Birzeit University - Faculty of Engineering & Technology
Electrical & Computer Engineering Department - ENCS313
Linux laboratory

Experiment #1
Getting started with Linux

0.1 Introduction

The experiment intends to have students started on the Linux OS and discover some of its
features. Basic commands and environment variables will be shown as well as file and directory
permissions.

0.2 Objectives

The objectives of the experiment is to learn the following:
e Log in/out your Linux OS with your username/password.

e Start a command window and type some basic commands: directory navigation and con-
trol, file manipulation commands, command options, command aliasing, display com-
mands.

e Environment variables.

e Understand the file/directory permissions.

0.2.1 Command windows

1. Login in your Linux account using your login name and password.

2. Start a command window by executing the following menu sequence:
Application — System — Terminal (assuming your Linux distribution is Red Hat Fe-
dora). If your Linux distribution is Ubuntu, execute the following menu sequence:
Application — Accessories — Terminal.

3. Execute the command pwd (print name of current/working directory) and make
sure you are in your home directory.

4. Execute the command cd (change directory) and hit Enter. Notice that your location
remains unchanged.

5. Execute the command cd .. followed by the command pwd. Notice the current location
you are in.

6. Execute the command cd and hit Enter. Notice that your location is back to that of step
3. Conclusion: whenever you type command cd and hit Enter, your location becomes
that of the home directory.

7. If you execute the command history, you should be able to see the history of commands
you previously typed preceded by a serial number. To re-execute a command, you can thus
look it up in the history list. Once you locate it, precede the command by an exclamation
sign followed by the related number.

Example:

Assume a partial ouput of the command history was as follows:

82 pwd
To re-execute the command pwd, you can execute the command ! 82 instead of executing

the command pwd.

8. Once you type a command on the command window, you can navigate on that command
as follows:
— Ctrl-a: move the cursor to the beginning of the command line.
— Ctrl-e: move the cursor to the end of the command line.
— Ctrl-f: move the cursor one character forward on the command line.
— Ctrl-b: move the cursor one character backward on the command line.
— Esc-f: move the cursor one word forward on the command line.

— Esc-b: move the cursor one word backward on the command line.
In addition, the following commands might be useful as well:

— Ctrl-t: transpose 2 characters. For example, you can type on the screen the string:

teh

If you wish to transpose the letters e and h, move the cursor over the letter h and
click Ctrl-t. You will notice that the string becomes displayed as follows:

the
— Esc-t: transpose 2 words. For example, you can type on the screen the string:

encs313 1s

If you wish to transpose the words encs313 and 1s, move the cursor to the blank
position between the 2 words and click Esc-t. You will notice that the phrase becomes
displayed as follows:

1ls encs313

— Ctrl-1: clear the command window and move the cursor to its initial top position.
This is a shortcut for the command clear but much faster to type.

— Esc-u: Change word to upper case.
— Esc-1: Change word to lower case.
— Esc-c: Capitalize word.
9. To repeat previously typed commands, use the up arrow of your keyboard (1). Everytime

you click on the 1, an older command will show up. Hitting Enter will execute that
command.

10. Execute the command exit. Your command window will be closed. You get the same
behavior if you execute Ctrl-d.

The command window we’ve seen in this section will be your main interface with the system.
In that window, you’ll execute commands and the output will be displayed. Note that you can
open as many command windows as you need.

0.2.2 Directory navigation and Control

1. Start a command window.

2. Execute the command 1s (list directory contents) and check the content of the
folder you're at. Notice that executing the dir command gives the same result.

. Execute the command mkdir encs313 followed by the command 1ls. Notice that the

directory encs313 has been created. You can move to the newly created directory by
executing the command cd encs313.

. Execute the command cd . or cd ./ followed by the command pwd. Notice that your

current location remains unchanged. The ./ or simply . refer thus to the current location.

. Execute the command cd .. or cd ../ followed by the command pwd. Notice that your
current location has moved one step up. The ../ or simply .. refer thus to the parent
directory.

. Execute the command cd - followed by the command pwd. Note the current dierctory

you're at. Execute the command cd - followed by the command pwd again and note the
current dierctory you’re at. You will notice that the command cd - gets you always to the
location of the previous directory you were at. That command is quite useful whenever
you keep on jumping between 2 directories. Linux doesn’t define a cd +. Can you explain
why?

Execute the command cd and hit Enter. Your current location should be the home
directory. Execute the command rmdir encs313 followed by the command 1s. Notice
that the directory encs313 you created previously has been removed.

Note:

The path that starts with a ./ or ../ are called relative paths since they are referenced with
respect to the current location. Executed commands that involve the usage of relative paths
might give different results if the current location is different.

The paths that start with a / are called absolute paths since they relate to the root folder. Ex-
ecuted commands that involve the usage of absolute paths give always the same result irrelevant
of the current location.

Example:

cd ..

means move to the parent directory relative to the current location.

cd /home/user means move to the user directory no matter where your current location is.

0.2.3 File manipulation commands

1.

In a command window, go to the home directory and create the directory encs313. Move
to the newly created directory by executing cd encs313.

. Execute the command touch myFile.txt followed by the command 1s. Notice that a file

called myFile.txt has been created. The file size is initially 0 since it is empty.

. To copy the file myFile.txt, execute the command:

cp myFile.txt myFilel.txt

. Execute the command 1s and notice that you have 2 files: myFile.txt and myFilel.txt.

. To delete the newly created file, execute the command:

rm myFilel.txt

. Execute the command 1s again and notice that the file myFilel.txt has been removed.

. To rename a file, execute the command:

mv myFile.txt myFilel.txt

. Execute the command 1s and notice that the file myFile.txt has indeed been renamed

to myFilel.txt. Note that you can use the command rename myFile.txt myFilel.txt
and obtain the same result. However, the command mv is more popular.

9.

Beside being used to rename files, the command mv is used to move files and directories
around. For example, if you intend to move the file myFile.txt to the parent directory,
you can execute:

mv myFile.txt ../

To move the file myFile.txt back under directory encs313, execute:

mv ../myFile.txt .

Note that since directory encs313 exists, the file mv myFile.txt will NOT be renamed
into encs313 but moved under encs313.

0.2.4 Command options

The power of Linux doesn’t come only from the rich set of commands it has but also from
the different options that these commands take as argument. The output display of a specific
command will be formatted differently if supplied with different options. Let’s consider the
following steps and check the output at each case:

1.

Execute the command cd and hit Enter. Your current location should be the home
directory. Execute the command 1s and note the output you get.

. Execute the command 1s -1 and note the output you get.

. Execute the command 1s -a, 1s -aF and 1ls -r respectively and note the output you get

at each execution. What would you conclude when comparing the different outputs?

. Execute the command man 1s and check the list of options that the command 1s might

take as argument. You would notice a list of 30+ options for the command 1s alone.
Other Linux commands might even take more options!

Note:

The man command invokes the manual pages on the argument you supply. It is sort of help
that you get regarding that particular command. If the supplied command doesn’t exist,
an error message will be displayed in the command window. Otherwise, the command help
page is invoked. In general, most of the Linux commands have associated manual pages.

To get out of a manual page, click on the character q (quit).

We’ll show below an additional example on the options that the command rm might take:

a. Execute the command cd and hit Enter. Your current location should be the home
directory.

b. Execute the command mkdir encs313.

c. Execute the command cd encs313.

d. Under directory encs313, create an empty file by executing touch myFile.txt.

e. Go back to the parent directory and execute the command rmdir encs313. What do you
get?

f. Execute the command man rm and note the different options that you get. You’ll note in
particular the option -r that removes directories and their contents recursively.

g. Execute the following command:
rm -r encs313

h. Note the result you obtain in the previous step.

To do:

e Check the option -i of the command rm. Try it and explain the behavior you get.

e Check the different options for the following commands and try to get familiar with them:
1s, cp and mv.

0.2.5 Command aliasing

The behavior of a specific command can be altered to that of one of its options by using command
aliasing. For example, assume that you always need to run the command 1s with the 2 options
-a and -F. You thus need to execute:

ls -aF
To make the command 1s behave as 1s -aF, you can do the following:
alias 1s=’1s -aF’

Note that you are not allowed to have any blanks before or after the = sign. The command 1s
will from now on behave exactly as 1s -aF.

Note the following;:

e If at any point you need to run the original version of the 1s command, you can execute:
\1s

Note that the alias you just created will have effect in the command window where it has been
defined. To make the alias visible to all future command windows, check the following sections.

To remove an alias on a particular command, you can use the command unalias. For example,
you can remove the alias on the command 1s by executing:

unalias 1s

0.2.6 Display commands

There are a number of commands you can use to display or view a file. Some of these are
editors which we will look at later. Here we will illustrate some of the commands normally used
to display a file.

echo command

You can use the command echo to display a string on the standard output as follows:
echo ‘‘Hello, World!’’

The output will display:

Hello, World!

As a second example:

echo ““1 +2 + 3 + 47

The output will display:

1+2+3+4+4

Note that the use of double quotations are optional. You get the same output without quotations
as well.

Note as well as the command echo can take many arguments that affect the way it display
strings. Execute man echo to see the different options.
cat command

You can use the command cat to concatenate a file or list of files (check on the different op-
tions of command cat by executing man cat). To display the content of file myFile.txt on the

standard output, you can execute:

cat myFile.txt

If you have multiple files and you want to display their content, you can execute:

cat myFile.txt myFilel.txt

Note that the content of the file myFile.txt will get displayed before the content of file
myFilel.txt.

An interesting option that can be used with the command cat is the -n. For example, if you
execute:

cat -n myFile.txt

the line number will be displayed infront of each line.

more, less commands

The more command behaves somehow like the command cat. It’s behavior differs though be-
tween the different Linux distributions. On some of them, it displays one page at a time while
on others it displays the whole content of the file (e.g. behaves like the command cat). As an
example, execute the following command:

more myFile.txt

The commands less and more display one page at a time. Their behavior can be summarized
as follows:

e Hiting on the space bar moves the displayed file one page down.

Hiting Enter moves the displayed file one line down.

Clicking on the letter p moves the displayed file to the first page.

Clicking on the letter b moves the displayed file one page up.

Clicking on the letter q quits the command.

head, tail commands

The command head displays the first 10 lines of a file while the command tail displays the last
10 lines.

As an example, execute and note the output of the following 2 commands:

head myFile.txt

tail myFile.txt

The behavior of these commands can be altered if supplied by an argument. For example, if
you execute the following command:

head -1 myFile.txt

the file’s first line only will be shown on the standard output. The last line of a file gets displayed
if you execute:

tail -1 myFile.txt

0.3 Environment variables

Environmental variables are used to provide information to the programs you use. You can have
both global environment and local shell variables. Global environment variables are set
by your login shell and new programs and shells inherit the environment of their parent shell.

Local shell variables are used only by that shell and are not passed on to other processes. A

child process cannot pass a variable back to its parent process!.

The current environment variables are displayed with the env or printenv commands. Some
common ones are:

DISPLAY The graphical display to use, e.g. nyssa:0.0
EDITOR The path to your default editor, e.g. /usr/bin/vi

HOME Path to your home directory, e.g. /home/frank

HOST The hostname of your system, e.g. nyssa

LOGNAME The name you login with, e.g. frank

PATH Paths to be searched for commands, e.g. /usr/bin:/usr/ucb:/usr/local/bin
SHELL The login shell youre using, e.g. /usr/bin/csh

TERM Your terminal type, e.g. xterm

USER Your username, e.g. frank

Many environment variables will be set automatically when you login. You can modify them or
define others with entries in your startup files or at anytime within the shell. Some variables
you might want to change are PATH and DISPLAY. The PATH variable specifies the directories to
be automatically searched for the command you specify.

Setting of environment variables depend on the shell you are using. Most probably your shell is
the bash shell. To set an environment variable, do the following,

1. Execute the command env and make sure your shell is the bash shell.

2. If your shell is bash, set a dummy environment variable DUMMY to the value ENV_VALUE as
follows:

DUMMY=ENV_VALUE
Note that you should leave no blanks before and after the = sign. Note as well that different

shells might set the environment variables in different ways. For example, if your shell is
tcsh, then setting an environment variable becomes as follows:

setenv DUMMY ENV_VALUE

3. To get the value of an environment variable, do the following:
echo $DUMMY

4. Environment variables can be used with Linux commands. An example would be as follows:
cd $HOME

The environment variable $DUMMY that you just defined above has a scope limited to the command
window where it was defined. This is the exact case that you encountered when you defined
aliases in the previous sections. To define environment variables or aliases and make them visible
in all command windows, you need to define them in a special hidden file. The name of that
hidden file depends on the type of the shell you are using:

e If your shell is sh (Bourne shell), your hidden file’s name is .profile.
e If your shell is bash, your hidden file’s name is .bashrc.
o [f your shell is csh, your hidden file’s name is .cshrc.

e If your shell is tesh, your hidden file’s name is .tcshrec.

'Extracted from the book entitled: Introduction to Unix by Frank G. Fiamingo, Linda DeBula, Linda
Condron - University Technology Services - The Ohio State University.

These hidden files must be located under your home directory. To know the type of shell you
are using, you need to check the environment variable $SHELL.

As an example, consider you want to define an environment variable called DUMMY and set an
alias for the command 1s to 1s -aF, you need to do the following (assuming your shell is bash):

e Open the hidden file .bashrc that is located under your home directory.

e Add the following 2 rows:

DUMMY=ENV_VALUE
alias 1s=’1ls -aF’

e Save the file .bashrc and close it.

e Open a new command window and check that the environment variable DUMMY is defined
(echo $DUMMY) and that the alias on the command 1s is defined (alias 1s).

0.3.1 File permissions

By file permissions, we mean the permissions on files and directories alike. Each file, directory,
and executable has permissions set for who can read, write, and/or execute it. To find the
permissions assigned to a file or a directory, the 1s -1 command should be used. The following
might be obtained:

> drwxr-xr-x 3 root other 512 Apr 22 1999 myDir
> 1rwxXrwxrwx 1 root other 2 Nov 4 12:29 xq -> xt/
> -rw-r—-r-- 1 root other 1338 Apr 7 2005 myFile.c

Before explaining the letters shown above, in particular under the first column, it is important
to note that Linux has 3 levels of permissions:

e Read, write and execute permissions for the owner (rwx).
e Read, write and execute permissions for the group to which the owner belongs (rwx).
e Read, write and execute permissions for others (rwx).

Put together, that makes the following permissions for the owner, the group and others:

IYWXIWXTWX.

The first letter varies according to the type of the file:
e If the letter is d, the file is a directory.
o If the letter is 1, the file is a symbolic link.
e If the letter is -, the file is a regular file.

In summary, we can state the following:

e myDir is a directory, read/write/execute permissions are granted to owner, read/execute
permissions are granted to the owners group, read/execute permissions are granted to
others.

e xq is a symbolic link (as can be seen in xq -> xt. Read/write/execute permissions are
granted to owner, group and others.

e myFile.c is a file. Read/write permissions are granted to owner while only read permis-
sions are granted to group and others.

To set permissions on files/directories, you can use the command chmod. For example, to change
the permissions on file myFile.c to read/write/execute for the owner only, no permissions for
the group, no permissions for others, you can execute the following:

chmod 700 myFile.c

Alternatively, to change the permissions to read/write/execute for the owner, read/execute
permissions for the group and read permission only for others, you can execute:

chmod 754 myFile.c
An alternative way for setting the permissions would be as follows:
chmod u=rwx,g=,0= myFile.c (same as chmod 700 myFile.c)

chmod u=rwx,g=rx,o=r myFile.c (same as chmod 754 myFile.c)

0.3.2 Links to files

The 1n command creates a "link” or an additional way to access (or gives an additional name
to) another file. If the link is symbolic, the link is a shortcut that points to a file or a directory.
To create a symbolic link, execute:

In -s myFile.c link

In the above command, 1link becomes a shortcut for the file myFile.c. You can open the
file myFile.c by opening link and close the file myFile.c by closing 1ink. Note though that
removing link will not remove the file myFile.c. The shortcut itself is removed only.

To do:

Create a link to your home directory and make sure that your location is that of the home
directory once you cd using that link.

A hard link can only be done to another file on the same file system, but not to a directory
(except by the superuser). A hard link creates a new directory entry pointing to the same inode
as the original file. The file linked to must exist before the hard link can be created. To link
two files with a hard link to each other execute:

1n sourceFile destinationFile.

Note that if you remove file sourceFile, file destinationFile will remain.

0.3.3 Appending files - redirection

We’ve seen in the previous experiment that with command echo we can output strings to the
standard output. In this section, we’ll use that command in addition to redirection to append
lines of data to a file without the need to open files explicitly.

a. cd to your home directory.
b. Create a new file called newFile.txt using the command touch.

c. Execute the following command:

echo "Hello, World!" >> newFile.txt
d. Execute the command cat newFile.txt. Note the content of the file newFile.txt.
e. Repeat step (c) multiple times then note the content of the file newFile.txt.

We say that the symbol >> redirects the output from the standard output to the file.
Note:

If you execute the command echo "Hello, World!" > newFile.txt, the content of the file
newFile.txt will be overwritten! Thus, be aware to differentiate between symbols >> and >.

The redirection examples we’ve seen above related to output redirection. Just as the output
of a command can be redirected to a file, so can the input of a command be redirected from a
file. And as the greater-than character > is used for output redirection, the less-than character
< is used to redirect the input of a command. Of course, only commands that normally take
their input from standard input can have their input redirected from a file in this manner.

Example
e Create the file redir.txt

e Execute the following 2 commands:
echo "Line 1" > redir.txt

echo "Line 2" >> redir.txt

e Execute the following command:

cat < redir.txt

e You get the same result as in the previous step by executing:

cat redir.txt

Note that in the above example with input redirection, the command cat did not know that it
was reading from the file redir.txt; it only knows that it is reading its input from standard
input.

Error redirection

In addition to standard input and standard output, there is another place known as standard
error. This is where most Unix commands write their error messages. And as with the other
two "standard” places, standard error is associated with your terminal by default. In most cases,
you never know the difference between standard output and standard error.

Example

1s zzz*

You get the following error:
zzz* not found

Here the "not found" message is actually being written to standard error and not standard
output by the 1s command. You can verify that this message is not being written to standard
output by redirecting the 1s command’s output:

1s zzz*x > foo
You still get the error message:
zzz* not found

Thus, error messages will still get displayed at the terminal even if standard output is redirected
to a file or piped to another command.

You can redirect standard error to a file by using the notation:

1s zzz* 2> errors

No space is permitted between the 2 and the >. Any error messages normally intended for

standard error will be diverted into the specified file (in the above example, the file errors),
similar to the way standard output gets redirected. If you execute the command:

cat errors

You'll get the output:

zzz* not found

10

