
Page 1 of 10

Electrical and Computer Engineering

ENCS2380 – Computer organization and Microprocessors (Fall-2021)

 Project (I)

Submissions are accepted only through Moodle (itc.birzeit.edu)

Page 2 of 10

Page 3 of 10

Page 4 of 10

 Note: No submission for Part 0.

Part 0: Simple Accumulator Computer

Page 5 of 10

Page 6 of 10

(Part 1: Deadline: Monday 8/11/2021)

Part 1: Simple implementation of Load, Store, and Add instructions.

 Objectives:

1- Design control sequence for a simple computer using Verilog HDL. The simple computer is a very small

computer to give you practice in the ideas of designing a simple CPU with the Verilog HDL.

2- To be familiar with the instruction execution cycle: fetch the instruction from memory, instruction decode,

operand fetch and execution.

As shown in the figure below, the simple computer has a two-byte addressable memory with size of 256 bytes (i.e., one

memory cell = 16 bits). The memory is synchronous to the CPU, and the CPU can read or write one cell (2 Bytes) in

a single clock cycle. The memory can only be accessed through the Memory Address Register (MAR) and the Memory

Buffer Register (MBR).

To read from memory, you use: MBR  Memory [MAR];

To write to memory, you use: Memory [MAR]  [MBR];

The CPU has a program counter (PC) register and an instruction register (IR). This CPU has 16 general-purpose

registers. You have to implement the register file as a two-dimensional array each entry has size of 16 bits. For

example, to access register 0 you can use R[0] notation .You have to implement the flag register in one entry of

this array.

This simple computer has only three instructions -- Load, Store, and Add. The size of all instructions is 16 bits with the

following format:

Opcode(4 bits) Register (4 bits) Memory Address (8 bits)

The opcodes are:

0011 LOAD Ri, M: loads the contents of memory location M into register Ri, where Ri is the number of the register

1011 STORE Ri, M: Stores the contents of Ri into memory location M

0111 ADD Ri, M: Adds the contents of memory location M to the contents of Ri, and stores the result in Ri.

Page 7 of 10

Testing:

Simulate the following program by converting each instruction to the corresponding machine code. Then store the

machine code in memory starting from location 20.

Memory Address Contents

20 Load R1, [30] (instruction)

21 Add R1, [31] (instruction)

22 Store R1, [32] (instruction)

30 5 (data)

31 8 (data)

32

(Part2: Deadline: Monday 22/11/2021)

Part 2: Add More Instructions and More Addressing Modes:

Objective: to be familiar with different addressing modes.

Update the instruction format by adding 3 bits to select the required addressing mode. The instruction format as

following

Opcode (4) Reg (4) Operand (8) Addressing mode (3)

Page 8 of 10

Addressing mode field consist of 3 bits that determine the addressing mode of the operand field, as follow:

1-Direct Addressing (000): you have already implemented it in part 1.

2-Indirect Addressing (001): in this mode, memory cell pointed to by address field contains the address of (pointer

to) the operand.

3-Immediate Addressing (010): in this mode, the operand is a part of the instruction format.

4-Register Addressing (011): in this mode, the operand is held in a register specified in the operand filed.

5-Stack Addressing (100): you should allocate part of the memory as a stack of size 20 bytes starting from location

0 (from entry 0 to entry 19) in the memory.

Task:

Modify the old simple computer to add the following new forms:

0011 LOAD Ri, M; loads the contents of memory location M into Ri, where Ri is the number of the register

0011 LOAD Ri, 8; set Ri to 8 (Immediate Addressing)

0011 LOAD Ri, [[M]]; use the contents of memory location M as a pointer to the operand then load it to Ri,

1011 STORE Ri, M; stores the contents of Ri into memory location M.

0111 ADD Ri, M; adds the contents of memory location M to the contents of Ri, and stores the result in Ri.

0111 ADD Ri, Rj; Ri = Ri + Rj

1100 JUMP M; unconditional jump to location M in memory.

1101 CMP Ri, Rj; compare two registers and set zero flag if Ri = Rj

1110 SL Ri, C; applying logical shift left operation to Ri, such that, C is constant (Immediate Addressing)

1111 SR Ri, C; applying logical shift right operation to Ri,C is constant (Immediate Addressing)

0000 PUSH Ri; Add Ri to the top of the stack

0001 POP Ri; Ri = top of the stack then clear the top of the stack

 When you convert each form to corresponding machine code, you can construct the instruction format as

following:

1-Opcode (4): Opcode of each instruction, for example

LOAD Ri, 8 (0011)

2-Register and Operand: if the form has two operands, such as, LOAD Ri, M, use Register field for Ri and operand

for M. For example,

Load R5, [3]  Register filed=0101 and operand =00011

If the form has one operand only, such as, JUMP 7

Page 9 of 10

Operand=00111 and don’t care to Register filed.

3-Addressing mode (3): your job is finding the addressing mode for each form, for example

LOAD Ri, 8 (Immediate Addressing)

Testing:

1-Simulate the following program by converting each instruction to the corresponding machine code. Then store the

machine code in memory starting from location 10:

Address Contents

20 Load R1,[30]

21 Load R2,4

22 Add R1,R2

23 Store R1, [31]

30 5 (Data)

31

2-Simulate the following program by converting each instruction to the corresponding machine code. Then store the

machine code in memory starting from location 10:

Address Contents

20 Load R1,3

21 Add R1,[31]

22 Load R2,6

23 CMP R1, R2

30 5 (Data)

31

Page 10 of 10

3-Simulate the following program by converting each instruction to the corresponding machine code. Then store the

machine code in memory starting from location 10:

Address Contents

20 Load R1,[[31]]

21 Shl R1,3

30 5 (data)

31 32(address)

32 3 (data)

4-Simulate the following program by converting each instruction to the corresponding machine code. Then store the

machine code in memory starting from location 10:

Address Contents

20 Load R1, [30]

 Push R1

21 Shr R1,1

22 Pull R1

23 Store R1, [33]

30 5 (data)

31 32 (address)

32 3 (data)

33

