
Birzeit University - Faculty of Engineering & Technology
Electrical & Computer Engineering Department - ENCS313
Linux laboratory

Experiment #2

Shells - editors - pipes under Linux

0.1 Introduction

The experiment intends to make students at ease working under Linux: Expose the different
shells and to the most popular text editors.

The power of Linux will be better illustrated if we combine several commands to get a more
useful output. Examples will be provided on how to use these commands and better manipulate
the obtained output.

0.2 Objectives

The objectives of the experiment is to learn the following:

• Get knowledge on the different available shells.

• Show how multiple commands can be combined through piping.

• Tackle more commands.

• Provide examples on how to use these commands.

0.2.1 Shells

The shell sits between you and the operating system, acting as a command interpreter. It reads
your terminal input and translates the commands into actions taken by the system. The shell
is analogous to command.com in DOS. When you log into the system you are given a default
shell. When the shell starts up it reads its startup files and may set environment variables,
command search paths, and command aliases, and executes any commands specified in these
files.

The original shell was the Bourne shell, sh. Every Unix platform will either have the Bourne
shell, or a Bourne compatible shell available. It has very good features for controlling input and
output, but is not well suited for the interactive user. To meet the latter need the C shell, csh,
was written and is now found on most, but not all, Unix systems.

Numerous other shells are available from the network. Almost all of them are based on either
sh or csh with extensions to provide job control to sh, allow in-line editing of commands,
page through previously executed commands, provide command name completion and custom
prompt, etc. Some of the more well known of these may be on your favorite Unix system: the
Korn shell, ksh, by David Korn and the Bourne Again SHell, bash, from the Free Software
Foundations GNU project, both based on sh, the T-C shell, tcsh, and the extended C shell,
cshe, both based on csh.

The shells have a number of built-in, or native commands. These commands are executed
directly in the shell and dont have to call another program to be run. These built-in commands
are different for the different shells.

As mentioned in the previous experiment, the following files will be sourced (read) when you
either log on to the system or open a new command window:

1

• If your shell is sh (Bourne shell), your hidden file’s name is .profile.

• If your shell is bash, your hidden file’s name is .bashrc.

• If your shell is csh, your hidden file’s name is .cshrc.

• If your shell is tcsh, your hidden file’s name is .tcshrc.

The default shell for users is set in the file passwd that can be found under folder /etc. The
file is in text mode and can be read by any user. However, only the root is allowed to change
its content.

To do:

Open the file /etc/passwd and check on the default shell that is assigned to you.

0.3 Text editors

There are multiple text editors under Linux. Each of them present some advantages over others.
However, they all do a neat job and selecting a particular text editor is just a matter of personal
taste. Some text editors are described below:

vi: This is a console based plain text editor. It comes with every Linux/Unix installation
which is an advantage. It is command-based.

vim: This console based plain text editor supports syntax highlighting and numerous plug-ins
for specialized configurations and features.

emacs: This console based plain text editor supports the theory that more is better. It tries to
support every feature possible. Emacs is a very powerful editor, though command-based.

pico: A console based plain text editor.

gedit: This is the default text editor for the Linux Gnome desktop. It supports syntax highlight-
ing, printing, a variety of plug-ins, multi-language spell check, tabbed for multiple files,
etc.

0.4 More on commands

As mentioned before, Linux is mostly command-based. You need to know as many commands
as you can so as to feel at ease navigating the filesystem and manipulating directories, files and
data. Keep in mind that the power of Linux doesn’t come only from the rich set of commands
it has but also from the different options that these commands take as argument. The output
display of a specific command will be formatted differently if supplied with different options.
Let’s consider some of the commands that you will encounter so frequently:

• which command: Shows the full path of (shell) commands. It can be helpful if you need
to locate command.

Example:

which ls

• sort command: Sort lines of text files.

Example:

touch sort.txt

echo "13" >> sort.txt

echo "12" >> sort.txt

2

echo "140" >> sort.txt

echo "20" >> sort.txt

echo "1" >> sort.txt

echo "12" >> sort.txt

sort sort.txt

You’ll note that the sort occurs based on text.

To do sorting numerically, execute:

sort -n sort.txt

To redirect the output to a file:

sort -n sort.txt >> sort new.txt

Or you can use the option -o with the command sort as follows:

sort -n sort.txt -o sort new.txt

• uniq command: You would have noticed that enrty 12 is repeated twice in the above
example. To remove duplicates, you can use the uniq command on sorted files as follows:

uniq sort new.txt sort uniq.txt

• grep command: Print lines matching a pattern. The grep command is useful when you
need to search in a folder, file or set of files for a particular pattern. For example, assume
you have the file sort.txt that you created in the previous step. To search for the pattern
12 in file sort.txt, you execute:

grep 12 sort.txt

If you need to look for the pattern 12 in all files under the current foler, you execute:

grep 12 *

where * is a wild card that refers to any file.

To look for the pattern 12 in all files with extension txt, you execute:

grep 12 *.txt

The behavior of the command grep can be inverted if used with option -v. In that case,
all lines that do not include the pattern will get displayed. For example, if you execute:

grep -v 12 sort.txt

you’ll get on the standard output all the lines of file sort.txt that do not include the
pattern 12.

A useful option with command grep is the -n which prefixes each line of output with the
line number within its input file:

grep -n 12 sort.txt

Below are some examples on how to use the command grep. You’ll notice that it gets very
useful once combined with regular expressions. We’ll see more about regular expressions
going forward:

grep ’[A-Z]’ sort.txt Lines from sort.txt containing a capital letter

grep ’[0-9]’ sort.txt Lines from sort.txt containing a number

grep ’[A-Z]...[0-9]’ sort.txt Lines from sort.txt containing five-character

patterns that start with a capital letter and end
with a digit

grep ’\.pic$’ filelist Lines from sort.txt that end in .pic

3

• ps command: Report process status. If run without options, the command ps will report
about the current processes that are owned by the user. An example on the output of the
command ps can be as follows:

PID TTY TIME CMD

2532 pts/1 00:00:00 tcsh

2549 pts/1 00:00:00 ps

In the above example, we can notice that the user has 2 running processes: tcsh and ps

with PIDs 2532 and 2549 respectively.

To see every process on the system using standard syntax, use the option -e (select all
processes) or the combined options -ef. The option -f gives full-format listing.

An example on the output of the command ps -ef can be as follows:

UID PID PPID C STIME TTY TIME CMD

root 1 0 0 14:30 ? 00:00:03 init [5]

root 2 1 0 14:30 ? 00:00:00 [ksoftirqd/0]

root 3 1 0 14:30 ? 00:00:00 [watchdog/0]

root 4 1 0 14:30 ? 00:00:00 [events/0]

root 5 1 0 14:30 ? 00:00:00 [khelper]

root 2244 2076 0 14:32 ? 00:00:00 /usr/bin/gdm-binary -nodaemon

root 2290 2244 0 14:32 ? 00:00:00 /usr/bin/gdm-binary -nodaemon

root 2295 2290 0 14:32 ? 00:00:04 /usr/X11R6/bin/X :0 -audit 0 -au

gdm 2330 2290 0 14:32 ? 00:00:02 /usr/bin/gdmgreeter

root 2331 1926 0 14:32 ? 00:00:00 in.tftpd -s /tftpboot

root 2494 1926 0 14:37 ? 00:00:00 telnetd

root 2495 2494 0 14:37 pts/1 00:00:00 login -h bzurt -p

user 2532 2495 0 14:39 pts/1 00:00:00 -tcsh

user 2790 2532 0 14:47 pts/1 00:00:00 ps -ef

Note the different columns that you get when running ps -ef. In particular, the column 1
refers to the process owner, column 2 shows the PID for each process and column 3 shows
the parent ID for each process. Note as well that the Linux OS refers to each process by
its unique PID and not by the process name.

• kill command: Send signals to processes. The default signal is the SIGINT which inter-
rupts the execution of processes.

The kill command takes a particular process ID as argument. It can be used as follows:

kill PID num

where PID num refers to a current process ID.

If a particular process hangs, you need to run the command ps as described above in order
to get its PID and then you terminate it using the command kill.

Note that the command kill can send different signals to processes. Below is a shortlist
for some of these signals (to see the list of all signals, execute kill -l):

4

SIGHUP 1 hangup

SIGINT 2 interrupt

SIGQUIT 3 quit

SIGILL 4 illegal instruction (not reset when caught)

SIGTRAP 5 ctrace trap (not reset when caught)

SIGABRT 6 used by abort

SIGEMT 7 EMT instruction

SIGFPE 8 floating point exception

SIGKILL 9 kill (cannot be caught or ignored)

SIGBUS 10 bus error

SIGSEGV 11 segmentation violation

SIGSYS 12 bad argument to system call

SIGPIPE 13 write on a pipe with no one to read it

SIGALRM 14 alarm clock

SIGTERM 15 software termination signal from kill

SIGURG 16 urgent condition on IO channel

To send a particular signal to a process, you can send it by the number. For example, you can
send the signal SIGALRM to a process that has the PID 1234 as follows:

kill -14 1234

Alternatively, you can the signal by name after removing the prefix SIG as follows:

kill -ALRM 1234

Note:

To kill the last process that has been executed, you can use the shortcut % as follows:

kill %

The symbol % will be replaced by the PID of the last executed process.

0.4.1 The wc command

The command wc counts the number of words in a file. the command can be used as well to
count the number of lines, characters, or words in a file. We’ll illustrate its use in an example:

• Create a file called wc.txt.

• Execute the following command 5 times:

echo "My name is coco" >> wc.txt

• Execute the following command:

wc wc.txt

You’ll notice that you get 3 integers. These are respectively the number of lines, number
of words and number of characters in the file wc.txt.

• If you want to get only the number of lines in file wc.txt, use the -l option of the command
wc as follows:

wc -l wc.txt

• If you want to get the number of words in file wc.txt, use the -w option of the command
wc as follows:

wc -w wc.txt

5

• If you want to get the number of characters in file wc.txt, use the -c option of the
command wc as follows:

wc -c wc.txt

0.5 Pipes

Suppose you want to count the number of files and directories contained in your home directory.
One way to do that is to execute the following1:

• Execute the command:

ls -l >> file.txt

• Execute the command:

wc -l file.txt

The trick is that the command ls -l will return one line for each file/directory. The command
wc -l will count the number of lines.

Another approach to determine the number of files/directories in your home directory bypasses
the use of files. the Unix/Linux OS allows you to effectively connect two commands together.
This connection is known as a pipe, and it enables you to take the output from one command
and feed it directly into the input of another command. A pipe is effected by the character |,
which is placed between the two commands. As such, the 2 above steps can be combined using
pipes as follows:

ls -l | wc -l

When a pipe is set up between two commands, the standard output from the first command
is connected directly to the standard input of the second command. You know that the ls

-l command writes its list to standard output. Furthermore, you know that if no filename
argument is specified to the wc command, it takes its input from standard input. Therefore,
the list of files/directories that is output from the ls -l command automatically becomes the
input to the wc command. Note that you never see the output of the ls -l command at the
terminal because it is piped directly into the wc command.

A pipe can be made between any two programs, provided that the first program writes its output
to standard output, and the second program reads its input from standard input.

It is also possible to form a pipeline consisting of more than two programs, with the output of
one program feeding into the input of the next as follows:

ls -l | grep user | wc -l

0.5.1 The cut command

This command is used to extract various fields of data from a data file or the output of a
command. The general format of the cut command is:

cut -cchars file

where chars specifies what characters you want to extract from each line of file. This can
consist of a single number, as in -c5 to extract character 5; a comma-separated list of numbers,
as in -c1,13,50 to extract characters 1, 13, and 50; or a dash-separated range of numbers, as
in -c20-50 to extract characters 20 through 50, inclusive. To extract characters to the end of
the line, you can omit the second number of the range; so

cut -c5- file

extracts characters 5 through the end of the line from each line of file and writes the results

1Stephen Kochan, Patrick Wood, Unix Shell programming Third Edition. Sams Publishing, 456 pages.

6

to standard output.

Example

If you execute the command who (show who is logged on the system), you might get the following
output:

root console Feb 24 08:54

steve tty02 Feb 24 12:55

george tty08 Feb 24 09:15

ahmed tty10 Feb 24 15:55

As shown, currently four people are logged in. Suppose that you just want to know the names
of the logged-in users and don’t care about what terminals they are on or when they logged in.
You can use the cut command to cut out just the usernames from the who command’s output:

who | cut -c1-8

The output will look as follows:

root

steve

george

ahmed

The -c1-8 option to cut specifies that characters 1 through 8 are to be extracted from each line
of input and written to standard output.

A more interesting command would be:

who | cut -c1-8 | sort

The output will look as follows:

ahmed

george

root

steve

The cut command can take a delimiter using the option -d and show a particular field using
the -f option. In such a case, the format becomes:

cut -ddchar -ffields file

where dchar is the character that delimits each field of the data, and fields specifies the fields
to be extracted from file. Field numbers start at 1, and the same type of formats can be used
to specify field numbers as was used to specify character positions before (for example, -f1,2,8,
-f1-3, -f4-).

Example

cut -d: -f1 /etc/passwd

Note that if the -d option is not supplied, cut uses the tab character as the default field delimiter.

0.5.2 The paste command

The paste command is sort of the inverse of cut: Instead of breaking lines apart, it puts them
together. The general format of the paste command is:

paste file1 file2 ... filen

where corresponding lines from each of the specified files are pasted together to form single lines
that are then written to standard output. The use of the command paste can be illustrated in
the following example:

7

• Create the 2 files: names.txt and numbers.txt

• In the file names.txt, type the following:

Mohammad

Khalil

Fatmeh

Amin

Manal

• In the file numbers.txt, type the following:

123456

654321

112233

332211

615243

You can use paste to print the names and numbers side-by-side as follows:

paste names.txt numbers.txt

The output will look as follows:

Mohammad 123456

Khalil 654321

Fatmeh 112233

Amin 332211

Manal 615243

Each line from names.txt is displayed with the corresponding line from numbers.txt, separated
by a tab.

Assume we have as well a file called addresses.txt that contain the following:

Jerusalem

Ramallah

Jenin

Hebron

Tulkarem

We can use the command paste on multiple files as follows:

paste names.txt numbers.txt addresses.txt

The output will look as follows:

Mohammad 123456 Jerusalem

Khalil 654321 Ramallah

Fatmeh 112233 Jenin

Amin 332211 Hebron

Manal 615243 Tulkarem

You can use the -d option if you want to use a separator different than the tab character. For
example, if you execute the following command:

paste -d’+’ names.txt numbers.txt addresses.txt

you get the following output:

8

Mohammad+123456+Jerusalem

Khalil+654321+Ramallah

Fatmeh+112233+Jenin

Amin+332211+Hebron

Manal+615243+Tulkarem

You can as well use the -s option of the command paste to paste together lines from the same
file, not from alternate files. The effect is to merge all the lines from the file together, separated
by tabs, or by the delimiter characters specified with the -d option as follows:

paste -s names.txt

The output will look as follows:

Mohammad Khalil Fatmeh Amin Manal

If you execute the following command:

paste -s -d ’+’ names.txt

you get the following on the standard output:

Mohammad+Khalil+Fatmeh+Amin+Manal

0.5.3 The find command

In the previous experiment, we’ve seen the grep command that helps users search in a file, set
of files or set of directories. Regular expressions and wild cards can be used to give more power
to the search operation.

The find command will recursively search the indicated directory tree to find files matching a
type or pattern you specify. find can then list the files or execute arbitrary commands based
on the results.

For example:

find . -name coco.txt -print

will search for the file coco.txt starting the current directory as well as all subdirectories. Once
it encounters a file or subdirectory that holds the name coco.txt, it will display the path that
leads to that directory or file. Note that the option -print is not necessary since it represents
the default behavior of the command find.

The command:

find / -name coco.txt -print

will search for the file coco.txt starting the root directory. The search will thus be exhaustive
and might take a lot of time.

The search can be done on partial file names of directory names as well using wild cards. For
example:

find . -name *coco* -print

will search for any file or directory containing the string coco. A better example would be:

find . -name a*bcd*e.txt -print

will search for any file or directory that start with the letter a, contain the string bcd and end
with the letter e and has the extension .txt starting the current directory. You can thus notice
the power of Linux commands once combined with regular expressions.

The command find can execute arbitrary commands on obtained results as well. For example,
a user can decide to move the file coco.txt one directory up once it has been located as follows:

find -name coco.txt -exec mv {} ../ \ ;

Note that the command argument, {}, replaces the current path name. The end of the command

9

is indicated by \ ;. Other examples that relate to the command find are included below2:

• To find all files newer than the file library.txt, execute:

find . -newer library.txt -print

• To find all files with general read or execute permission set, and then to change the per-
missions on those files to disallow this:

find . \(-perm -004 -o -perm -001 \) -exec chmod o-rx {} \ ; -exec ls -al

{} \ ;

0.5.4 The tr command

The tr command translates or deletes characters from standard input3. The general form of
the command is:

tr from-chars to-chars

To get a feeling about the bahavior of the command tr, execute the following:

• Create a new file called tr.txt.

• Write the following phrase in file tr.txt:

The UNIX operating system was pioneered by Ken Thompson and Dennis Ritchie at

Bell Laboratories in the late 1960s. One of the primary goals in the design

of the UNIX system was to create an environment that promoted efficient program

development.

• Run the command:

tr e x < tr.txt

and note the output.

The input to tr must be redirected from the file tr.txt because tr always expects its input
to come from standard input. The results of the translation are written to standard output,
leaving the original file untouched.

Example

If you run the following command:

cut -d: -f1,6 /etc/passwd

You might get an output similar to the following:

root:/

cron:/

bin:/

uucp:/usr/spool/uucp

asg:/

steve:/users/steve

other:/

You can translate the colons into tab characters to produce a more readable output simply by
tacking an appropriate tr command to the end of the pipeline:

cut -d: -f1,6 /etc/passwd | tr : ’ ’

The output look as follows:

2Extracted from the book entitled: Introduction to Unix by Frank G. Fiamingo, Linda DeBula, Linda

Condron - University Technology Services - The Ohio State University.
3Stephen Kochan, Patrick Wood, Unix Shell programming Third Edition. Sams Publishing, 456 pages.

10

root /

cron /

bin /

uucp /usr/spool/uucp

asg /

steve /users/steve

other /

The octal representation of a character can be given to tr command in the format

\nnn

where nnn is the octal value of the character. For example, the octal value of the tab character is
11. If you are going to use this format, be sure to enclose the character in quotes. For example,
the tr command:

tr : ’\11’

translates all colons to tabs, just as in the preceding example. Below is the list of characters
that you’ll often want to specify in octal format:

Character Octal Value

Bell 7

Backspace 10

Tab 11

Newline 12

Linefeed 12

Formfeed 14

Carriage Return 15

Escape 33

Example

The command date prints or sets the system date and time. To set date and time, you need to
be an admin user (i.e. root). The output of the command date is as follows:

Mon Feb 7 12:11:49 JST 2011

You can translate all spaces into newline characters using the tr command as follows:

date | tr ’ ’ ’\12’

The output will look as follows:

Mon

Feb

7

12:11:49

JST

2011

If you want to translate all lowercase letters in file addresses.txt to their uppercase equivalents,
you execute the following:

tr ’[a-z]’ ’[A-Z]’ < addresses.txt

To change all uppercase letters in file addresses.txt to their lowercase equivalents, you execute
the following:

tr ’[A-Z]’ ’[a-z]’ < addresses.txt

The -s option of command tr is used to squeeze out multiple occurrences of characters. In

11

other words, if more than one consecutive occurrence of a character occurs after the translation
is made, the characters will be replaced by a single character.

For example, execute the following steps:

• Create a new file called new tr.txt

• Type the following in file new tr.txt:

my name is coco.

I am a student at Birzeit University

Thank you.

• Execute the following command:

tr -s ’ ’ ’ ’ < new tr.txt

• Note the new output you get after executing the previous command.

The option -d of the command tr can be used to delete single characters from a stream of input.
For example, you can execute the following command:

tr -d ’ ’ < new tr.txt

and note the output that you get.

As an additional example on how useful the command tr is, you might want to delete all digits
from a file. You can thus execute the following command:

tr -d ’[0-9]’ < new tr.txt.

12

