

Faculty of Engineering and Technology **Electrical and Computer Engineering Department**

ENCS533-Advanced Digital Design

Second Semester 2018/2019 **Duration: 120 minutes**

Final Exam

Instructor: Dr. Abdellatif S. Abu-Issa

Q1) (21 points)

a) For the following state diagram:

i) Is this Mealy or Moore Machine and Why? [2 points]

- ii) Write a VHDL behavioural code to describe the circuit presented by the state diagram. [12 points]
- b) Show the detailed diagram for the 4-bit LUT for F =

A'B+C'D+AD'. [7 points]

Q2) (21 points)

The following figure shows a Built-In Self-Test Circuit for a 2-bit magnitude comparator. The test vectors are generated using a 4-bit LFSR and the results are analysed using a 3-bit MISR as shown in the figure.

- a) Show the first 8 test vectors generated by the LFSR. The first vector of the LFSR is "1101", you should show the next 7 test vectors. [6 points]
- b) What is the fault free signature of this system after we apply these test vectors? (Initial value of the MISR "110") [9 points]
- c) Assume that the output Z(a < B) is Sa0. What is the signature after we apply the same test vectors generated by the LFSR? (Initial value of MISR is "110") [6 points] 110

Q3) (38 points)

a) Assign output values to the don't care states in the following flow table in such a way as to avoid transient output pulses. [4 points]

	00	01	11	10
а	a),0	b,-	-,-	d , -
b	a,-	(b, 1	(b) 1	c,*
С	b,-	× -,-	b,-	(c,) 0
d	c,-	d, 1	c,-	(d, 1

b) An asynchronous circuit with two inputs (x1 and x2) and one output (z). When both inputs are zeros (i.e. x1 = x2 = 0) then z = 0, and when both inputs are ones (i.e. x1 = x2 = 1) then z = 1, otherwise the output will not change. Show the primitive follow table of this circuit.

[10 points]

c) Given the following primitive flow table, draw the reduced flow table after reducing the number of states. [12 points]

0,0 f,		1,2
2, -3- [, -e, [-2] (-) F, 1 4-	12 @/o @/o b/o	4,5
	2,3 alo 6/0 010 1,6 600 blo d1-	ell-
	45 a/- b/- a/1	dy

		• 4						
	00	0	<u>l</u>	11	10			
1	000	0 2/	0	-/-	6/0			
2	170	2/	0 3	3/0	-/-			
3	-1-	2/,	0 (3	0 /(0	4/-			
4	1/-	-/-	5	/1	4 /1			
5	-/-	2/-	(3)	V I	4/1			
6	1/0	-/-	5	/-	⑥/ 0			

d) i) Show the transition table for the following circuit. [3 points]

ii) Implement the same circuit using SR-latch. Use NAND gates only in your design. [9 points]

© Good Luck ©