 get	 the	 “big	 picture”	 of	what	 the	 program	does	without	 getting
bogged	 down	 in	 the	 details.	 An	 alternative	 to	 using	 flowcharts	 is	 pseudocode,	 which
involves	 writing	 brief	 descriptions	 of	 the	 flow	 of	 the	 code.	 Figures	 D-6	 through	 D-10
show	flowcharts	and	pseudocode	for	commonly	used	control	structures.

Structured	 programming	 uses	 three	 basic	 types	 of	 program	 control	 structures:
sequence,	 control,	 and	 iteration.	 Sequence	 is	 simply	 executing	 instructions	 one	 after
another.	 Figure	 D-6	 shows	 how	 sequence	 can	 be	 represented	 in	 pseudocode	 and
flowcharts.

Figure	D-	6:		SEQUENCE	Pseudocode	versus	Flowchart

Note	in	Figures	D-6	through	D-11	that	“statement”	can	indicate	one	statement	or	a
group	of	statements.

Figure	D-7	through	D-9	show	two	control	programming	structures:	IF-THEN-ELSE
and	IF-THEN	in	both	pseudocode	and	flowcharts.

Figure	D-	7:	IF	THEN	ELSE	Pseudocode	versus	Flowchart



Figure	D-	8:	an	IF	THEN	ELSE	Sample

Figure	D-	9:	IF	THEN	Pseudocode	versus	Flowchart

Figures	D-10	and	D-11	show	two	iteration	control	structures:	REPEAT	UNTIL	and
WHILE	DO.	Both	structures	execute	a	statement	or	group	of	statements	repeatedly.		The
difference	 between	 them	 is	 that	 the	 REPEAT	 UNTIL	 structure	 always	 executes	 the
statement(s)	 at	 least	 once,	 and	 checks	 the	 condition	 after	 each	 iteration,	 whereas	 the
WHILE	DO	may	not	execute	the	statement(s)	at	all	because	the	condition	is	checked	at	the
beginning	of	each	iteration.



Figure	D-	10:	REPEAT	UNTIL	Pseudocode	versus	Flowchart

Figure	D-	11:	WHILE	DO	Pseudocode	versus	Flowchart

Program	D-1	finds	 the	sum	of	numbers	between	1	and	10.	Compare	 the	flowchart
versus	 the	pseudocode	 for	Program	D-1	 (shown	 in	Figure	D-12).	 In	 this	 example,	more
program	 details	 are	 given	 than	 one	 usually	 finds.	 For	 example,	 this	 shows	 steps	 for
initializing	and	changing	values.	Another	programmer	may	not	include	these	steps	in	the
flowchart	 or	 pseudocode.	 It	 is	 important	 to	 remember	 that	 the	 purpose	 of	 flowcharts	 or
pseudocode	 is	 to	 show	 the	 flow	 of	 the	 program	 and	 what	 the	 program	 does,	 not	 the
specific	Assembly	language	instructions	that	accomplish	the	program’s	objectives.	Notice
also	that	the	pseudocode	gives	the	same	information	in	a	much	more	compact	form	than
does	the	flowchart.	It	is	important	to	note	that	sometimes	pseudocode	is	written	in	layers,
so	that	the	outer	level	or	layer	shows	the	flow	of	the	program	and	subsequent	levels	show
more	details	of	how	the	program	accomplishes	its	assigned	tasks.

Program	D-1

int	main	()

{

int	sum	=	0;

int	value	=	1;

	

do{

sum	=	sum	+	value;

value++;

}while(value	<=	10);

	



printf	(“%d”,	sum);

}

Figure	D-12:	Pseudocode	versus	Flowchart	for	Program	D-1

	

	



	



Appendix	E:	Passing	Arguments	into	Functions
There	are	different	ways	to	pass	arguments	to	functions.	Some	of	them	are:

·									through	registers

·									through	memory	using	references

·									using	stack



E.1:	Passing	arguments	through	registers
In	the	following	program	the	BIGGER	function	gets	two	values	through	R0	and	R1.

After	comparing	R0	and	R1,	it	returns	the	bigger	value	through	R2.

Program	E-1

AREA					OUR_PROG,CODE,READONLY

ENTRY

MOV					R0,#5					;R0	=	5

MOV					R1,#7					;R1	=	7

BL											BIGGER																;BIGGER(5,7)

HERE						B													HERE						;stay	here

	

;=======================================

;BIGGER	returns	the	bigger	value

;Parameters:

;															R0	and	R1:	the	values	to	be	compared

;Returns:

;															R2:	containing	the	bigger	value

;=======================================

BIGGER

CMP						R0,R1

BHI									L1																												;if	R0	>	R1	goto	L1

MOV					R2,R1					;R2	=	R1

BX											LR																										;return

	

L1												MOV					R2,R0					;R2	=	R0

BX											LR																											;return

	

END

	

This	is	a	fast	way	of	passing	arguments	to	the	function.



E.2:	Passing	through	memory	using	references
We	 can	 store	 the	 data	 in	 memory	 and	 pass	 its	 address	 through	 a	 register.	 In	 the

following	 program	 the	 STR_LENGTH	 function	 gets	 the	 address	 of	 a	 zero-ended	 string
through	R0	and	returns	the	length	of	the	string	through	R1.

Program	E-2

AREA					OUR_PROG,CODE,READONLY

ENTRY

ADR							R0,OUR_STR						;R0	=	addr.	of	OUR_STR

BL											STR_LENGTH						;STR_LENGTH(&OUR_STR)

HERE						B													HERE						;stay	here

	

OUR_STR	DCB			“HELLO!”

ALIGN	4

;=======================================

;STR_LENGTH	returns	the	length	of	str

;Parameters:

;															R0:	address	of	the	string

;Returns:

;															R0:	the	length	of	string

;=======================================

STR_LENGTH

MOV					R2,#0

L_BEGIN

LDRB						R5,[R0]

CMP						R5,#0

BXEQ					LR											;return	if	0

ADD							R2,R2,#1														;R2=R2+1

ADD							R0,R0,#1														;R0=R0+1

B													L_BEGIN

	

END

	





E.3:	Passing	arguments	through	stack
Passing	 through	 the	 stack	 is	 a	 flexible	 way	 of	 passing	 arguments.	 To	 do	 so,	 the

arguments	are	pushed	into	the	stack	just	before	calling	the	function	and	popped	off	after
returning.	 In	Program	E-3,	 the	BIGGER	 function	 gets	 two	 arguments	 through	 the	 stack
and	returns	the	bigger	value	through	the	stack.

Program	E-3

AREA					OUR_PROG,CODE,READONLY

ENTRY

	

;init	stack	pointer

LDR	SP,=(0x40000000+(16*1024))

	

MOV					R0,#5				

PUSH					{R0}								;push	Arg1

MOV					R0,#7				

PUSH					{R0}								;push	Arg2

	

BL											BIGGER																;BIGGER(5,7)

LDR								R1,[SP,#0]											;R1=return	value

POP							{R0}

POP							{R0}

HERE						B													HERE						;stay	here

	

;=======================================

;BIGGER	returns	the	bigger	value

;Parameters:

;															values	to	be	compared

;Returns:

;															the	bigger	value

;=======================================

BIGGER

LDR								R0,[SP,#4]											;R0	=	arg1



LDR								R1,[SP,#0]											;R1	=	arg2

	

CMP						R0,R1

BHI									L1																																												;if	R0	>	R1	goto	L1

STR									R1,[SP,#0]											;return	R1

BX											LR																										;return

	

L1												STR									R0,[SP,#0]											;return	R0

BX											LR																											;return

	

END

This	method	of	passing	arguments	are	used	in	x86	computers.



E.4:	AAPCS	(ARM	Application	Procedure	Call	Standard)
The	AAPCS	provides	an	standard	for	implementing	the	functions	and	the	function

calls	so	 that	 the	codes	made	by	different	compilers	and	different	programmers	can	work
with	each	other.	Some	of	the	rules	of	the	standard	are:

·									The	arguments	must	be	sent	through	R0	to	R4,	respectively.

·									The	return	value	must	be	sent	back	through	R0	and	R1.

·	 	 	 	 	 	 	 	 	The	 functions	 can	use	R5	 to	R8	 for	 their	 internal	 calculations.	But	 their
values	 must	 be	 retrieved	 before	 returning.	 To	 do	 so,	 we	 push	 the	 registers
before	using	them	and	pop	them	before	returning	from	the	function.

·									The	stack	must	be	used	as	Full	Descending

In	Program	E-1	most	of	the	above	rules	are	considered.	But	the	return	value	must	be
in	R0	instead	of	R2.

In	Program	E-4	the	above	rules	are	considered.

Program	E-4

AREA					OUR_PROG,CODE,READONLY

ENTRY

	

;init	stack	pointer

;(change	it	according	to	your	chip)

LDR	SP,=(0x40000000+(16*1024))

	

MOV					R0,#20

BL											DELAY			;DELAY(20)

HERE						B													HERE						;stay	here

	

;=======================================

;DELAY	waits	for	a	while

;Parameters:

;															R0:	the	amount	of	wait

;Returns:

;															none

;=======================================

DELAY



CMP						R0,#0

BXEQ					LR											;return	if	zero

	

PUSH					{R5}								;save	R5

	

LDR								R5,=5000000							;R5	=	5000000

L1												SUBS					R5,R5,#1														;R5=R5-1

BNE								L1												;goto	L1	if	R5	is	not	zero

	

POP							{R5}								;restore	R5

BX											LR											;return

	

END

	

More	information

For	more	information	about	AAPCS	see	the	following	article	or	search	“AAPCS”	on	the
Internet:

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042e/IHI0042E_aapcs.pdf

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042e/IHI0042E_aapcs.pdf
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	ISB                                   Instruction Synchronization Barrier
	IT                                     If-Then Condition Block
	LDC                                  Load Coprocessor
	LDM                                 Load Multiple registers
	LDMDB                             Load Multiple registers and Decrement Before each access
	LDMEA                                   Load Multiple registers from Empty Ascending
	LDMFD                             Load Multiple registers Full Descending
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	LDR                                  Load Register
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	LDRB                                Load Register Byte
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	MOV                                  Move (ARM Cortex)
	MOVS                               Move (and update flags)
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	MRC                                  Move to ARM Register from Coprocessor
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	MUL                                 Unsigned Multiplication
	MVN                                Move Negative
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