
Birzeit University - Faculty of Engineering & Technology
Electrical & Computer Engineering Department - ENCS313
Linux laboratory

Experiment #6

Compilation, Debugging, Project Management

Part III

0.1 Introduction

The experiment intends to present the gcc compiler, the gdb debugger and show students how
to use makefiles to better manage projects. Students are assumed to be already familiar with
the C-language. Students will be shown how to compile source code and create executables
using the gcc compiler. Moreover, students will be shown how to create libraries (both static
libraries and dynamic libraries) using the archive command ar and how to link to these libraries
during the compilation phase. They will be shown how to use the gdb debugger in order to
debug code and discover defects (or potential defects). Finally, students will be shown how to
use a makefile that will help better manage a development project during compilation, setup
and installation.

0.2 Objectives

The objectives of the experiment is to learn the following:

• Give a quick overview of the GNU project.

• Show students on how to use the gcc compiler and the ar archive command.

• Show students on how to use the gdb debugger.

• Show students on how to use a makefile to manage a development project.

0.3 Managing projects with make

Compiling your source code files can be tedious, specially when you want to include several
source files and have to type the compiling command everytime you want to do it1. In addition,
real-life projects might end up being composed of tens (if not hundreds) of source files. Some of
these files will be dependant on some other files. Thus, doing the compilation by hand for every
individual source file and keeping track of dependancies is not just a hard task, but might be
problem-generator.

In software development, make is a utility that automatically builds executable programs and
libraries from source code by reading files called makefiles which specify how to derive the
target program2.

Makefiles are special format files that together with the make utility will help you to automati-
cally build and manage your projects.

The advantages of make over scripts is that you can specify the relationships between the el-
ements of your program to make, and it knows through these relationships and timestamps
exactly what steps need to be redone to produce the desired program each time. Using this

1http://mrbook.org/tutorials/make/
2http://en.wikipedia.org/wiki/Make (software)

1

information, make can also optimize the build process avoiding unnecessary steps3.

make defines a language for describing the relationships between source code, intermediate
files, and executables. It also provides features to manage alternate configurations, implement
reusable libraries of specifications, and parameterize processes with user-defined macros. In
short, make can be considered the center of the development process by providing a roadmap of
an application’s components and how they fit together.

0.3.1 Basic example

As a warm up example of using command make in association with a makefile, refer to the
below example.

#include <stdio.h>

/* print the message Hello, World! on standard output */

int main()

{

printf("Hello, World!\n");

return(0);

}

Save the above code in a file called hello.c.

Type the following text in a file called makefile:

hello: hello.c

gcc hello.c -o hello

In order to compile it the file hello.c, run the command make. Check that the executable
hello has been generated. Run it and make sure you get the right output message.

Run the command make and note that no extra compilation takes place. In fact, you’ll get the
following message on the standard output:

make: ‘hello’ is up to date.

The sequence of actions that took place when make was invoked can be summarized as follows:

• The command make reads the text file makefile.

• make encounters the target hello.

• make notes that the target hello depends on the source file hello.c. make checks that
the source file hello.c exists in the current folder.

• make executes the action that is associated with the target, namely gcc hello.c -o hello

0.3.2 Targets and Prerequisites

Essentially a makefile contains a set of rules used to build an application. The first rule seen
by make is used as the default rule. A rule consists of three parts: the target, its prerequisites,
and the command(s) to perform:

target: prereq1 prereq2

commands

3Managing Projects with GNU make, 3rd Edition - By Robert Mecklenburg - O’Reilly

2

The target is the file or thing that must be made. The prerequisites or dependents are
those files that must exist before the target can be successfully created. And the commands are
those shell commands that will create the target from the prerequisites.

In the example above we saw a simplified form of a rule. The more complete (but still not quite
complete) form of a rule is:

target1 target2 target3 : prerequisite1 prerequisite2

command1

command2

command3

One or more targets appear to the left of the colon and zero or more prerequisites can appear
to the right of the colon.

Note 1:

Each command must begin with a tab character. This (obscure) syntax tells make that the
characters that follow the tab are to be passed to a subshell for execution. If you accidentally
insert a tab as the first character of a noncommand line, make will interpret the following text
as a command under most circumstances. In some cases, you might get the following error after
running command make:

Makefile:6: *** commands commence before first target. Stop.

Note 2:

The comment character for make is the hash or pound sign (#). All text from the pound sign
to the end of line is ignored.

Note 3:

Long lines can be continued using the standard Unix escape character backslash (\). It is
common for commands to be continued in this way. It is also common for lists of prerequisites
to be continued with backslash.

Example:

Consider the following example:

/***

* File count_words.c *

***/

#include <stdio.h>

#include <counter.h>

int main(int argc, char ** argv)

{

int counts[4];

counter(counts);

printf("%d %d %d %d\n", counts[0], counts[1], counts[2], counts[3]);

exit(0);

}

Save the above code in a file called count words.c.

/***

* File counter.c *

***/

3

#include "counter.h"

void counter(int counts[4])

{

counts[0] = VALUE_1;

counts[1] = VALUE_2;

counts[2] = VALUE_3;

counts[3] = VALUE_4;

}

Save the above code in a file called counter.c.

/***

* File counter.h *

***/

#define VALUE_1 1

#define VALUE_2 2

#define VALUE_3 3

#define VALUE_4 4

Save the above code in a file called counter.h.

###

This is an example of a Makefile

###

This is an example of a Makefile

Indicate that the compiler is the gcc compiler

CC = gcc

Indicate to the compiler to include header files in the local folder

CPPFLAGS = -I .

count_words: counter.o

count_words.o: counter.h

counter.o: counter.h

Save the above instructions in a file called Makefile.

Compile now using the command make and check that an executable called count words get
generated. Run the executable count words and check on the results that you get.

Notice that if you call the command make again, the executable will not get re-generated since
make knows that the source code was not modified.

Now modify the values included in file counter.h and run the command make again. You
will notice that the executable count words will be re-generated since it depends on the file
counter.h.

Note that the variables CC and CPPFLAGS are special flags that the command make knows how
to interpret. The line CC = gcc indicates to command make to use the gcc compiler instead
of the default cc compiler while variable CPPFLAGS indicates to command make to include the
current folder while searching for header files.

4

0.4 Rules

We’ve seen above some rules to compile and link a program. Each of those rules defines a
target, that is, a file to be updated. Each target file depends on a set of prerequisites, which
are also files. When asked to update a target, make will execute the command script of the
rule if any of the prerequisite files has been modified more recently than the target. Since the
target of one rule can be referenced as a prerequisite in another rule, the set of targets and
prerequisites form a chain or graph of dependencies (short for ”dependency graph”). Building
and processing this dependency graph to update the requested target is what make is all about.

make can use the following list of rules:

• Explicit rules: These rules are like the ones we’ve seen above. They indicate a specific
target to be updated if it is out of date with respect to any of its prerequisites. This is the
most common type of rule you will be writing.

• Pattern rules: These rules use wildcards instead of explicit filenames. This allows make
to apply the rule any time a target file matching the pattern needs to updated.

• Implicit rules: These rules are either pattern rules or suffix rules found in the rules
database built-in to make. Having a built-in database of rules makes writing makefiles
easier since for many common tasks make already knows the file types, suffixes, and pro-
grams for updating targets.

• Static pattern rules: These rules are like regular pattern rules except they apply only
to a specific list of target files.

0.4.1 Explicit rules

An explicit rule can have more than one target. This means that each target has the same set
of prerequisites as the others. If the targets are out of date, the same set of actions will be
performed to update each one. As an example, consider the following content of a makefile:

vpath.o variable.o: make.h config.h getopt.h gettext.h dep.h

This indicates that both vpath.o and variable.o depend on the same set of C header files.
This line has the same effect as:

vpath.o: make.h config.h getopt.h gettext.h dep.h

variable.o: make.h config.h getopt.h gettext.h dep.h

A rule does not have to be defined ”all at once”. Each time make sees a target file it adds
the target and prerequisites to the dependency graph. If a target has already been seen and
exists in the graph, any additional prerequisites are appended to the target file entry in make’s
dependency graph. In the simple case, this is useful for breaking long lines naturally to improve
the readability of the makefile. As an example, consider the following:

vpath.o: vpath.c make.h config.h getopt.h gettext.h dep.h

vpath.o: filedef.h hash.h job.h commands.h variable.h vpath.h

0.4.2 Variables

In a makefile, you can use variables in exactly the same way you have been defining and using
environment variables. You can define a variable like:

COMPILER = gcc

In your makefile, you can refer to the content of variable COMPILER as:

$(COMPILER)

5

A makefilewill typically define many variables, but there are also many special variables defined
automatically by make. Some can be set by the user to control make’s behavior while others are
set by make to communicate with the user’s makefile.

Here is a short-list table of variables used as names of programs in built-in rules:

AR Archive-maintaining program; default ar

AS Program for doing assembly; default as

CC Program for compiling C programs; default cc

CXX Program for compiling C++ programs; default g++

CO Program for extracting a file from RCS; default co

CPP Program for running the C preprocessor, with results to standard output; default $(CC) -E

LEX Program to use to turn Lex grammars into C programs or Ratfor programs; default lex

YACC Program to use to turn Yacc grammars into C programs; default yacc

RM Command to remove a file; default rm -f

Below is a short-list of variables whose values are additional arguments for the programs above.
The default values for all of these is the empty string, unless otherwise noted.

ARFLAGS Flags to give the archive-maintaining program; default rv

ASFLAGS Extra flags to give to the assembler (when explicitly invoked on a .s or .S file)

CFLAGS Extra flags to give to the C compiler

CXXFLAGS Extra flags to give to the C++ compiler

COFLAGS Extra flags to give to the RCS co program

CPPFLAGS Extra flags to give to the C preprocessor and programs that use it (the C and

Fortran compilers)

FFLAGS Extra flags to give to the Fortran compiler

GFLAGS Extra flags to give to the SCCS get program

LDFLAGS Extra flags to give to compilers when they are supposed to invoke the linker, ld

LFLAGS Extra flags to give to Lex

YFLAGS Extra flags to give to Yacc

0.4.3 Automatic Variables

Automatic variables are set by make after a rule is matched. They provide access to elements
from the target and prerequisite lists so you don’t have to explicitly specify any filenames. They
are very useful for avoiding code duplication.

There are six ”core” automatic variables:

• $@ The filename representing the target.

6

• $% The filename element of an archive member specification.

• $< The filename of the first prerequisite.

• $? The names of all prerequisites that are newer than the target, separated by spaces.

• $∧ The filenames of all the prerequisites, separated by spaces. This list has duplicate
filenames removed since for most uses, such as compiling, copying, etc., duplicates are not
wanted.

• $+ Similar to $∧, this is the names of all the prerequisites separated by spaces, except that
$+ includes duplicates.

Example:

We will consider below an example similar to the one seen above. Execute the following steps:

• Create a folder called ex2 and execute the command cd ex2.

• Under folder ex2, create the folders src and include.

• Under folder src, copy the previous C-files counter.c and count words.c.

• Under folder include, copy the previous header file counter.h.

• Save the below text in a file called Makefile:

###

This is a Makefile that uses automatic variables

###

Indicate that the compiler is the gcc compiler

CC = gcc

Indicate to the compiler to include header files in folder include

CPPFLAGS = -I include

Indicate to the compiler to look for source files and header files

under folders "src" and "include"

VPATH = src include

count_words: count_words.o counter.o

$(CC) $^ -o $@

count_words.o: count_words.c counter.h

$(CC) $(CPPFLAGS) -c $< -o $@

counter.o: counter.c counter.h

$(CC) $(CPPFLAGS) -c $< -o $@

• Run the command make and make sure that the executable count words gets generated.

• Run the executable count words and make sure you get the same output as in the previous
example.

7

0.4.4 Pattern rules

The makefiles we’ve seen above are a bit simple. For a small program of a dozen files or less
we may not care, but for programs with hundreds or thousands of files, specifying each target,
prerequisite, and command script becomes unworkable.

Many programs that read one file type and output another conform to standard conventions. For
instance, all C compilers assume that files that have a .c suffix contain C source code and that
the object filename can be derived by replacing the .c suffix with .o (or .obj for some Windows
compilers).

A pattern rule looks like the normal rules you have already seen except the stem of the file (the
portion before the suffix) is represented by a % character. The following makefile specifies how
to compile a .o file from a .c file:

%.o: %.c

$(COMPILE) $(OUTPUT_OPTION) $<

In the following example, the rule specifies how to create a C-file from a flex file:

%.c: %.l

$(LEX.l) $< > $@

Finally, there is a special rule to generate a file with no suffix (always an executable) from a .c
file:

%: %.c

$(LINK) $^ $(LOADLIBES) $(LDLIBS) -o $@

Example:

We will consider the example that we’ve seen above and modify its makefile to include pattern
rules. Execute the following steps:

• Create a folder called ex3 and execute the command cd ex3.

• Copy the content of folder ex2 seen above by issuing the command:
cp -r ../ex2/* .

• Remove the content of the makefile that was just copied from folder ex2 and replace it
by the following text:

###

This is a Makefile that uses pattern rules

###

Indicate that the compiler is the gcc compiler

CC = gcc

Indicate to the compiler to include header files in folder include

CPPFLAGS = -I include

Indicate to the compiler to look for source files and header files

under folders "src" and "include"

VPATH = src include

OBJECTS := count_words.o counter.o

count_words: $(OBJECTS)

8

$(CC) $^ -o $@

%.o: %.c %.h

$(CC) $(CPPFLAGS) -c $<

• Run the command make and make sure that the executable count words gets generated.

• Run the executable count words and make sure you get the same output as in the previous
example.

0.4.5 Implicit rules

make has around 90 built-in implicit rules. There are built-in pattern rules for C, C++, Pascal,
FORTRAN and many other programming languages. In addition, there are rules for supporting
programs for these languages, such as cpp, as, yacc, lex, and dvi tools.

The built-in implicit rules are applied whenever a target is being considered and there is no
explicit rule to update it. So using an implicit rule is easy: simply do not specify a command
script when adding your target to the makefile. This causes make to search its built-in database
to satisfy the target.

Example

Suppose you have a makefile that looks like the following:

foo : foo.o bar.o

cc -o foo foo.o bar.o

Note that you mention the object file foo.o but do not give a rule for it. make will automatically
look for an implicit rule that tells how to update it. This happens whether or not the file foo.o
currently exists.

0.5 Special Targets

A special target is a built-in target used to change make’s default behavior. There are twelve
special targets. They fall into three categories: as we’ve just said many are used to alter the
behavior of make when updating a target, another set act simply as global flags to make and
ignore their targets, finally the .SUFFIXES special target is used when specifying old-fashioned
suffix rules.

Some of the special targets are:

• .PHONY: It declares that its prerequisite does not refer to an actual file and should always
be considered out of date. The .PHONY target is the most common special target you
will see.

Example:

We will re-consider the example that included the files count words.c, counter.c and
counter.h that we’ve seen above with a minor modification in the makefile. Execute the
following steps:

– Create a folder called ex4 and execute the command cd ex4.

– Copy the content of folder ex3 seen above by issuing the command:
cp -r ../ex3/* .

– Add the following line:

.PHONY: count words

at the end of the makefile. The makefile will look like:

9

###

This is a Makefile example with .PHONY target

###

Indicate that the compiler is the gcc compiler

CC = gcc

Indicate to the compiler to include header files in folder include

CPPFLAGS = -I include

Indicate to the compiler to look for source files and header files

under folders "src" and "include"

VPATH = src include

OBJECTS := count_words.o counter.o

count_words: $(OBJECTS)

$(CC) $^ -o $@

%.o: %.c %.h

$(CC) $(CPPFLAGS) -c $<

.PHONY: count_words

– Run the command make and make sure that the executable count words gets gener-
ated. Notice that every time you call the command make, the executable count words

gets re-generated.

– Run the executable count words and make sure you get the same output as in the
previous example.

• .INTERMEDIATE: Prerequisites of this special target are treated as intermediate files. If
make creates the file while updating another target, the file will be deleted automatically
when make exits. If the file already exists when make considers updating the file, the file
will not be deleted.

Example:

We will re-consider the example that included the files count words.c, counter.c and
counter.h that we’ve seen above with a minor modification in the makefile. Execute the
following steps:

– Create a folder called ex5 and execute the command cd ex5.

– Copy the content of folder ex4 seen above by issuing the command:
cp -r ../ex4/* .

– Remove the line:

.PHONY: count words

and add the following line:

.INTERMEDIATE: $(OBJECTS)

at the end of the makefile. The makefile will look like:

###

This is a Makefile example with .INTERMEDIATE target

###

10

Indicate that the compiler is the gcc compiler

CC = gcc

Indicate to the compiler to include header files in folder include

CPPFLAGS = -I include

Indicate to the compiler to look for source files and header files

under folders "src" and "include"

VPATH = src include

OBJECTS := count_words.o counter.o

count_words: $(OBJECTS)

$(CC) $^ -o $@

%.o: %.c %.h

$(CC) $(CPPFLAGS) -c $<

.INTERMEDIATE: $(OBJECTS)

– Run the command make and make sure that the executable count words gets gener-
ated. Notice that before make finishes its job, the 2 object files count words.o and
counter.o are removed since they are declared as intermediate files.

– Run the executable count words and make sure you get the same output as in the
previous example.

• .SECONDARY: Prerequisites of this special target are treated as intermediate files but are
never automatically deleted. The most common use of .SECONDARY is to mark object files
stored in libraries. Normally these object files will be deleted as soon as they are added
to an archive. Sometimes it is more convenient during development to keep these object
files, but still use the make support for updating archives.

• .PRECIOUS: When make is interrupted during execution, it may delete the target file it
is updating if the file was modified since make started. This is so make doesn’t leave a
partially constructed (possibly corrupt) file laying around in the build tree. There are times
when you don’t want this behavior, particularly if the file is large and computationally
expensive to create. If you mark the file as precious, make will never delete the file if
interrupted.

• .DELETE ON ERROR: This is sort of the opposite of .PRECIOUS. Marking a target as
.DELETE ON ERROR says that make should delete the target if any of the commands associ-
ated with the rule generates an error.

0.5.1 Searching Directories for Prerequisites

For large systems, it is often desirable to put sources in a separate directory from the binaries.
The directory search features of make facilitate this by searching several directories automatically
to find a prerequisite. When you redistribute the files among directories, you do not need to
change the individual rules, just the search paths4.

VPATH: Search Path for All Prerequisites

The value of the make variable VPATH specifies a list of directories that make should search.
Most often, the directories are expected to contain prerequisite files that are not in the current

4http://www.gnu.org/software/make/manual/make.html

11

directory; however, make uses VPATH as a search list for both prerequisites and targets of rules.

Thus, if a file that is listed as a target or prerequisite does not exist in the current directory,
make searches the directories listed in VPATH for a file with that name. If a file is found in one
of them, that file may become the prerequisite. Rules may then specify the names of files in the
prerequisite list as if they all existed in the current directory.

For example, if the makefile contained the following statement:

VPATH = src:../headers

that means that the path contains 2 directories: src and ../headers which make searches in
tha order.

The vpath Directive

Similar to the VPATH variable, but more selective, is the vpath directive (note lower case), which
allows you to specify a search path for a particular class of file names: those that match a
particular pattern. Thus you can supply certain search directories for one class of file names
and other directories (or none) for other file names.

There are three forms of the vpath directive:

• vpath pattern directories: Specify the search path directories for file names that match
pattern.

The search path, directories, is a list of directories to be searched, separated by colons
(semi-colons on MS-DOS and MS-Windows) or blanks, just like the search path used in
the VPATH variable.

• vpath pattern: Clear out the search path associated with pattern.

• vpath: Clear all search paths previously specified with vpath directives.

A vpath pattern is a string containing a % character. The string must match the file name of a
prerequisite that is being searched for, the % character matching any sequence of zero or more
characters (as in pattern rules).

When a prerequisite fails to exist in the current directory, if the pattern in a vpath directive
matches the name of the prerequisite file, then the directories in that directive are searched just
like (and before) the directories in the VPATH variable.

For example,

vpath %.h ../headers

tells make to look for any prerequisite whose name ends in .h in the directory ../headers if the
file is not found in the current directory.

If several vpath patterns match the prerequisite file’s name, then make processes each matching
vpath directive one by one, searching all the directories mentioned in each directive. make

handles multiple vpath directives in the order in which they appear in the makefile; multiple
directives with the same pattern are independent of each other.

Thus,

vpath %.c foo

vpath %.c blish

vpath %.c bar

will look for a file ending in .c in foo, then blish, then bar, while

vpath %.c foo:bar

vpath %.c blish

will look for a file ending in .c in foo, then bar, then blish.

12

0.5.2 Building a library in a makefile

We explored what libraries are and how to use them in a previous experiment using the ar

command. We’ll see in the below example how to include building a library in a makefile.

Execute the following steps:

• Create a folder called ex6 and execute the command cd ex6.

• Copy the content of folder ex5 seen above by issuing the command:
cp -r ../ex5/* .

• Remove the content of the makefile that was just copied from folder ex5 and replace it
by the following text:

###

This is a Makefile that builds a library

###

Indicate that the compiler is the gcc compiler

CC = gcc

Indicate to the compiler to include header files in folder include

CPPFLAGS = -I include

Indicate to the compiler to look for source files and header files

under folders "src" and "include"

VPATH = src include

count_words: libcounter.a

libcounter.a: libcounter.a(counter.o)

libcounter.a(counter.o): counter.o

$(AR) $(ARFLAGS) $@ $<

count_words.o: counter.h

counter.o: counter.h

• Run the command make and make sure that the executable count words gets generated
as well as the library libcounter.a. Note that the executable count words depends on
that library.

• Run the executable count words and make sure you get the same output as in the previous
example.

0.6 Conditional Parts of Makefiles

A conditional causes part of a makefile to be ignored depending on the values of variables.
Conditionals can compare the value of one variable to another, or the value of a variable to a
constant string. Conditionals control what command make actually ”sees” in the makefile

The basic syntax of the conditional directive is:

if-condition

text if the condition is true

13

endif

or

if-condition

text if the condition is true

else

text if the condition is false

endif

The if-condition can be one of the following:

ifdef variable-name

ifndef variable-name

ifeq test

ifneq test

Example:

As an example, consider the following makefile:

###

Example of a conditional Makefile

###

libs_for_gcc = -lgnu

normal_libs =

foo: $(objects)

ifeq ($(CC),gcc)

$(CC) -o foo $(objects) $(libs_for_gcc)

else

$(CC) -o foo $(objects) $(normal_libs)

endif

In the above makefile, the conditional tells make to use one set of libraries if the CC variable
is gcc, and a different set of libraries otherwise. It works by controlling which of two command
lines will be used as the command for a rule.

Example:

As an additional example on using conditionals with makefiles, consider the following makefile:

###

Another example of a conditional Makefile

###

Variable COMSPEC is defined only on Windows OS.

ifdef COMSPEC

14

PATH_SEP := ;

EXE_EXT := .exe

else

PATH_SEP := :

EXE_EXT :=

endif

In the above makefile, the first branch of the conditional is selected if the variable COMSPEC is
defined.

15

