
Birzeit University - Faculty of Engineering and Technology
Electrical & Computer Systems Engineering Department - ENCS313
Linux Laboratory - 1st semester - 2015/16

Project #1

C-language under Linux

Due: December 15, 2015

Instructors: Dr. Aziz Qaroush, Dr. Hanna Bullata, Mr. Muawiya Asali

Problem: Stack interpreter

You are required to build an interpreter for a machine that has a single stack. The
machine is primitive and thus it understands simple commands. Consider the following
very primitive language for programming a stack machine:

Command Meaning

int push the integer int on the stack

+ push a ’+’ on the stack

s push an ’s’ on the stack

e evaluate the top of the stack (see below)

p print content of the stack

d delete the top of the stack

x stop (exit the program)

Below is a brief description for each command in addition to an example in each case (the
symbol > in the below examples refers to the prompt where the interpreter receives the
commands):

• p: print content of the stack.

Example

> p

The above command might print the following output (meaning the current content
of the stack):

110
223
+
429
-

• int: push the integer int on the stack.

Example

> 110

The above will push the integer 110 on top of the stack.

• e: evaluate or execute a command. It’s behavior depends on the top of the stack:

– If + is on top of the stack, then the + is popped off the stack, the next two
integers are popped and added, and the result is pushed back on the stack.

– If s is on top of the stack, then s is popped off the stack and the next two items
are swapped on the stack (thus the 2 elements remain on the stack).



– If d is on top of the stack, then d is popped off the stack and the current top
of the stack is removed from the stack.

– If an integer is on top of the stack or the stack is empty, the stack is left
unchanged.

The following examples show the effect of the e command in various situations; the top of
the stack is on the left:

Stack before Stack after

+ 1 2 5 s ... 3 5 s ...

s 1 + + 99 ... + 1 + 99 ...

1 + 3 ... 1 + 3 ...

d 1 2 5 s ... 2 5 s ...

You are required to implement the above interpreter as a singly-linked list. Input to the
program is a series of commands, one command per line as shown above. Your interpreter
should prompt for commands with the symbol >.

Assume that the stack deals only with unsigned integer numbers. Assume as well that
the only allowed arithmetic command is +. In addition, assume that the allowed logical
commands are & (AND), | (OR) and ∧ (XOR).

The interpreter should be able to handle errors if encountered. An example of an error
you might get is when you’re adding 2 popped elements from the stack, but one of the 2
elements is not an integer (e.g. + or &).

To do

• Write the code for the interpreter described above and name the executable as
interpreter single stack. Generic functions must be located in separate C-files.

• Debug the application using the gdb debugger and/or the ddd interface.

• Use macros whenever necessary to add clarity.

• Make sure your code is clean and well indented, variables have meaningful names,
etc.

• Make sure the C-files and header files have enough comments.

• Create a makefile that will help you compile the application.

2


