[image: image1.jpg]
Faculty of Engineering & Technology

Department of Electrical and Computer Engineering

Second Semester, 2014/2015
ENC533– Advanced Digital Design

Course Project

Instructor: Dr. Abdellatif Abu-Issa
Overview
In this project you will build a simple part of a microprocessor. Firstly you will build two main blocks: the ALU and the register file, then you will connect them together and run a simple machine code program on them.

In order to ensure that your design is related to your group, various aspects of the design will be dictated by your student ID numbers. These include the machine code used by your design, the contents of the register file, and the purpose of the program that you will use to demonstrate the correctness of your design. This means that every group should have a unique design.
You have to work in groups of up to 3 students in this project and demonstrate your work to me and submit a report about your design and implementation of this assignment.

Part 1
 The ALU
Write a VHDL description of an ALU with two 32-bit inputs, A and B, and a 32-bit output Result.
[image: image2.emf]
 The result is derived from one or both of the inputs according to the value of a 6-bit opcode. The operations that the ALU can perform are listed below:

• a + b

• a - b

• |a| (i.e. the absolute value of a)

• -a

• max (a, b) (i.e. the maximum of a and b)
• min (a, b) (i.e. the minimum of a and b)
• avg(a,b) (i.e. the average of a and b – the integer part only and remainder is ignored)
• not a

• a or b
• a and b

• a xor b

The opcode that will be used to represent each of these operations is determined by the last digit of your students ID number. The table below shows which opcode you should use in your design for each instruction.
	Digit of ID no.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

	a + b
	8
	6
	6
	4
	6
	3
	4
	4
	1
	5

	a – b
	9
	8
	9
	11
	2
	15
	10
	14
	6
	8

	|a|
	2
	10
	1
	8
	5
	13
	3
	8
	13
	13

	-a
	10
	12
	5
	6
	4
	12
	12
	11
	8
	7

	max(a,b)
	12
	14
	7
	13
	7
	7
	7
	10
	7
	3

	min (a,b)
	1
	11
	8
	14
	10
	1
	2
	1
	4
	6

	avg(a,b)
	13
	13
	11
	7
	9
	9
	6
	13
	11
	10

	not a
	5
	15
	14
	9
	13
	10
	13
	6
	15
	2

	a or b
	4
	2
	13
	12
	8
	14
	14
	9
	3
	15

	a and b
	11
	3
	12
	10
	1
	11
	11
	5
	5
	4

	a xor b
	15
	9
	4
	5
	3
	5
	8
	7
	2
	12

So, for example if your group have 3 students and their IDs

 1121432, 112567, and 112879 then the last digit is = (2+7+9) mod 10 = 8

 Then a+b is to be represented by opcode 1, a-b is to be represented by opcode 6, |a| is to be represented by opcode 13 and so on. (These are shown as denary (base 10) values; your design will of course have to use binary or hexadecimal values.)
The register file
Inside a modern processor there is a very small amount of memory that is used to hold the operands that it is presently working on. This is called the register file, and normally has the following appearance.
[image: image3.emf]
This is a very small fast RAM, typically holding 32 x 32-bit words, and therefore requiring a 5-bit address to select out one of the 32-bit words. It is unlike normal RAM in that it can process three addresses at the same time, two of which are always read operations, and one of which is always written to.
Output 1 produces the item within the register file that is address by Address 1. Similarly Output 2 produces the item within the register file that is address by Address 2. Input is used to supply a value that is written into the location addressed by Address 3.
The initial values stored in the register file are determined by the second-from-last digit of your student ID, and are shown in the table below:
	 ID/

Location
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	1
	7942
	11662
	12642
	12996
	4198
	11930
	4616
	15034
	5986
	16302

	2
	13224
	11562
	10592
	11490
	5596
	5348
	11640
	8854
	12250
	2994

	3
	15462
	15330
	6230
	7070
	14426
	7308
	11254
	170
	482
	1658

	4
	8026
	9594
	8940
	6026
	7612
	15684
	6786
	7226
	14246
	5474

	5
	3692
	14746
	8776
	3322
	6638
	12346
	6784
	4480
	5124
	6784

	6
	9882
	3288
	9436
	10344
	10040
	9716
	12432
	8928
	1848
	10836

	7
	8248
	5932
	3056
	6734
	3930
	7820
	13548
	7302
	5260
	4648

	8
	3432
	1978
	4850
	15834
	4150
	5190
	13462
	8922
	16170
	524

	9
	178
	4912
	3406
	15314
	6406
	14702
	13454
	1044
	4766
	12200

	10
	2378
	2380
	12380
	6000
	5400
	5630
	11780
	6706
	4298
	3286

	11
	8302
	1926
	548
	12196
	8572
	2352
	13170
	258
	610
	14734

	12
	592
	12726
	13054
	11290
	16324
	15424
	2982
	7354
	1510
	10998

	13
	7430
	176
	2800
	13350
	8840
	2670
	8096
	3294
	9794
	4420

	14
	10572
	8408
	12988
	2086
	8258
	4172
	514
	14740
	7456
	8754

	15
	7676
	8394
	956
	6734
	11228
	4300
	3600
	6532
	5580
	3246

	16
	1238
	13604
	2194
	7430
	8462
	4744
	10870
	10436
	9300
	9040

	17
	16008
	10222
	11914
	14102
	13284
	1286
	12528
	11900
	12314
	8714

	18
	2426
	7262
	15864
	13200
	4676
	8122
	9860
	14694
	12806
	12008

	19
	11930
	10190
	11832
	3264
	3980
	4558
	6166
	8830
	10478
	1006

	20
	6724
	8734
	12346
	2368
	5634
	8534
	4520
	8712
	11556
	6724

	21
	12790
	12432
	2192
	15846
	7632
	13340
	14436
	4532
	6778
	12746

	22
	4842
	8724
	1840
	11710
	9846
	6918
	12136
	9084
	8430
	5462

	23
	7108
	5412
	13996
	14736
	5442
	11700
	5134
	13838
	5700
	11810

	24
	6296
	11082
	12054
	5338
	12488
	10722
	11958
	10018
	13422
	7590

	25
	3322
	2212
	4434
	5544
	6656
	3346
	7688
	1280
	11224
	4368

	26
	10848
	6188
	12152
	1852
	832
	3300
	5258
	5814
	1990
	10358

	27
	14698
	7056
	9876
	3898
	4664
	2386
	12420
	670
	922
	15252

	28
	16378
	3744
	8734
	16252
	6798
	11212
	3560
	8832
	6020
	11954

	29
	15456
	5766
	8308
	1048
	14166
	3504
	1248
	15186
	15768
	13704

	30
	1260
	3412
	3422
	5642
	3246
	8712
	8724
	4512
	5624
	1478

	31
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

So, for example, if your students ID is 1121432, 112567, and 112879 then the second-from-last digit of your ID number is = (3+6+7) mod 10 = 6

so item 0 should be 0, item 1 should be 4616, item 2 should be 11640, and so on. (N.B. these values are in denary (i.e. base 10). You will need to convert them to binary or hexadecimal.)
Part 2

In this part you will connect the ALU with the RAM to form a simple microprocessor.
 Clocking the register file
The register file that you created in the first part was a combinational circuit. This causes some serious problems if, for example, address 2 and address 3 are the same. The circuit would read output 2 from the location referenced by address 2, at the same time that the input is over-writing that location.
These problems can be solved by synchronising the register file to a clock. You will need to add an extra input named clock, and give the register file the following behaviour:
On the rising edge of the clock:
• Output 1 produces the item within the register file that is address by Address 1.

• Output 2 produces the item within the register file that is address by Address 2.

• Input is used to supply a value that is written into the location addressed by Address 3.

Under all other circumstances:

• the outputs are held constant at the values they assumed during the last rising edge of the clock.

You should check your design thoroughly, and in particular make sure that it behaves sensibly when the address for the input is the same as the address of one of the outputs.
Enabling the register file
The register file that you created is always sensitive to its inputs, even when the inputs have garbage values. This can cause problems because when the simulation initializes (which corresponds to the real hardware being switched on) all the values of the logic signals initializes to some random garbage value (denoted ‘U’ in VHDL, but in real life either a ‘1’ or a ‘0’ chosen at random).
Give the register file an enable input. When the enable input=1 the register file will operate normally. Otherwise the register file will ignore its inputs, and will not update its outputs.
Creating the core of the microprocessor
Now create a testbench that contains an instance of the register file and an instance of the ALU connected like this:
[image: image4.emf]
Machine instructions are supplied to this arrangement in the form of 32-bit numbers. The format of these instructions is as follows:

• The first 6 bits identify the opcode

• The next 5 bits identify first source register

• The next 5 bits identify second source register

• The next 5 bits identify destination register

• The final 11 bits are unused

So, for example, if you want to add the contents of register 1 and register 2 and put the result into register 3, then the machine instruction would be as follows:

• The first 6 bits supply the opcode for the add instruction

• The next 5 bits would address register 1, and the next 5 would address register 2

• The next 5 bits address register 3.

• The remaining bits are unused, and should be set to zero.

The enable signal to the register should go high when the opcode contains a valid value, and should be low otherwise.
Test out your design by supplying machine instructions to it, and check that the operation performed is correct. Make sure you understand the timing of instructions, and in particular the relationship between the clock cycle on which the instruction occurs, and the clock cycle on which the appropriate result is written to register.
Running a program
Now create a stream of machine instructions that will act as a small program. The program must act as follows:
If the third-form-last digit of your student ID is 1, 4 or 7:
You should write a machine code to find the maximum number stored in addresses from1 to 30. The values of registers 1-30 should not be altered by your program, but the value of register 0 may be over-written if you wish.
If the third-form-last digit of your student ID is 2, 5 or 8:
You should write a machine code to find the minimum number stored in addresses from1 to 30. The values of registers 1-30 should not be altered by your program, but the value of register 0 may be over-written if you wish.
If the third-form-last digit of your student ID is 0, 3, 6 or 9:
You should write a machine code to find the sum of the numbers stored in addresses from1 to 30. The values of registers 1-30 should not be altered by your program, but the value of register 0 may be over-written if you wish.

You should try to make your program as efficient as possible.
Synchronising the data
All parts of the design that are synchronized to the clock should use only the rising edge of the clock. If you use both the rising edge and the falling edge, then it’s much easier to do the design in simulation, but the real life hardware would be very expensive and complicated to manufacture. You will therefore lose a substantial number of marks if you use both edges of the clock.

No ops
You may find it useful to create a no-op instruction, i.e. an instruction that instructs the microprocessor to “do nothing” for the next clock cycle, and allocate one of your un-used opcodes to this instruction.
If you don’t manage to finish

Don’t panic. Obviously you will lose marks for having an incomplete design, but you can still achieve a reasonable mark provided that you do a good write up of the parts that you have finished.
Writing up the assignment
Format of write up
The assignment should be written up as a brief report, which should explain (in about 4-6 pages)

• The ideas behind your design and how it works (in particular what happens on what clock cycle and why);

• How you tested it and how you interpreted the results of your tests;

• Which parts work correctly.

Your VHDL code should be included as appendix 1

Print outs of your simulation results should be included as appendix 2 (not more than 5 pages; if you have a large number of results, then you should choose only the most meaningful results, and explain in the text what their significance is)

Deadline and hand-in procedure
The deadline for submission (hard copy) is 02:00 pm on Tuesday 5th May (more than 5 weeks from now). You will lose 5% of your mark for each late day (Late submission is allowed until Thursday 14th May).
Mark scheme
Style, structure and presentation of report

10%

Description of design and testing process

20%

Technical achievements in design, implementation and evaluation

50%

Quality of code (good comments, clear layout, good coding style,
 meaningful signal and entity names)

10%
Judgment and creativity 10%

[image: image5.png]
Electrical and Computer Engineering Department

Project Feedback

Course Project (ENCS 533)

Instructor: Dr. Abdellatif Abu-Issa

Student Name:………………………………….. Student ID:………………….

 Marks

Report Presentation (10%)

Language (Spelling and Grammar), style of the report, caption of figures, page

numbering…etc.

Design Process and Outcome (80%)

· Description of the design and test process (20%)

· Technical Achievement in System Design and implementation (50%)

· Quality of code (10%)

Judgment and Creativity (`10%)

Demonstration of good judgment, imagination and creativity

in selecting and applying design methods. Good discussion and

analysing of the system and suggested improvements.

Total Mark (Out of 100)

Deducted Marks: late days * 5% per day

FINAL ALLOCATED MARK (Out of 100)
Any evidence for any type of cheating: □yes □no

6

