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0.1  Objective 
The objectives of the experiment is to learn the following: 

 Give a quick introduction about Python vs. Matlab. 

 Download libraries in Python. 

 Show some examples about NumPy Library. 

 Show Difference between NumPy Arrays and Python standard lists. 

 Give some examples about SciPy Library. 

 Show how to plot functions in Python using Matplotlib Library. 
 

0.2  The Python Alternative to Matlab 
Python in combination with Numpy, Scipy and Matplotlib can be used as a replacement for MATLAB. 
The combination of NumPy, SciPy and Matplotlib is a free alternative to MATLAB. Even though MATLAB 
has a huge number of additional toolboxes available, NumPy has the advantage that Python is a more 
modern and complete programming language and - as we have said already before - is open source. 
SciPy adds even more MATLAB-like functionalities to Python. Python is rounded out in the direction of 
MATLAB with the module Matplotlib, which provides MATLAB-like plotting functionality. 

 
 

0.3  Download Libraries(Modules) in Python 
The standard packaging tools are all designed to be used from the command line. 
The following command will install the latest version of a module and its dependencies from the Python 
Packaging Index: 

python -m pip install SomePackage 

Example: 

python -m pip install numpy 
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0.4  NumPy Library 
Numpy is the core library for scientific computing in Python. It is an open source extension module for 
Python, which provides fast-precompiled functions for mathematical and numerical routines. It is 
enriches the programming language Python with powerful data structures for efficient computation of 
multi-dimensional arrays and matrices. The implementation is even aiming at huge matrices and arrays. 
Besides that, the module supplies a large library of high-level mathematical functions to operate on 
these matrices and arrays. 

0.4.1 Arrays 
A numpy array is a grid of values, all of the same type, and is indexed by a tuple of nonnegative integers. 
The number of dimensions is the rank of the array; the shape of an array is a tuple of integers giving the 
size of the array along each dimension. 
Example: 

import numpy as np 
a = np.array([1, 2, 3])             # Create a rank 1 array 
print(type(a))                           # Prints "<type 'numpy.ndarray'>" 
print(a.shape)                           # Prints "(3,)" 
print(a[0], a[1], a[2])                 # Prints "1 2 3" 
a[0] = 5                                        # Change an element of the array 
print(a)                                        # Prints "[5, 2, 3]" 
b = np.array([[1,2,3],[4,5,6]])   # Create a rank 2 array 
print(b.shape)                            # Prints "(2, 3)" 
print(b[0, 0], b[0, 1], b[1, 0])   # Prints "1 2 4" 

Numpy also provides many functions to create arrays: 
Example: 

import numpy as np 
a = np.zeros((2,2))          # Create an array of all zeros 
print(a)                             # Prints "[[ 0.  0.] 
                                          #          [ 0.  0.]]"     
b = np.ones((1,2))          # Create an array of all ones 
print(b)                           # Prints "[[ 1.  1.]]" 
c = np.full((2,2), 7,dtype="int64")       # Create a constant array 
print(c)                            # Prints "[[ 7.  7.] 
                                        #          [ 7.  7.]]" 
d = np.eye(2)               # Create a 2x2 identity matrix 
print(d)                        # Prints "[[ 1.  0.] 
                                      #          [ 0.  1.]]"    
e=np.random.random((2,2)) #Create an array filled with random value 
print(e)                    # Might print "[[ 0.9194017 0.0843941] 

 

0.4.2 Array indexing 
Numpy offers several ways to index into arrays. 

A) Slicing: 
Similar to Python lists, numpy arrays can be sliced. Since arrays may be multidimensional, you must 
specify a slice for each dimension of the array: 
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import numpy as np 
a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]]) 
b = a[:2, 1:3] 
print(a[0, 1])   # Prints "2" 
b[0, 0] = 77     # b[0, 0] is the same piece of data as a[0, 1] 
print(a[0, 1])   # Prints "77" 

You can also mix integer indexing with slice indexing. However, doing so will yield an array of lower rank 
than the original array. Note that this is quite different from the way that MATLAB handles array slicing: 

import numpy as np 
a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]]) 
row_r1 = a[1, :]             # Rank 1 view of the second row of a   
row_r2 = a[1:3, :]           # Rank 2 view of the second row of a 
print(row_r1, row_r1.shape)  # Prints "[5 6 7 8] (4,)" 
print(row_r2, row_r2.shape)  # Prints "[[5 6 7 8]] (1, 4)" 
col_r1 = a[:, 1] 
col_r2 = a[:, 1:2] 
print(col_r1, col_r1.shape)  # Prints "[ 2  6 10] (3,)" 
print(col_r2, col_r2.shape)  # Prints "[[ 2] 
                             #          [ 6] 
                             #          [10]] (3, 1)" 

B) Integer array indexing:  
When you index into numpy arrays using slicing, the resulting array view will always be a subarray of the 
original array. In contrast, integer array indexing allows you to construct arbitrary arrays using the data 
from another array. Here is an example: 

import numpy as np 
a = np.array([[1,2], [3, 4], [5, 6]]) 
print(a[[0, 1, 2], [0, 1, 0]])                # Prints "[1 4 5]" 
print(np.array([a[0, 0], a[1, 1], a[2, 0]]))  # Prints "[1 4 5]" 
print(a[[0, 0], [1, 1]])                      # Prints "[2 2]" 
print(np.array([a[0, 1], a[0, 1]]))           # Prints "[2 2]" 

One useful trick with integer array indexing is selecting or mutating one element from each row of a 
matrix: 

import numpy as np 
a = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]]) 
print(a)  # prints "array([[ 1,  2,  3],[ 4,  5,  6],[ 7,  8,  9], [10, 11, 12]])" 
b = np.array([0, 2, 0, 1]) 
print(a[np.arange(4), b])  # Prints "[ 1  6  7 11]" 
a[np.arange(4), b] += 10 
print(a)  # prints "array([[11,  2,  3], 
          #                [ 4,  5, 16], 
          #                [17,  8,  9], 
          #           [10, 21, 12]]) 
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C) Boolean array indexing:  
Boolean array indexing lets you pick out arbitrary elements of an array. Frequently this type of indexing 
is used to select the elements of an array that satisfy some condition. Example: 

import numpy as np 
a = np.array([[1,2], [3, 4], [5, 6]]) 
bool_idx = (a > 2)  #Find the elements of a that are bigger than 2; 
                    # this returns a numpy array of Booleans of the  
                    # shape as a, where each slot of bool_idx tells 
                    # whether that element of a is > 2. 
print(bool_idx)     # Prints "[[False False] 
                    #          [ True  True] 
                    #          [ True  True]]" 
print(a[bool_idx])  # Prints "[3 4 5 6]" 
print(a[a > 2])     # Prints "[3 4 5 6]" 

 

0.4.3 Datatypes 
Every numpy array is a grid of elements of the same type. Numpy provides a large set of numeric 
datatypes that you can use to construct arrays. Numpy tries to guess a datatype when you create an 
array, but functions that construct arrays usually also include an optional argument to explicitly specify 
the datatype.  
Example: 

import numpy as np 
x = np.array([1, 2])                       # Let numpy choose the datatype 
print (x.dtype)                                # Prints "int64" 
x = np.array([1.0, 2.0])               # Let numpy choose the datatype 
print (x.dtype)                               # Prints "float64" 
x = np.array([1, 2], dtype=np.int64)  # Force a particular datatype 
print (x.dtype)                                         # Prints "int64" 

 

0.4.4 Array math 
Basic mathematical functions operate elementwise on arrays, and are available both as operator 
overloads and as functions in the numpy module: 

import numpy as np 
x = np.array([[1,2],[3,4]], dtype=np.float64) 
y = np.array([[5,6],[7,8]], dtype=np.float64) 
# Elementwise sum; both produce the array 
# [[ 6.0  8.0] 
#  [10.0 12.0]] 
print(x + y) 
print(np.add(x, y)) 
# Elementwise difference; both produce the array 
# [[-4.0 -4.0] 
#  [-4.0 -4.0]] 
print(x - y) 
print(np.subtract(x, y)) 
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# Elementwise product; both produce the array 
                         # [[ 5.0 12.0] 
                         #  [21.0 32.0]] 
print(x * y) 
print(np.multiply(x, y)) 
# Elementwise division; both produce the array 
# [[ 0.2         0.33333333] 
#  [ 0.42857143  0.5       ]] 
print(x / y) 
print(np.divide(x, y)) 
# Elementwise square root; produces the array 
# [[ 1.          1.41421356] 
#  [ 1.73205081  2.        ]] 
print(np.sqrt(x)) 

We can use the dot   function to compute inner products of vectors, to multiply a vector by a matrix, 

and to multiply matrices. dot  is available both as a function in the numpy module and as an instance 

method of array objects: 
Example: 

import numpy as np 
x = np.array([[1,2],[3,4]]) 
y = np.array([[5,6],[7,8]]) 
v = np.array([9,10]) 
w = np.array([11, 12]) 
print(v.dot(w)) 
print(np.dot(v, w)) 
print(x.dot(v)) 
print(np.dot(x, v)) 
print(x.dot(y)) 
print(np.dot(x, y)) 

Numpy provides many useful functions for performing computations on arrays; one of the most useful 

is sum : 

import numpy as np 
x = np.array([[1,2],[3,4]]) 
print(np.sum(x))   
print(np.sum(x, axis=0))   
print(np.sum(x, axis=1))   

Apart from computing mathematical functions using arrays, we frequently need to reshape or otherwise 
manipulate data in arrays. The simplest example of this type of operation is transposing a matrix; to 

transpose a matrix, simply use the T  attribute of an array object: 

import numpy as np 
x = np.array([[1,2], [3,4]]) 
print(x)     
print(x.T)   
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v = np.array([1,2,3]) 
print(v)     
print(v.T)   

 

0.4.5 Broadcasting 
Broadcasting is a powerful mechanism that allows numpy to work with arrays of different shapes when 
performing arithmetic operations. Frequently we have a smaller array and a larger array, and we want 
to use the smaller array multiple times to perform some operation on the larger array. 
For example, suppose that we want to add a constant vector to each row of a matrix. We could do it like 
this: 

import numpy as np 
x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]]) 
v = np.array([1, 0, 1]) 
y = np.empty_like(x) #Create empty matrix with the same shape as x   
for i in range(4): 
    y[i, :] = x[i, :] + v 
print(y) 
 
x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]]) 
v = np.array([1, 0, 1]) 
vv = np.tile(v, (4, 1))  # Stack 4 copies of v on top of each other 
print(vv)                  
                          
y = x + vv  # Add x and vv elementwise 
print(y)  
x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]]) 
v = np.array([1, 0, 1]) 
y = x + v  # Add v to each row of x using broadcasting 
print(y) 

0.4.6 Creation of Evenly Spaced Values 
There are functions provided by Numpy to create evenly spaced values within a given interval. One uses 
a given distance 'arange' and the other one 'linspace' needs the number of elements and creates the 
distance automatically.  

Arange 
The syntax of arange: 

arange([start], stop,[step], dtype=None) 

Example: 
import numpy as np 
a = np.arange(1, 10) 
print(a) 
# compare to range: 
x = range(1,10) 
print(x)    # x is an iterator 
print(list(x)) 
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# some more arange examples: 
x = np.arange(10.4) 
print(x) 
x = np.arange(0.5, 10.4, 0.8) 
print(x) 
x = np.arange(0.5, 10.4, 0.8, int) 
print(x) 

 

Linspace 
The syntax of linspace: 

linspace(start, stop, num=50, endpoint=True, retstep=False) 

Example: 
import numpy as np 
# 50 values between 1 and 10: 
print(np.linspace(1, 10)) 
# 7 values between 1 and 10: 
print(np.linspace(1, 10, 7)) 
# excluding the endpoint: 
print(np.linspace(1, 10, 7, endpoint=False)) 

 
Time Comparison between Python Lists and Numpy Arrays 
One of the main advantages of NumPy is its advantage in time compared to standard Python. Let's look 
at the following functions: 

import time 
import numpy as np 
size_of_vec = 1000 
def pure_python_version(): 
    t1 = time.time() 
    X = range(size_of_vec) 
    Y = range(size_of_vec) 
    Z = [] 
    for i in range(len(X)): 
        Z.append(X[i] + Y[i]) 
    return time.time() - t1 
def numpy_version(): 
    t1 = time.time() 
    X = np.arange(size_of_vec) 
    Y = np.arange(size_of_vec) 
    Z = X + Y 
    return time.time() - t1 
t1 = pure_python_version() 
t2 = numpy_version() 
print(t1, t2) 
print("Numpy is in this example " + str(t1/t2) + " faster!") 

This gets us the following: 
0.0002090930938720703 2.0503997802734375e-05 



8 
 

Numpy is in this example 10.19767441860465 faster! 

0.5  SciPy Library 
The scipy library contains various toolboxes dedicated to common issues in scientific computing. Its 
different submodules correspond to different applications, such as interpolation, integration, 
optimization, image processing, statistics, special functions, etc. 
SciPy is composed of task-specific sub-modules: 

scipy.cluster Vector quantization / Kmeans 

scipy.constants Physical and mathematical constants 

scipy.fftpack Fourier transform 

scipy.integrate Integration routines 

scipy.interpolate Interpolation 

scipy.io Data input and output 

scipy.linalg Linear algebra routines 

scipy.ndimage n-dimensional image package 

scipy.odr Orthogonal distance regression 

scipy.optimize Optimization 

scipy.signal Signal processing 

scipy.sparse Sparse matrices 

scipy.spatial Spatial data structures and algorithms 

scipy.special Any special mathematical functions 

scipy.stats Statistics 

Linear algebra operations: scipy.linalg 
The scipy.linalg.det() function computes the determinant of a square matrix: 

 import numpy as np 

 from scipy import linalg 
 arr = np.array([[1, 2],[3, 4]]) 
 print(linalg.det(arr)) 
 arr = np.array([[3, 2],[6, 4]]) 
 print(linalg.det(arr))  

The scipy.linalg.inv() function computes the inverse of a square matrix: 

 import numpy as np 

 from scipy import linalg 
 arr = np.array([[1, 2],[3, 4]]) 
 iarr = linalg.inv(arr) 
                 print(iarr) 

Fast Fourier transforms: scipy.fftpack 

 from scipy import fftpack 
                import numpy as  np 
 time_step = 0.02 
 period = 5 
 time_vec = np.arange(0, 20, time_step) 
 sig = np.sin(2 * np.pi / period * time_vec) + 0.5 * np.random.randn(time_vec.size) 
 sample_freq = fftpack.fftfreq(sig.size, d=time_step) 
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 print(fftpack.fft(sig)) 

Optimization and fit: scipy.optimize 
Optimization is the problem of finding a numerical solution to a minimization or equality. 
The scipy.optimize module provides useful algorithms for function minimization (scalar or multi-
dimensional), curve fitting and root finding. 

 from scipy import optimize 
                 from numpy import np 
                 import matplotlib.pyplot as plt 
 def f(x): 
      return x**2 + 10*np.sin(x) 
 x = np.arange(-10, 10, 0.1) 
  

 
This function has a global minimum around -1.3 and a local minimum around 3.8. 
To find the local minimum, let’s constraint the variable to the  interval (0, 10) using 
scipy.optimize.fminbound(): 

 xmin_local = optimize.fminbound(f, 0, 10) 
 print(xmin_local) 

Finding the roots of a scalar function 

To find a root, i.e. a point where , of the function  above we can use for 
example scipy.optimize.fsolve(): 

 root = optimize.fsolve(f, 1)  # our initial guess is 1 
 print(root) 

Note that only one root is found. Inspecting the plot of  reveals that there is a second root around -2.5. 
We find the exact value of it by adjusting our initial guess: 

 root2 = optimize.fsolve(f, -2.5) 
 print(root2) 

http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fsolve.html#scipy.optimize.fsolve
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Curve fitting 

Suppose we have data sampled from  with some noise: 

 xdata = np.linspace(-10, 10, num=20) 
 ydata = f(xdata) + np.random.randn(xdata.size) 

Now if we know the functional form of the function from which the samples were drawn (
in this case) but not the amplitudes of the terms, we can find those by least squares curve fitting. First 
we have to define the function to fit: 

     def f2(x, a, b): 
      return a*x**2 + b*np.sin(x) 

Then we can use scipy.optimize.curve_fit() to find  and : 

      guess = [2, 2] 
 params, params_covariance = optimize.curve_fit(f2, xdata, ydata, guess) 
 print(params) 

Interpolation: scipy.interpolate 
The scipy.interpolate.interp1d class can build a linear interpolation function: 

 from scipy.interpolate import interp1d 
                 import numpy as np 
 measured_time = np.linspace(0, 1, 10) 
 noise = (np.random.random(10)*2 - 1) * 1e-1 
 measures = np.sin(2 * np.pi * measured_time) + noise 
 linear_interp = interp1d(measured_time, measures) 

Then the scipy.interpolate.linear_interp instance needs to be evaluated at the time of interest: 

 computed_time = np.linspace(0, 1, 50) 
 linear_results = linear_interp(computed_time) 
                print(linear_results) 

A cubic interpolation can also be selected by providing the kind optional keyword argument: 

 cubic_interp =interp1d(measured_time,measures,kind='cubic') 
 cubic_results = cubic_interp(computed_time) 
                 print(cubic_results) 

 

http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html#scipy.optimize.curve_fit
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0.6  Matplotlib Library 
Matplotlib is probably the single most used Python package for 2D-graphics. It provides both a very 
quick way to visualize data from Python and publication-quality figures in many formats. We are going 
to explore matplotlib in interactive mode covering most common cases. 
We will start with a simple graph. Is is common practice to rename matplotlib.pyplot to plt. 

We will use the plot function of pyplot in our first example. We will pass a list of values to 

the plot function. Plot takes these as Y values. The indices of the list are automatically taken 

as the X values. 
import matplotlib.pyplot as plt 

plt.plot([-1, -4.5, 16, 23]) 

plt.show() 

 
What we see is a continuous graph, even though we provided discrete data for the Y values. 

By adding a format string to the function call of plot, we can create a graph with discrete 

values, in our case blue circle markers. The format string defines the way how the discrete 

points have to be rendered. 
import matplotlib.pyplot as plt 

plt.plot([-1, -4.5, 16, 23], "ob") 

plt.show() 
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The format parameter of pyplot.plot 
We have used "ob" in our previous example as the format parameter. It consists of two 

characters. The first one defines the line style or the dicrete value style, i.e. the markers, 

while the second one chooses a colour for the graph. The order of the two characters could 

have been reversed, i.e. we could have written it as "bo" as well. If the format parameter is 

not giving, as it has been the case in our first example, "b-" is used as the default value, i.e. 

a solid blue line. 

The following format string characters are accepted to control the line style or marker: 
============================================= 

character       description 

============================================= 

'-'             solid line style 

'--'            dashed line style 

'-.'            dash-dot line style 

':'             dotted line style 

'.'             point marker 

','             pixel marker 

'o'             circle marker 

'v'             triangle_down marker 

'^'             triangle_up marker 

'<'             triangle_left marker 

'>'             triangle_right marker 

'1'             tri_down marker 

'2'             tri_up marker 

'3'             tri_left marker 

'4'             tri_right marker 

's'             square marker 

'p'             pentagon marker 

'*'             star marker 

'h'             hexagon1 marker 

'H'             hexagon2 marker 

'+'             plus marker 

'x'             x marker 

'D'             diamond marker 

'd'             thin_diamond marker 

'|'             vline marker 

'_'             hline marker 

=============================================== 

The following color abbreviations are supported: 
================== 

character   color 

================== 

'b'         blue 

'g'         green 

'r'         red 

'c'         cyan 

'm'         magenta 

'y'         yellow 

'k'         black 

'w'         white 

================== 

As you may have guessed already, you can X values to the plot function. We will pass the 

multiples of 3 up 21 including the 0 to plot in the following example: 
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import matplotlib.pyplot as plt 

# our X values: 

days = list(range(0, 22, 3)) 

print(days) 

# our Y values: 

celsius_values = [25.6, 24.1, 26.7, 28.3, 27.5, 30.5, 32.8, 33.1] 

plt.plot(days, celsius_values) 

plt.show() 

and once more with discrete values: 
plt.plot(days, celsius_values, 'bo') 

plt.show() 

Labels on Axes 
We can improve the appearance of our graph by adding labels to the axes. This can be done 

with the ylabel and xlabel function of pyplot. 
import matplotlib.pyplot as plt 

days = list(range(1,9)) 

celsius_values = [25.6, 24.1, 26.7, 28.3, 27.5, 30.5, 32.8, 33.1] 

plt.plot(days, celsius_values) 

plt.xlabel('Day') 

plt.ylabel('Degrees Celsius') 

plt.show() 

 
We can specify an arbitrary number of x, y, fmt groups in a plot function. In the following 

example, we use two different lists of y values: 
import matplotlib.pyplot as plt 

days = list(range(1,9)) 

celsius_min = [19.6, 24.1, 26.7, 28.3, 27.5, 30.5, 32.8, 33.1] 

celsius_max = [24.8, 28.9, 31.3, 33.0, 34.9, 35.6, 38.4, 39.2] 

plt.xlabel('Day') 

plt.ylabel('Degrees Celsius') 

plt.plot(days, celsius_min, 

         days, celsius_min, "oy", 

         days, celsius_max,  

         days, celsius_max, "or") 

plt.show() 
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Checking and Defining the Range of Axes 
import matplotlib.pyplot as plt  

 days = list(range(1,9)) 

celsius_min = [19.6, 24.1, 26.7, 28.3, 27.5, 30.5, 32.8, 33.1] 

celsius_max = [24.8, 28.9, 31.3, 33.0, 34.9, 35.6, 38.4, 39.2] 

plt.xlabel('Day') 

plt.ylabel('Degrees Celsius') 

plt.plot(days, celsius_min, 

         days, celsius_min, "oy", 

         days, celsius_max,  

         days, celsius_max, "or") 

print("The current limits for the axes are:")         

print(plt.axis()) 

print("We set the axes to the following values:") 

xmin, xmax, ymin, ymax = 0, 10, 14, 45 

print(xmin, xmax, ymin, ymax) 

plt.axis([xmin, xmax, ymin, ymax]) 

plt.show() 
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"linspace" to Define X Values 
We will use the Numpy function linspace in the following example. linspace can be used to 

create evenly spaced numbers over a specified interval. 
import numpy as np 

import matplotlib.pyplot as plt 

X = np.linspace(0, 2 * np.pi, 50, endpoint=True) 

F = np.sin(X) 

plt.plot(X,F) 

startx, endx = -0.1, 2*np.pi + 0.1 

starty, endy = -1.1, 1.1 

plt.axis([startx, endx, starty, endy]) 

plt.show() 

 
We will just add two more plots with discrete points: 
import matplotlib.pyplot as plt 

import numpy as np 

X = np.linspace(-2 * np.pi, 2 * np.pi, 50, endpoint=True) 

F1 = 3 * np.sin(X) 

F2 = np.sin(2*X) 

F3 = 0.3 * np.sin(X) 

startx, endx = -2 * np.pi - 0.1, 2*np.pi + 0.1 

starty, endy = -3.1, 3.1 

plt.axis([startx, endx, starty, endy]) 

plt.plot(X,F1) 

plt.plot(X,F2) 

plt.plot(X,F3) 

plt.plot(X, F1, 'ro') 

plt.plot(X, F2, 'bx') 

plt.show() 
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Changing the Line Style 
The linestyle of a plot can be influenced with the linestyle or ls parameter of the plot 

function. It can be set to one of the following values:  
'-', '--', '-.', ':', 'None', ' ', '' 

We can use linewidth to set the width of a line as the name implies. 
import matplotlib.pyplot as plt 

import numpy as np 

X = np.linspace(0, 2 * np.pi, 50, endpoint=True) 

F1 = 3 * np.sin(X) 

F2 = np.sin(2*X) 

F3 = 0.3 * np.sin(X) 

F4 = np.cos(X) 

plt.plot(X, F1, color="blue", linewidth=2.5, linestyle="-") 

plt.plot(X, F2, color="red", linewidth=1.5, linestyle="--") 

plt.plot(X, F3, color="green", linewidth=2, linestyle=":") 

plt.plot(X, F4, color="grey", linewidth=2, linestyle="-.") 

plt.show() 

 
Another example: 

import numpy as np 
import matplotlib.pyplot as plt 
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# Compute the x and y coordinates for points on a sine curve 
x = np.arange(0, 3 * np.pi, 0.1) 
y = np.sin(x) 
# Plot the points using matplotlib 
plt.plot(x, y) 
plt.show()  # You must call plt.show() to make graphics appear. 

Running this code produces the following plot: 

 
With just a little bit of extra work we can easily plot multiple lines at once, and add a title, legend, and 
axis labels: 

import numpy as np 
import matplotlib.pyplot as plt 
# Compute the x and y coordinates for points on sine and cosine curves 
x = np.arange(0, 3 * np.pi, 0.1) 
y_sin = np.sin(x) 
y_cos = np.cos(x) 
# Plot the points using matplotlib 
plt.plot(x, y_sin) 
plt.plot(x, y_cos) 
plt.xlabel('x axis label') 
plt.ylabel('y axis label') 
plt.title('Sine and Cosine') 
plt.legend(['Sine', 'Cosine']) 
plt.show() 
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Subplots 

You can plot different things in the same figure using the subplot  function. Here is an example: 

import numpy as np 
import matplotlib.pyplot as plt 
# Compute the x and y coordinates for points on sine and cosine curves 
x = np.arange(0, 3 * np.pi, 0.1) 
y_sin = np.sin(x) 
y_cos = np.cos(x) 
# Set up a subplot grid that has height 2 and width 1, 
# and set the first such subplot as active. 
plt.subplot(2, 1, 1) 
 
# Make the first plot 
plt.plot(x, y_sin) 
plt.title('Sine') 
# Set the second subplot as active, and make the second plot. 
plt.subplot(2, 1, 2) 
plt.plot(x, y_cos) 
plt.title('Cosine') 
# Show the figure. 
plt.show() 

Running this code produces the following plot: 
 

 
  

0.7  ToDo 
This part will be given to you by the teacher assistant in the lab time. 

 
 

 


