

Since the publication of the first edition, a new version of the VHDL
standard has been agreed and analogue extensions to the language have
also been adopted. The second edition of Digital System Design with VHDL
includes additions in two important areas; sections on writing testbenches
have been added to relevant chapters, and the addition of a new chapter on
VHDL-AMS and mixed-signal modelling.

The unique approach will be appreciated by undergraduates in Electronic
Engineering and Computer Engineering in all years of their courses and by
students undertaking postgraduate study. There is also a proven need from
industry for graduates with knowledge of VHDL and the associated design
tools and this book will be an asset to engineers who wish to continue
their studies.

New edition features:

❍ New chapter on Interfacing with the analogue
world

❍ Testbenches added to several chapters
❍ A more detailed guide for coding for synthesis
❍ An updated section on fault simulation in

VHDL
❍ New illustrations
❍ Updated information on the author's website

which can be found at
www.booksites.net/zwolinski

Dr Mark Zwolinski is a Reader in the Department of Electronics and
Computer Science at the University of Southampton. He is also consultant
to LME Ltd., who supply behavioural synthesis tools
for digital system design.

Mark Zwolinski

Second Edition

VHDL
Digital System Design withDigital System Design with

Digital System
 Design w

ith

VHDL

www.pearson-books.com

Mark Zwolinski´

Second Edition

Digital System
Design with
Digital System
Design with

VHDLVHDL

´

Z
w

o
lin

ski
´

´
V

H
D

L
Second
Edition

www.booksites.net www.booksites.net

www.booksites.net

Use the online resources for
this book at

www.booksites.net

Digital System Design with VHDL

We work with leading authors to develop the
strongest educational materials in engineering,
bringing cutting-edge thinking and best learning
practice to a global market.

Under a range of well-known imprints, including
Prentice Hall, we craft high quality print and
electronic publications which help readers to
understand and apply their content, whether
studying or at work.

To find out more about the complete range of our
publishing, please visit us on the World Wide Web
at: www.pearsoned.co.uk

Digital
System
Design
with VHDL

Second edition

Mark Zwoliński

To Kate, who had to listen to me shouting at the computer

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsoned.co.uk

First published 2000
Second edition published 2004

© Pearson Education Limited 2000, 2004

The right of Mark Zwoliński to be identified as author of this work has been asserted by him in accordance
with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either
the prior written permission of the publisher or a licence permitting restricted copying in the United
Kingdom issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP.

The programs in this book have been included for their instructional value. They have been tested with
care but are not guaranteed for any particular purpose. The publisher does not offer any warranties or
representations nor does it accept any liabilities with respect to the programs.

Trademark notice
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Pearson Education has made every attempt to supply trademark information about manufacturers
and their products mentioned in this book. The following are trademarks or registered trademarks of their
respective companies: Actel is a trademark of Actel Corporation; Xilinx is a trademark of Xilinx, Inc.

ISBN 0 130 39985 X

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

10 9 8 7 6 5 4 3 2 1
09 08 07 06 05 04

Typeset in 10/12 pt Times by 68

Printed and bound by Henry Ling Ltd, The Dorchester Press, Dorset, UK

The publisher’s policy is to use paper manufactured from sustainable forests.

v

Contents

Preface ix

1 Introduction 1
1.1 Modern digital design 1
1.2 CMOS technology 5
1.3 Programmable logic 10
1.4 Electrical properties 14
Summary 18
Further reading 18
Exercises 18

2 Combinational logic design 19
2.1 Boolean algebra 19
2.2 Logic gates 22
2.3 Combinational logic design 22
2.4 Timing 30
2.5 Number codes 32
Summary 36
Further reading 36
Exercises 36

3 Combinational logic using VHDL gate models 38
3.1 Entities and architectures 38
3.2 Identifiers, spaces and comments 40
3.3 Netlists 41
3.4 Signal assignments 44
3.5 Generics 45

3.6 Constant and open ports 47
3.7 Testbenches 48
3.8 Configurations 48
Summary 51
Further reading 51
Exercises 51

4 Combinational building blocks 53
4.1 Three-state buffers 53
4.2 Decoders 58
4.3 Multiplexers 64
4.4 Priority encoder 66
4.5 Adders 69
4.6 Parity checker 72
4.7 Testbenches for combinational blocks 75
Summary 78
Further reading 78
Exercises 78

5 Synchronous sequential design 80
5.1 Synchronous sequential systems 80
5.2 Models of synchronous sequential systems 81
5.3 Algorithmic state machines 85
5.4 Synthesis from ASM charts 89
5.5 State machines in VHDL 99
5.6 VHDL testbenches for state machines 109
Summary 111
Further reading 112
Exercises 112

6 VHDL models of sequential logic blocks 115
6.1 Latches 115
6.2 Flip-flops 119
6.3 JK and T flip-flops 128
6.4 Registers and shift registers 132
6.5 Counters 135
6.6 Memory 143
6.7 Sequential multiplier 147
6.8 Testbenches for sequential building blocks 150
Summary 153
Further reading 154
Exercises 154

7 Complex sequential systems 156
7.1 Linked state machines 156
7.2 Datapath/controller partitioning 160

vi Contents

7.3 Instructions 162
7.4 A simple microprocessor 163
7.5 VHDL model of a simple microprocessor 167
Summary 176
Further reading 177
Exercises 177

8 VHDL simulation 178
8.1 Event-driven simulation 178
8.2 Simulation of VHDL models 182
8.3 Simulation modelling issues 185
8.4 File operations 186
Summary 188
Further reading 188
Exercises 188

9 VHDL synthesis 190
9.1 RTL synthesis 191
9.2 Constraints 203
9.3 Synthesis for FPGAs 206
9.4 Behavioural synthesis 209
9.5 Verifying synthesis results 216
Summary 218
Further reading 218
Exercises 218

10 Testing digital systems 221
10.1 The need for testing 221
10.2 Fault models 222
10.3 Fault-oriented test pattern generation 224
10.4 Fault simulation 231
10.5 Fault simulation in VHDL 235
Summary 244
Further reading 245
Exercises 245

11 Design for testability 248
11.1 Ad hoc testability improvements 249
11.2 Structured design for test 249
11.3 Built-in self-test 252
11.4 Boundary scan (IEEE 1149.1) 260
Summary 268
Further reading 268
Exercises 268

Contents vii

12 Asynchronous sequential design 271
12.1 Asynchronous circuits 271
12.2 Analysis of asynchronous circuits 274
12.3 Design of asynchronous sequential circuits 278
12.4 Asynchronous state machines 286
12.5 Setup and hold times and metastability 290
Summary 297
Further reading 298
Exercises 298

13 Interfacing with the analogue world 301
13.1 Digital to analogue converters 302
13.2 Analogue to digital converters 303
13.3 VHDL-AMS 306
13.4 Phase-locked loops 315
13.5 VHDL-AMS simulators 319
Summary 321
Further reading 321
Exercises 321

Appendix A VHDL standards 322
Appendix B Verilog 327
Appendix C Shared variable packages 333

Bibliography 339
Answers to selected exercises 341
Index 363

viii Contents

ix

Preface

About this book

When the first edition of this book was published, the idea of combining a text on digital
design with one on VHDL seemed novel. At about the same time, several other books
with similar themes were published. This book has now been adopted by several univer-
sities as a core text. Moreover, the first edition has now been translated into Polish and a
low-cost edition has been produced for the People’s Republic of China. This success and
the competition convinced me that the idea had been good, but I was not convinced that
I had achieved perfection the first time. This new edition corrects what I now feel to have
been a mistake in the first version and adds two important topics. These changes are
described later in this preface.

This book is intended as a student textbook for both undergraduate and postgraduate
students. The majority of VHDL books are aimed at practising engineers. Therefore,
some features of VHDL are not described at all in this book. Equally, aspects of digital
design are covered that would not be included in a typical VHDL book.

Syllabuses for electrical, electronic and computer engineering degrees vary between
countries and between universities or colleges. The material in this book has been
developed over a number of years for second- and third-year undergraduates and for
postgraduate students. It is assumed that students will be familiar with the principles
of Boolean algebra and with combinational logic design. At the University of
Southampton, the first-year undergraduate syllabus also includes introductions to syn-
chronous sequential design and to programmable logic. This book therefore builds upon
these foundations. It has often been assumed that topics such as VHDL are too special-
ized for second-year teaching and are best left to final-year or postgraduate courses.
There are several good reasons why VHDL should be introduced earlier into the
curriculum. With increasing integrated circuit complexity, there is a need from industry
for graduates with knowledge of VHDL and the associated design tools. If left to the
final year, there is little or no time for the student to apply such knowledge in project

work. Second, conversations with colleagues from many countries suggest that today’s
students are opting for computer science or computer engineering courses in preference
to electrical or electronic engineering. VHDL offers a means to interest computing-
oriented students in hardware design. Finally, simulation and synthesis tools are now
mature and available relatively cheaply to educational establishments on PC platforms.

Changes in the second edition

With hindsight, my mistake was to use std_ulogic instead of std_logic in most
of the examples. From a purely educational point of view, the decision was correct as
such usage would clearly indicate in simulation when outputs of blocks had been inad-
vertently joined together. From a practical point of view, this usage is at odds with most
industrial practice and can cause problems with some EDA (electronic design automa-
tion) tools. All the examples have been revised to use std_logic. Several of the
examples have also been simplified (e.g. by using direct instantiation). At the time of the
first edition, there were some EDA tools that only supported the 1987 standard of VHDL.
These have largely disappeared and therefore I have tended to use constructs from the
newer 1993 standard in preference in this edition. There has also been a 2002 revision to
the standard. Although there are almost no tools that support the new standard at the time
of writing, the changes are minimal and the only significant change (the form of shared
variables) has been extensively discussed in Appendix C. I was also swimming against
the tide in insisting on the use of the IEEE numeric_std package (as opposed to
std_logic_arith), but I think I have been proved correct in that choice.

The two major additions take two forms. First, several chapters now include sections
on writing testbenches. The verification of VHDL models by simulation is critical to
producing correct hardware. It is reasonable to estimate that at least half of all VHDL
written is in the form of testbenches for verifying models. Because this aspect is so
important, the material has been included in the chapters where it is needed, not in a
single chapter on testbench design. I would strongly encourage the reader to simulate
the models in the text and to use the testbench examples to assist in this.

The second addition is a new chapter on VHDL-AMS and mixed-signal modelling.
All digital hardware has to interact with the ‘real’ world at some point. Although
mixed-signal simulators have been available for over 15 years, their use has been lim-
ited by the difficulty in writing interface models between the digital and analogue
domains. VHDL-AMS integrates the two worlds and several mixed-signal simulators
are now available. This chapter is not intended to be a comprehensive tutorial on con-
verter design, nor on all the details of VHDL-AMS, but I hope it will encourage design-
ers to attempt to model their systems as a whole.

Structure of this book

Chapter 1 introduces the ideas behind this book, namely the use of electronic design
automation tools and CMOS and programmable logic technology. We also consider
some engineering problems, such as noise margins and fan-out. In Chapter 2, the

x Preface

principles of Boolean algebra and of combinational logic design are reviewed. The
important matter of timing and the associated problem of hazards are discussed. Some
basic techniques for representing data are discussed.

VHDL is introduced in Chapter 3 through basic logic gate models. The importance
of documented code is emphasized. We show how to construct netlists of basic gates
and how to model delays through gates. We also discuss parameterized models and
constant and unconnected inputs and outputs. The idea of using VHDL to verify VHDL
models by using testbenches is introduced. Finally, we briefly introduce the concept of
configurations.

In Chapter 4, a variety of modelling techniques are described. Combinational build-
ing blocks, buffers, decoders, encoders, multiplexers, adders and parity checkers are
modelled using a range of concurrent and sequential VHDL coding constructs. The
VHDL models of hardware introduced in this chapter and in Chapters 5, 6 and 7 are, in
principle, synthesizable, although discussion of exactly what is supported is deferred
until Chapter 9. Testbench design styles are again discussed here. In addition, the IEEE
dependency notation is introduced.

Chapter 5 is probably the most important chapter of the book and discusses what might
be considered the cornerstone of digital design: the design of finite state machines. The
ASM chart notation is used. The design process from ASM chart to D flip-flops and next
state and output logic is described. VHDL models of state machines are introduced.

Chapter 6 introduces various sequential building blocks: latches, flip-flops, registers,
counters, memory and a sequential multiplier. The same style as in Chapter 4 is used,
with IEEE dependency notation, testbench design and the introduction of VHDL cod-
ing constructs.

In Chapter 7 the concepts of the previous three chapters are combined. The ASM
chart notation is extended to include coupled state machines and registered outputs,
and hence to datapath-controller partitioning. From this, we explain the idea of instruc-
tions in hardware terms and go on to model a very basic microprocessor in VHDL. This
provides a vehicle to introduce VHDL subroutines and packages.

VHDL remains primarily a modelling language. Chapter 8 describes the operation of
a VHDL simulator. The idea of event-driven simulation is first explained and the specific
features of a VHDL simulator are then discussed. Although the entire VHDL language can
be simulated, some constructs simulate more efficiently than others; therefore techniques
for writing models that are more efficient are discussed. File operations are also discussed
in this chapter because such functionality is only appropriate to simulation models.

The other, increasingly important, role of VHDL is as a language for describing syn-
thesis models, as discussed in Chapter 9. The dominant type of synthesis tool available
today is for RTL synthesis. Such tools can infer the existence of flip-flops and latches
from a VHDL model. These constructs are described. Conversely, flip-flops can be
created in error if the description is poorly written, and common pitfalls are described.
The synthesis process can be controlled by constraints. Because these constraints are
outside the language, they are discussed in general terms. Suitable constructs for FPGA
synthesis are discussed. Finally, behavioural synthesis, which promises to become an
important design technology, is briefly examined.

Chapters 10 and 11 are devoted to the topics of testing and design for test. This area
has often been neglected, but is now recognized as being an important part of the

Preface xi

design process. In Chapter 10 the idea of fault modelling is introduced. This is followed
by test generation methods. The efficacy of a test can be determined by fault simula-
tion. At the time of writing, there are no commercial VHDL-based fault simulators
available. The final section of this chapter shows how fault modelling and fault simula-
tion can be performed using a standard VHDL simulator. The VHDL code also intro-
duces constructs such as pointers and shared (global) variables.

In Chapter 11, three important design-for-test principles are described: scan path,
built-in self-test (BIST) and boundary scan. This has always been a very dry subject,
but a VHDL simulator can be used, for example, to show how a BIST structure can
generate different signatures for fault-free and faulty circuits. Boundary scan uses a
subset of VHDL to describe the test structures used on a chip, and an example is given.

We use VHDL as a tool for exploring anomalous behaviour in asynchronous sequen-
tial circuits in Chapter 12. Although the predominant design style is currently synchro-
nous, it is likely that digital systems will increasingly consist of synchronous circuits
communicating asynchronously with each other. We introduce the concept of the fun-
damental mode and show how to analyze and design asynchronous circuits. We use
VHDL simulations to illustrate the problems of hazards, races and setup and hold time
violations. We also discuss the problem of metastability.

The final chapter introduces VHDL-AMS and mixed-signal modelling. Brief
descriptions of Digital to Analogue Converters (DACs) and Analogue to Digital
Converters (ADCs) are given. VHDL-AMS constructs to model such converters are
given. We also introduce the idea of a Phase-Locked Loop (PLL) here and give a sim-
ple mixed-signal model.

Three appendices are included. The first appendix lists the various VHDL-related
standards and speculates on the future development of VHDL. The second appendix
briefly describes the Verilog hardware description language. Verilog is the major alter-
native to VHDL and it is likely that designers will have to be familiar with both. The
third appendix covers shared variables, in particular the differences between the 1993
and 2002 versions.

At the end of each chapter a number of exercises have been included. These exercises
are almost secondary to the implicit instruction in each chapter to simulate and, where
appropriate, synthesize each VHDL example. To perform these simulation and synthesis
tasks, the reader may have to write his or her own testbenches and constraints files. The
examples are available on the World Wide Web at the address given in the next section.

How to use this book

Obviously, this book can be used in a number of different ways, depending on the level
of the course. At the University of Southampton, I am using the material as follows.

Second year of MEng/BEng in Electronic Engineering and Computer
Engineering
Chapters 1 and 2 are review material, which the students would be expected to read
independently. Lectures then cover the material of Chapters 3, 4, 5, 6 and 7. Some of
this material can be considered optional, such as Sections 3.8, 6.3 and 6.7.

xii Preface

Additionally, constructs such as with select could be omitted if time presses.
The single-stuck fault model of Section 10.2 and the principles of test pattern gener-
ation in Section 10.3, together with the principles of scan design in Section 11.2,
would also be covered in lectures.

Third year of MEng/BEng in Electronic Engineering and Computer Engineering
Students would be expected to independently re-read Chapters 3 to 7. Lectures
would cover Chapters 8, 9, 10, 11 and 12. VHDL-AMS, Chapter 13, is currently
covered in a fourth-year module.

In both years, students need to have access to a VHDL simulator and an RTL synthesis
tool in order to use the examples in the text. In the second year, a group design exercise
involving synthesis to an FPGA would be an excellent supplement to the material. In the
third year at Southampton, all students do an individual project. There is no additional
formal laboratory work. Some of the individual projects will involve the use of VHDL.

Mark Zwoliński
Southampton

May 2003

Web resources

A website accompanies Digital System Design with VHDL by Mark Zwoliński. Visit
the site at www.booksites.net/Zwolinski. Here you will find valuable teaching and
learning material including all the VHDL examples from the text (differentiated
between VHDL’87 and VHDL’93 versions), and links to sites with VHDL tools.

Acknowledgements

I would like to thank all those who pointed out errors in the first edition of this book, in
particular Egbert Molenkamp of the University of Twente, the Netherlands, and Marian
Adamski, Marek Węgrzyn and Zbigniew Skrowroński at the University of Zielona
Góra, Poland.

Some of the material in Chapter 13 was produced in collaboration with Doulos Ltd.

The publishers are grateful to the following for permission to reproduce material:

Figure 1.11 is reproduced with the permission of Lattice Semiconductor Corporation;
Figure 1.15 copyright ©1999 Xilinx, Inc. All rights reserved, XC4000E and XC4000X
Series Field Programmable Gate Arrays.

In some instances we have been unable to trace the owners of copyright material,
and we would appreciate any information that would enable us to do so.

Finally, I would like to thank several cohorts of students to whom I have delivered
this material and whose comments have encouraged me to think about better ways of
explaining these ideas.

Preface xiii

1

Chapter 1

Introduction

1.1 Modern digital design 1

1.2 CMOS technology 5

1.3 Programmable logic 10

1.4 Electrical properties 14

In this chapter we will review the design process, with particular emphasis on the
design of digital systems using hardware description languages such as VHDL. The tech-
nology of CMOS integrated circuits will be briefly revised and programmable logic
technologies will be discussed. Finally, the relevant electrical properties of CMOS and
programmable logic are reviewed.

1.1 Modern digital design

Electronic circuit design has traditionally fallen into two main areas: analogue and
digital. These subjects are usually taught separately, and electronics engineers tend to
specialize in one area. Within these two groupings there are further specializations, such
as radio frequency analogue design, digital integrated circuit design, and, where the two
domains meet, mixed-signal design. In addition, of course, software engineering plays
an increasingly important role in embedded systems.

Digital electronics is ever more significant in consumer goods. Cars have sophisti-
cated control systems. Many homes now have personal computers. Products that used
to be thought of as analogue, such as radio, television and telephones, are or are becom-
ing digital. Digital compact discs have almost entirely replaced analogue LPs for
recorded audio. With these changes, the lifetimes of products have lessened. In a period
of less than a year, new models will probably have replaced all the digital electronic
products in your local store.

2 Introduction

1.1.1 Design automation

To keep pace with this rapid change, electronics products have to be designed extremely
quickly. Analogue design is still a specialized (and well-paid) profession. Digital design
has become very dependent on computer-aided design (CAD) – also known as design
automation (DA) or electronic design automation (EDA). The EDA tools allow two
tasks to be performed: synthesis, in other words the translation of a specification into an
actual implementation of the design; and simulation, in which the specification or the
detailed implementation can be exercised in order to verify correct operation.

Synthesis and simulation EDA tools require that the design be transferred from the
designer’s imagination into the tools themselves. This can be done by drawing a dia-
gram of the design using a graphical package. This is known as schematic capture.
Alternatively, the design can be represented in a textual form, much like a software pro-
gram. Textual descriptions of digital hardware can be written in a modified program-
ming language, such as C, or in a hardware description language (HDL). Over the past
30 years or so, a number of HDLs have been designed. Two HDLs are in common
usage today: Verilog and VHDL (VHSIC Hardware Description Language, where
VHSIC stands for Very High Speed Integrated Circuit). Standard HDLs are important
because they can be used by different CAD tools from different tool vendors. In the
days before Verilog and VHDL, every tool had its own HDL, requiring laborious trans-
lation between HDLs, for example to verify the output from a synthesis tool with
another vendor’s simulator.

1.1.2 Logic gates

The basic building blocks of digital circuits are gates. A gate is an electronic compo-
nent with a number of inputs and, generally, a single output. The inputs and the outputs
are normally in one of two states: logic 0 or logic 1. These logic values are represented
by voltages (for instance, 0 V for logic 0 and 3.3 V for logic 1) or currents. The gate
itself performs a logical operation using all of its inputs to generate the output.
Ultimately, of course, digital gates are really analogue components, but for simplicity
we tend to ignore their analogue nature.

It is possible to buy a single integrated circuit containing, say, four identical gates, as
shown in Figure 1.1. (Note that two of the connections are for the positive and negative
power supplies to the device. These connections are not normally shown in logic dia-
grams.) A digital system could be built by connecting hundreds of such devices
together – indeed many systems have been designed in that way. Although the indi-
vidual integrated circuits might cost as little as 10 cents each, the cost of designing the
printed circuit board for such a system and the cost of assembling the board are very
significant and this design style is no longer cost-effective.

Much more complicated functions are available as mass-produced integrated cir-
cuits, ranging from flip-flops through to microprocessors. With increasing complexity
comes flexibility – a microprocessor can be programmed to perform a near-infinite
variety of tasks. Digital system design therefore consists, in part, of taking standard
components and connecting them together. Inevitably, however, some aspect of the
functionality will not be available as a standard device. The designer is then left with

Modern digital design 3

Figure 1.1 Small-scale integrated circuit.

the choice of implementing this functionality from discrete gates or of designing
a specialized integrated circuit to perform that task. While this latter task may appear
daunting, it should be remembered that the cost of a system will depend to a great
extent not on the cost of the individual components but on the cost of connecting those
components together.

1.1.3 ASICs and FPGAs

The design of a high-performance, full-custom integrated circuit (IC) is, of course,
a difficult task. In full-custom IC design, everything, down to and including individual
transistors, may be designed (although libraries of parts are, of course, used). For many
years, however, it has been possible to build semi-custom integrated circuits using gate
arrays. A gate array, as its name suggests, is an integrated circuit on which an array of
logic gates has been created. The design of an application-specific integrated circuit
(ASIC) using a gate array therefore involves the definition of how the gates in the array
should be connected. In practical terms, this means that one or two layers of metal
interconnect must be designed. Since an integrated circuit requires seven or more pro-
cessing stages, all the processing steps other than the final metallization can be com-
pleted in advance. Because the uncommitted gate arrays can be produced in volume,
the cost of each device is relatively small.

The term ASIC is often applied to full-custom and semi-custom integrated circuits.
Another class of integrated circuit is that of programmable logic. The earliest pro-
grammable logic devices (PLDs) were programmable logic arrays (PLAs). Like gate
arrays, these consist of arrays of uncommitted logic, but unlike mask-programmable
gate arrays, the configuration of the array is determined by applying a large (usually
negative) voltage to individual connections. The general structure of a PLA is shown
in Figure 1.2. The PLA has a number of inputs (A, B, C) and outputs (X, Y, Z),

VCC

GND

4 Introduction

Figure 1.2 PLA structure.

an AND-plane and an OR-plane. Connections between the inputs and the product
terms (P, Q, R, S) and between the product terms and outputs are shown; the remain-
ing connections have been removed as part of the programming procedure. Some
PLAs may be reprogrammed electrically or by restoring the connections by exposing
the device to ultraviolet light. PALs (programmable array logic) extend the idea of
PLAs to include up to 12 flip-flops. In recent years, programmable devices have
become much more complex and include CPLDs (complex PLDs) and FPGAs (field
programmable gate arrays). FPGAs are described in more detail in Section 1.3.

1.1.4 Design flow

Most digital systems are sequential, that is they have states, and the outputs depend on
the present state. Some early designs of computer were asynchronous; in other words,
the transition to a new state happened as soon as inputs had stabilized. For many years,
digital systems have tended to be synchronous. In a synchronous system, the change of
state is triggered by one or more clock signals. In order to design reliable systems, for-
mal design methodologies have been defined. The design of a (synchronous sequential)
digital system using discrete gates would therefore proceed as follows.

1. Write a specification.

2. If necessary, partition the design into smaller parts and write a specification for each
part.

3. From the specification draw a state machine chart. This shows each state of the sys-
tem and the input conditions that cause a change of state, together with the outputs
in each state.

4. Minimize the number of states. This is optional and may not be useful in all cases.

5. Assign Boolean variables to represent each state.

= Connection

A B C Z Y X

AND plane OR plane

P

Q

R

S

CMOS technology 5

6. Derive the next state and output logic.

7. Optimize the next state and output logic to minimize the number of gates needed.

8. Choose a suitable placement for the gates in terms of which gates share integrated
circuits and in terms of where each integrated circuit is placed on the printed circuit
board.

9. Design the routing between the integrated circuits.

In general, steps 1 and 2 cannot be avoided. This is where the creativity of the designer
is needed. Most books on digital design concentrate on steps 3 to 7. Steps 8 and 9 can
be performed manually, but placement and routing was one of the first tasks to be suc-
cessfully automated. It is possible to simulate the design at different stages if it is con-
verted into a computer-readable form. Typically, in order to perform the placement and
routing, a schematic capture program would be used at around step 7, such that the
gate-level structure of the circuit would be entered. This schematic could be converted
to a form suitable for a logic simulator. After step 9 had been completed, the structure
of the circuit, including any delays generated by the resistance and capacitance of the
interconnect, could be extracted and again simulated.

The implementation of digital designs on ASICs or FPGAs therefore involves the
configuration of connections between predefined logic blocks. As noted, we cannot
avoid steps 1 and 2 above, and steps 8 and 9 can be done automatically. The use of an
HDL, which in the case of this book is VHDL, means that the design can be entered
into a CAD system and simulated at step 3 or 4, rather than step 7. So-called register
transfer level (RTL) synthesis tools automate steps 6 and 7. Step 4 still has to be done
by hand. Step 5 can be automated, but now the consequences of a particular state
assignment can be assessed very quickly. Behavioural synthesis tools are starting to
appear that automate the process from about step 2 onwards. Figure 1.3 shows the over-
all design flow for RTL synthesis-based design.

Because of this use of EDA tools to design ASICs and FPGAs, a book such as this can
concentrate on higher-level aspects of design, in particular the description of functional
blocks in an HDL. Many books on digital design describe multiple output and multi-level
logic minimization, including techniques such as the Quine–McCluskey algorithm. Here,
we assume that a designer may occasionally wish to minimize expressions with a few
variables and a single output, but if a complex piece of combinational logic is to be
designed a suitable EDA tool is available that will perform the task quickly and reliably.

1.2 CMOS technology

As noted, even digital gates can be thought of as analogue circuits. The design of individ-
ual gates is therefore a circuit design problem. Hence there exist a wide variety of possible
circuit structures. Very early digital computers were built using vacuum tubes. These gave
way to transistor circuits in the 1960s and 1970s. There are two major types of transistor:
bipolar junction transistors (BJTs) and field effect transistors (FETs). Logic families such
as TTL (transistor–transistor logic) and ECL (emitter–collector logic) use BJTs. Today, the
dominant (but not exclusive) technology is CMOS, which uses FETs. CMOS derives its

6 Introduction

Figure 1.3 RTL synthesis design flow.

Figure 1.4 NMOS transistor structure.

VHDL RTL
description

Structural
VHDL

RTL
synthesis

Structural
simulation

RTL
simulation

VHDL
testbench

EDIF
netlist

Place and
route back
annotation

SDF timing
information

Timing
simulation

Imple-
mentation

Gate
polysiliconMetal Metal

Source Drain

Insulator
SiO2

n+ diffusion

Substrate p

Channel

name from the particular type of FET used – the MOSFET (metal oxide semiconductor
FET). CMOS therefore stands for complementary MOS, as two types of MOS device are
used. MOS is, in fact, a misnomer; a better term is IGFET (insulated gate FET).

The structure of an n-type (NMOS) MOS transistor is shown in Figure 1.4, which is
not drawn to scale. The substrate is the silicon wafer that has been doped to make it
p-type. The thickness of the substrate is therefore significantly greater than the other
transistor dimensions. Two heavily doped regions of n-type silicon are created for each

CMOS technology 7

Figure 1.5 MOS transistor symbols: (a), (b) NMOS; (c), (d) PMOS.

D
(a)

G

S

B

D
(c)

G

S

B

D
(b)

G

S

D
(d)

G

S

transistor. These form the source and drain. In fact, the source and drain are inter-
changeable, but by convention the drain–source voltage is usually positive. Metal con-
nections are made to the source and drain. The polycrystalline silicon (polysilicon) gate
is separated from the rest of the device by a layer of silicon dioxide insulator.
Originally the gate would have been metal – hence the name MOS was derived from
the structure of the device (metal oxide semiconductor).

When the gate voltage is the same as the source voltage, the drain is insulated from
the source. As the gate voltage rises, the gate–oxide–semiconductor sandwich acts as a
capacitor, and negative charge builds up on the surface of the semiconductor. At a crit-
ical threshold voltage the charge is sufficient to create a channel of n-type silicon
between the source and drain. This acts as a conductor between the source and the
drain. Therefore the NMOS transistor can be used as a switch that is open when the
gate voltage is low and closed when the gate voltage is high.

A PMOS transistor is formed by creating heavily doped p-type drain and source
regions in an n-type substrate. A PMOS transistor conducts when the gate voltage is
low and does not conduct when the gate voltage is high.

Symbols for NMOS transistors are shown in Figures 1.5(a) and (b). The substrate is also
known as the bulk, hence the symbol B. In digital circuits, the substrate of NMOS transis-
tors is always connected to ground (logic 0) and hence can be omitted from the symbol, as
shown in Figure 1.5(b). Symbols for PMOS transistors are shown in Figures 1.5(c) and
(d). Again the bulk connection is not shown in Figure 1.5(d), because in digital circuits the
substrate of a PMOS transistor is always connected to the positive supply voltage (logic 1).

A logical inverter (a NOT gate) can be made from an NMOS transistor and a resistor,
or from a PMOS transistor and a resistor, as shown in Figures 1.6(a) and (b), respectively.
VDD is the positive supply voltage (3.3 V to 5 V); GND is the ground connection (0 V).
The resistors have a reasonably high resistance, say 10 k�. When IN is at logic 1 (equal
to the VDD voltage), the NMOS transistor in Figure 1.6(a) acts as a closed switch.

8 Introduction

Figure 1.6 MOS inverters: (a) NMOS; (b) PMOS; (c) CMOS.

(c)
VDD

IN OUT

GND

(a)
VDD

IN

OUT

GND

(b)
VDD

IN

OUT

GND

Because the resistance of the NMOS transistor, when it is conducting, is much less than
that of the resistor, OUT is connected to GND, giving a logic 0 at that node. In the circuit
of Figure 1.6(b), a logic 1 at IN causes the PMOS transistor to act as an open switch. The
resistance of the PMOS transistor is now much greater than that of the resistance, so OUT
is connected to GND via the resistor. Again a logic 0 is asserted at OUT.

A logic 0 at IN causes the opposite effects. The NMOS transistor becomes an open
switch, causing OUT to be connected to VDD by the resistor; the PMOS transistor
becomes a closed switch with a lower resistance than the resistor and again OUT is
connected to VDD.

Figure 1.6(c) shows a CMOS inverter. Here, both PMOS and NMOS transistors
are used. A logic 1 at IN will cause the NMOS transistor to act as a closed switch and
the PMOS transistor to act as an open switch, giving a 0 at OUT. A logic 0 will have
the opposite effect: the NMOS transistor will be open and the PMOS transistor will
be closed. The name CMOS comes from complementary MOS – the NMOS and
PMOS transistors complement each other.

Current flows in a semiconductor as electrons move through the crystal matrix. In
p-type semiconductors it is convenient to think of the charge being carried by the
absence of an electron, a ‘hole’. The mobility of holes is less than that of electrons
(i.e. holes move more slowly through the crystal matrix than electrons). The effect of
this is that the gain of a PMOS transistor is less than that of the same-sized NMOS
transistor. Thus to build a CMOS inverter with symmetrical characteristics, in the
sense that a 0 to 1 transition happens at the same rate as a 1 to 0 transition, requires
that the gain of the PMOS and NMOS transistors be made the same. This is done by
varying the widths of the transistors (assuming the lengths are the same) such that the
PMOS transistor is about 2.5 times as wide as the NMOS transistor. As will be seen,
this effect is compensated for in CMOS NAND gates, where similarly sized NMOS
and PMOS transistors can be used. CMOS NOR gates, however, do require the PMOS
transistors to be scaled. Hence, NAND gate logic is often preferred for CMOS design.

Two-input CMOS NAND and NOR gates are shown in Figures 1.7(a) and (b),
respectively. The same reasoning as used in the description of the inverter may be
applied. A logic 1 causes an NMOS transistor to conduct and a PMOS transistor to
be open; a logic 0 causes the opposite effect. NAND and NOR gates with three or more

CMOS technology 9

Figure 1.7 (a) CMOS NAND; (b) CMOS NOR.

(a)
VDD

GND

A

A.B

B

(b)
VDD

GND

B

A.B

A

Figure 1.8 CMOS AND–OR–Invert.

B

A

C

A

VDD

GND

D

C

D

B

A.B + C.D

inputs can be constructed using similar structures. Note that in a NAND gate all the
PMOS transistors must have a logic 0 at their gates for the output to go high. As the
transistors are working in parallel, the effect of the lower mobility of holes on the gain
of the transistors is overcome.

Figure 1.8 shows a CMOS AND–OR–Invert structure. The function
can be implemented using eight transistors compared with the 14 needed for three
NAND/NOR gates and an inverter.

1A.B 2 � 1C.D 2

10 Introduction

Figure 1.9 CMOS three-state buffer.

(a)
VDD

IN

GND

EN

EN

OUT

(b)
VDD

GND

IN OUT

EN

EN

A somewhat different type of structure is shown in Figure 1.9(a). This circuit is
a three-state buffer. When the EN input is at logic 1, and the input is at logic 0, the
two inner transistors are conducting and the gate inverts the IN input as normal. When
the EN input is at logic 0 and the input is at logic 1, neither of the two inner tran-
sistors is conducting and the output floats. The input is derived from EN using a
standard CMOS inverter. An alternative implementation of a three-state buffer is shown
in Figure 1.9(b). Here a transmission gate follows the CMOS inverter. The NMOS and
PMOS transistors of the transmission gate are controlled by complementary signals.
When EN is at logic 1 and is at logic 0, both transistors conduct; otherwise both
transistors are open circuit.

Figure 1.10(a) shows a two-input multiplexer constructed from transmission gates
while Figures 1.10(b) and (c) show an exclusive OR gate and a D latch, respectively,
that both use CMOS transmission gates. All these circuits use fewer transistors than
the equivalent circuits constructed from standard logic gates. It should be noted,
however, that the simulation of transmission gate circuits can be problematic. VHDL,
in particular, is not well suited to this type of transistor-level modelling, and we do
not give any examples in this book, other than of general three-state buffers.

1.3 Programmable logic

While CMOS is currently the dominant technology for integrated circuits, for reasons of
cost and performance, many designs can be implemented using programmable logic.
The major advantage of programmable logic is the speed of implementation. A pro-
grammable logic device can be configured on a desktop in seconds, or at most minutes.

EN

EN
EN

EN

Programmable logic 11

Figure 1.10 CMOS transmission gate circuits: (a) multiplexer; (b) XOR; (c) D latch.

(a)
C

A

C

C

C

B

Z

(b)
VDD

GND

BA

A+B

D Q

(c)

CLK

CLK

CLK

CLK

The fabrication of an integrated circuit can take several weeks. The cost per device of
a circuit built in programmable logic may be greater than that of a custom integrated cir-
cuit, and the performance, in terms of both speed and functionality, is likely to be less
impressive than that of CMOS. These apparent disadvantages are often outweighed by
the ability to rapidly produce working integrated circuits. Thus programmable logic is
suited to prototypes, but also increasingly to small production volumes.

One recent application of programmable devices is as reconfigurable logic. A system
may perform different functions at different points in time. Instead of having all the
functionality available all the time, one piece of hardware may be reconfigured to
implement the different functions. New functions, or perhaps better versions of existing
functions, could be downloaded from the Internet. Such applications are likely to
become more common in future.

There are a number of different technologies used for programmable logic by
different manufacturers. The simplest devices, programmable logic arrays (PLAs),
consist of two programmable planes, as shown in Figure 1.2. In reality, both planes
implement a NOR function. The device is programmed by breaking connections.
Most simple programmable devices use some form of floating gate technology. Each
connection in the programmable planes consists of a MOS transistor. This transistor
has two gates – one is connected to the input, while the second, between the first gate

12 Introduction

Figure 1.11 PAL structure (Lattice Semiconductor Corporation).

and the channel, floats. When the appropriate negative voltage is applied to the device,
the floating gate can have a large charge induced on it. This charge will exist indef-
initely. If the charge exists on the floating gate, the device is disabled; if the charge is
not there, the device acts as a normal transistor. The mechanisms for putting the
charge on the device include avalanche or hot electron injection (EPROM) and
Fowler–Nordheim tunnelling (EEPROM and Flash devices). These devices can be
reprogrammed electrically.

PALs have a programmable AND plane and a fixed OR plane, and usually include
registers, as shown in Figure 1.11. More complex PLDs (CPLDs) consist effectively of
a number of PAL-like macrocells that can communicate through programmable inter-
connect, as shown in Figure 1.12.

More complex still are field programmable gate arrays (FPGAs). FPGAs have a dif-
ferent type of architecture from CPLDs and are implemented in different technologies.
Each FPGA vendor tends to have its own architecture – we will discuss two particular
architectures here. Actel FPGAs consist of an array of combinational and sequential
cells as shown in Figure 1.13. The combinational and sequential cells are shown in

Programmable logic 13

Figure 1.12 CPLD structure (Cypress Semiconductor Corporation).

SYSTEM CLOCK

MACROCELL 1
MACROCELL 2
MACROCELL 3
MACROCELL 4
MACROCELL 5
MACROCELL 6
MACROCELL 7
MACROCELL 8

MACROCELL 9–16

LAB A

MACROCELL 17
MACROCELL 18
MACROCELL 19
MACROCELL 20
MACROCELL 21
MACROCELL 22
MACROCELL 23
MACROCELL 24

MACROCELL 25–32

LAB B

MACROCELL 33
MACROCELL 34
MACROCELL 35
MACROCELL 36
MACROCELL 37
MACROCELL 38
MACROCELL 39
MACROCELL 40

MACROCELL 41–48

LAB C

MACROCELL 49
MACROCELL 50
MACROCELL 51
MACROCELL 52
MACROCELL 53
MACROCELL 54
MACROCELL 55
MACROCELL 56

MACROCELL 57–64

LAB D

LAB H

LAB G

LAB F

LAB E

MACROCELL 120
MACROCELL 119
MACROCELL 118
MACROCELL 117
MACROCELL 116
MACROCELL 115
MACROCELL 114
MACROCELL 113

MACROCELL 121–128

MACROCELL 104
MACROCELL 103
MACROCELL 102
MACROCELL 101
MACROCELL 100
MACROCELL 99
MACROCELL 98
MACROCELL 97

MACROCELL 105–112

MACROCELL 88
MACROCELL 87
MACROCELL 86
MACROCELL 85
MACROCELL 84
MACROCELL 83
MACROCELL 82
MACROCELL 81

MACROCELL 89–96

MACROCELL 72
MACROCELL 71
MACROCELL 70
MACROCELL 69
MACROCELL 68
MACROCELL 67
MACROCELL 66
MACROCELL 65

MACROCELL 73–80

Figures 1.14(a) and (b), respectively. Actel FPGAs are configured using an antifuse
technology. In other words, a connection is normally open circuit, but the application of
a suitably large voltage causes a short-circuit to be formed. This configuration is not
reversible, unlike EPROM or Flash technology. Once made, a short-circuit has a resist-
ance of around 50 �, which limits the fan-out, as described below.

Xilinx FPGAs are implemented in static RAM technology. Unlike most program-
mable logic, the configuration is therefore volatile and must be restored each time
power is applied to the circuit. Again, these FPGAs consist of arrays of logic cells. One
such cell is shown in Figure 1.15. Each of these cells can be programmed to implement
a range of combinational and sequential functions. In addition to these logic cells, there
exists programmable interconnect, including three-state buffers.

14 Introduction

Figure 1.13 Actel FPGA (Actel Corporation).

Figure 1.14 Actel FPGA cells: (a) combinational; (b) sequential (Actel Corporation).

0 1 2 3 4 5 c–1 c c+1 m m+1m+2 m+3 Columns
Rows Channels

n+2

n+1

n

n–1

2

1

0

0

1

2

n–1

n

n+1

•
•
•

IO IO BIN S S C C S

IO IO IO CLKM

IO IO BIN S S C C S

IO IO BIN S S C C S

IO IO BIN S S C C S

BIO IO IO IO IO IO

S C C S C S IO IO

IO IO IO IO IO IO

S C C S C S IO IO

S C C S C S IO IO

S C C S C S IO IO

IO IO IO IO IO IO Bottom I/Os

Right I/Os

Top I/Os

Left I/Os

•
•
•

(a) (b)

D00
D01
D10
D11

Y

S1 S0

A1B1 A0 B0

OUT

CLK CLR

D Q

D00
D01
D10
D11

Y

S1 S0

A1 B1 A0 B0

OUT

1.4 Electrical properties

1.4.1 Noise margins

Although it is common to speak of a logic 1 being, say, 2.5 V and a logic 0 being 0 V, in
practice a range of voltages represent a logic state. A range of voltages may be recog-
nized as a logic 1, and similarly one voltage from a particular range may be generated
for a logic 1. Thus we can describe the logic states in terms of the voltages shown in
Table 1.1.

Electrical properties 15

Figure 1.15 Xilinx FPGA logic cell (Xilinx, Inc.).

C1• • •C4
4

LOGIC
FUNCTION

OF
G1-G4

G'

G4

G3

G2

G1

LOGIC
FUNCTION

OF
F1-F4

F'

F4

F3

F2

F1

H1 DIN/H0 SR/H0 EC

S/R
CONTROL

S/R
CONTROL

1

1

Multiplexer Controlled
by Configuration Program

K
(CLOCK)

LOGIC
FUNCTION

OF
F', G'
AND
H1

H'

DIN
F'
G'
H'

DIN
F'
G'
H'

G'
H'

H'
F'

Bypass

SD

Bypass

D Q

EC
RD

SD
D Q

EC
RD

YQ

XQ

Y

X

Table 1.1 Typical voltage levels for CMOS circuits with a supply voltage of 2.5 V.

Parameter Description Typical CMOS value

VIHmax Maximum voltage recognized as a logic 1 2.5 V

VIHmin Minimum voltage recognized as a logic 1 1.35 V

VILmax Maximum voltage recognized as a logic 0 1.05 V

VILmin Minimum voltage recognized as a logic 0 0.0 V

VOHmax Maximum voltage generated as a logic 1 2.5 V

VOHmin Minimum voltage generated as a logic 1 1.75 V

VOLmax Maximum voltage generated as a logic 0 0.75 V

VOLmin Minimum voltage generated as a logic 0 0.0 V

The transfer characteristic for a CMOS inverter is illustrated in Figure 1.16. The
noise margin specifies how much noise, from electrical interference, can be added to
a signal before a logic value is misinterpreted. From Table 1.1, it can be seen that the
maximum voltage that a gate will generate to represent a logic 0 is 0.75 V. Any voltage
up to 1.05 V is, however, recognized as a logic 0. Therefore there is a ‘spare’ 0.3 V, and
any noise added to a logic 0 within this band will be accepted. Similarly, the difference

16 Introduction

Figure 1.16 Transfer characteristic of CMOS inverter.

VO

VOHmin

VOLmax

VILmax VIHmin VI

between the minimum logic 1 voltage generated and the minimum recognized is 0.4 V.
The noise margins are calculated as:

In general, the bigger the noise margin, the better.

1.4.2 Fan-out

The fan-out of a gate is the number of other gates that it can drive. Depending on the
technology, there are two ways to calculate the fan-out. If the input to a gate is resistive,
as is the case with TTL or antifuse technology, the fan-out is calculated as the ratio of
the current that a gate can output to the amount of current required to switch the input
of a gate. For example, 74ALS series gates have the input and output currents specified
in Table 1.2.

Two fan-out figures can be calculated:

Obviously the smaller of the two figures must be used.
CMOS gates draw almost no DC input current because there is no DC path between

the gate of a transistor and the drain, source or substrate of the transistor. Therefore it
would appear that the fan-out of CMOS circuits is very large. A different effect applies
in this case. Because the gate and substrate of a CMOS gate form a capacitor, it takes
a finite time to charge that capacitor, and hence the fan-out is determined by how fast
the circuit is required to switch. In addition, the interconnect between two gates has

Logic 0 fan-out �
IOLmax

IILmax
�

8 m�

100 ��
� 80

Logic 1 fan-out �
IOHmax

IIHmax
�

400 ��

20 ��
� 20

NMH � VOHmin � VIHmin

NML � VILmax � VOLmax

Electrical properties 17

Table 1.2 Input and output currents for 74ALS series TTL gates.

IIHmax Maximum logic 1 input current 20 �A

IILmax Maximum logic 0 input current �100 �A

IOHmax Maximum logic 1 output current �400 �A

IOLmax Maximum logic 0 output current 8 mA

Figure 1.17 (a) CMOS inverter driving CMOS inverter; (b) equivalent circuit.

(a) (b)VDD VDD

RP

VO

RN
CG

a capacitance. In high-performance circuits the effect of the interconnect can dominate
that of the gates themselves. Obviously, the interconnect characteristics cannot be esti-
mated until the final layout of the circuit has been completed.

Figure 1.17(a) shows one CMOS inverter driving another. Figure 1.17(b) shows the
equivalent circuit. If the first inverter switches from a logic 1 to a logic 0 at t � 0, and
if we assume that the resistance of NMOS transistor is significantly less than the resist-
ance of the PMOS transistor, VO is given by:

From Table 1.1 above, the minimum value of VO that would be recognized as a logic 1 is
1.35 V and the maximum value of VO that would be recognized as a logic 0 is 1.05 V. For
example, if VDD is 2.5 V, RN is 100 � and CG is 100 pF, we can see that the time taken for
VO to drop from 1.35 V to 1.05 V is given by:

If two inverters are driven, the capacitive load doubles, so the switching time doubles.
Therefore, although a CMOS gate can drive an almost unlimited number of other gates
at a fixed logic level, the fan-out is limited by the speed required of the circuit.

 � 2.5 ns

 t � �100 � 100 � 10�12 � ln
1.05

2.5
� 100 � 100 � 10�12 � ln

1.35

2.5

VO � VDDe�t�RNCG

18 Introduction

Summary

Digital design is no longer a matter of taking small-scale integrated circuits and
connecting them together. Programmable logic devices are an important alternative
to full-custom integrated circuits. A number of different technologies exist for PLDs.
These different technologies impose different constraints on the designer.

Further reading

The best source of information about different families of programmable logic is the
manufacturers themselves. The entire data books are now available on the Web. These
generally include electrical information, design advice and hints for programming
using VHDL. In general, it is easy to guess the Web addresses. For example, Xilinx are
at http://www.xilinx.com/ and Actel are at http://www.actel.com/

Exercises

1.1 Find examples of the following components in a 74LS/74HC data book (or on
the Web):

� 4-bit universal shift register
� 4-bit binary counter
� 8-bit priority encoder
� 4-bit binary adder
� 4-bit ALU

1.2 Find examples of PLDs, CPLDs and FPGAs from manufacturers’ data books or
from the Web. Compare the following factors:

� technologies
� performance
� cost
� programmability (e.g. use of VHDL)
� testability

1.3 How is VHDL used in the design process?

1.4 FPGAs are available in a number of sizes. Given that smaller FPGAs will be
cheaper, what criteria would you use to estimate the required size of an FPGA,
prior to detailed design?

1.5 A digital system may be implemented in a number of different technologies. List
the main types available and comment on the advantages and disadvantages of
each option. If you were asked to design a system with about 5000 gates and
which was expected to sell about 10 000 units, which hardware option would you
choose and why?

19

Chapter 2

Combinational logic
design

2.1 Boolean algebra 19

2.2 Logic gates 22

2.3 Combinational logic design 22

2.4 Timing 30

2.5 Number codes 32

Digital design is based on the processing of binary signals. In this chapter, we will
review the principles of Boolean algebra and the minimization of Boolean expressions.
Hazards and basic numbering systems will also be discussed.

2.1 Boolean algebra

2.1.1 Values

Digital design uses a two-value algebra. Signals can take one of two values that can be
represented by

ON and OFF, or
TRUE and FALSE, or
1 and 0.

2.1.2 Operators

The algebra of two values, known as Boolean algebra after George Boole
(1815–1864), has five basic operators. In decreasing order of precedence (i.e. in the

20 Combinational logic design

absence of parentheses, operations at the top of the list should be evaluated first),
these are:

� NOT

� AND

� OR

� IMPLIES

� EQUIVALENCE

The last two operators are not normally used in digital design. These operators can be
used to form expressions, for example:

The symbol ‘�’ means ‘OR’, ‘.’ means ‘AND’, and the overbar, e.g. ‘ ’, means
‘NOT A’.

2.1.3 Truth tables

The meaning of an operator or expression can be described by listing all the possible
values of the variables in that expression, together with the value of the expression, in a
truth table. The truth tables for the three basic operators are given below.

A NOT A ()

0 1
1 0

A B A AND B (A.B)

0 0 0
0 1 0
1 0 0
1 1 1

A B A OR B (A � B)

0 0 0
0 1 1
1 0 1
1 1 1

In digital design, three further operators are commonly used, NAND (Not AND),
NOR (Not OR) and XOR (eXclusive OR).

A

A

Z � 1A � B 2 .1A � B 2
F � 1A � B.C 2
B � C AND 0
A � 1

Boolean algebra 21

A B A NAND B

0 0 1
0 1 1
1 0 1
1 1 0

A B A NOR B

0 0 1
0 1 0
1 0 0
1 1 0

A B A XOR B

0 0 0
0 1 1
1 0 1
1 1 0

The XNOR operator is also used occasionally. XNOR is the same as
EQUIVALENCE.

2.1.4 Rules of Boolean algebra

There are a number of basic rules of Boolean algebra that follow from the precedence
of the operators.

1. Commutivity

2. Associativity

3. Distributivity

In addition, some basic relationships can be observed from the truth tables above:

 A . A � 0 A � A � 1
 A . A � A A � A � A
 A . 0 � 0 A � 1 � 1
 A . 1 � A A � 0 � A

A
�

� A

A . 1B � C 2 � A . B � A . C

A . 1B . C 2 � 1A . B 2 . C

A � 1B � C 2 � 1A � B 2 � C

A . B � B . A

A � B � B � A

1A � B 2

1A � B 2

1A � B 2

1A.B 2

22 Combinational logic design

The right-hand column can be derived from the left-hand column by applying the principle
of duality. The principle of duality states that if each AND is changed to an OR, each OR
to an AND, each 1 to 0 and each 0 to 1, the value of the expression remains the same.

2.1.5 De Morgan’s law

There is a very important relationship that can be used to rewrite Boolean expressions
in terms of NAND or NOR operations: De Morgan’s Law. This is expressed as

2.1.6 Shannon’s expansion theorem

Shannon’s expansion theorem can be used to manipulate Boolean expansions.

F(1, B, C, D, . . .) means that all instances of A in F are replaced by a logic 1.

2.2 Logic gates

The basic symbols for one and two input logic gates are shown in Figure 2.1. Three or
more inputs are shown by adding extra inputs (but note that there is no such thing as a
three-input XOR gate). The ANSI/IEEE symbols can be used instead of the traditional
‘spade’-shaped symbols, but are ‘not preferred’ according to IEEE Standard 91-1984. As
will be seen in the next chapter, IEEE notation is useful for describing complex logic
blocks, but simple sketches are often clearer if done with the traditional symbols. A circle
shows logic inversion. Note that there are two forms of the NAND and NOR gates. From
De Morgan’s law, it can be seen that the two forms are equivalent in each case.

In drawing circuit diagrams, it is desirable, for clarity, to choose the form of a logic
gate that allows inverting circles to be joined. The circuits of Figure 2.2 are identical in
function. If the circuit of Figure 2.2(a) is to be implemented using NAND gates, the
diagram of Figure 2.2(b) may be preferable to that of Figure 2.2(c), because the func-
tion of the circuit is clearer.

2.3 Combinational logic design

The values of the output variables of combinational logic are dependent only on the
input values and are independent of previous input values or states. Sequential logic, on
the other hand, has outputs that depend on the previous states of the system. The design
of sequential systems is described in later chapters.

The major design objective is usually to minimize the cost of the hardware needed to
implement a logic function. That cost can usually be expressed in terms of the number

 � 1A � F10, B, C, D, p 2 2 .1A � F11, B, C, D, p 2 2

 F1A, B, C, D, p 2 � A.F11, B, C, D, p 2 � A.F10, B, C, D, p 2

1A.B 2 � A � B or 1A � B 2 � A.B

Combinational logic design 23

MIL-STD-806B ANSI/IEEE

XOR

NAND

NOR
&

≥1

≥1

&

=1

1NOT 0.7
0.7

0.16

≥1OR
0.8

0.3

0.8

1.0

&AND 0.8 0.4

1.0

(a) (b)

(c)

Figure 2.2 Equivalent circuit representations.

Figure 2.1 Logic symbols.

of gates, although for technologies such as programmable logic there are other limita-
tions, such as the number of terms that may be implemented. Other design objectives
may include testability (discussed in detail in Chapter 11) and reliability.

Before describing the logic design process, some terms have to be defined. In these
definitions it is assumed that we are designing a piece of combinational logic with a
number of input variables and a single output.

24 Combinational logic design

A minterm is a Boolean AND function containing exactly one instance of each input
variable or its inverse. A maxterm is a Boolean OR function with exactly one instance
of each variable or its inverse. For a combinational logic circuit with n input variables,
there are 2n possible minterms and 2n possible maxterms. If the logic function is true at
row i of the standard truth table, that minterm exists and is designated by mi. If the logic
function is false at row i of the standard truth table, that maxterm exists and is desig-
nated by Mi. For example, the following truth table defines a logic function. The final
column shows the minterms and maxterms for the function.

A B C Z

0 0 0 1 m0

0 0 1 1 m1

0 1 0 0 M2

0 1 1 0 M3

1 0 0 0 M4

1 0 1 1 m5

1 1 0 0 M6

1 1 1 1 m7

The logic function may be described by the logical OR of its minterms:

Z � m0 � m1 � m5 � m7

A function expressed as a logical OR of distinct minterms is in sum of products form:

Each variable is inverted if there is a corresponding 0 in the truth table and not inverted
if there is a 1.

Similarly, the logic function may be described by the logical AND of its maxterms:

Z � M2.M3.M4.M6

A function expressed as a logical AND of distinct maxterms is in product of sums form:

Each variable is inverted if there is a corresponding 1 in the truth table and not inverted
if there is a 0.

An implicant is a term that covers at least one true value and no false values of a func-
tion. For example, the function is shown in the following truth table.

A B Z

0 0 1
0 1 0
1 0 1
1 1 1

Z � A � A .B

Z � 1A � B � C 2 1A � B � C 2 1A � B � C 2 1A � B � C 2

Z � A.B.C � A.B.C � A.B.C � A.B.C

Combinational logic design 25

The implicants of this function are and . The non-implicants are
and .

A prime implicant is an implicant that covers one or more minterms of a function,
such that the minterms are not all covered by another single implicant. In the example
above, A and are prime implicants. The other implicants are all covered by one of the
prime implicants. An essential prime implicant is a prime implicant that covers an
implicant not covered by any other prime implicant. Thus, A and are essential prime
implicants.

2.3.1 Logic minimization

The function of a combinational logic circuit can be described by one or more Boolean
expressions. These expressions can be derived from the specification of the system. It is
very likely, however, that these expressions are not initially stated in their simplest
form. Therefore, if these expressions were directly implemented as logic gates, the
amount of hardware required would not be minimal. Therefore, we seek to simplify the
Boolean expressions and hence minimize the number of gates needed. Another way of
stating this is to say that we are trying to find the set of prime implicants of a function
that is necessary to fully describe the function.

It is possible in principle to simplify Boolean expressions by applying the various
rules of Boolean algebra described in Section 2.1. It doesn’t take long, however, to real-
ize that this approach is slow and error prone. Other techniques have to be employed.
The technique described here, Karnaugh maps, is a graphical method, although it is
effectively limited to problems with six or fewer variables. The Quine–McCluskey
algorithm is a tabular method which is not limited in the number of variables and which
is well suited to tackling problems with more than one output. Quine–McCluskey can
be performed by hand, but it is generally less easy than the Karnaugh map method. It is
better implemented as a computer program. Logic minimization belongs, however, to
the NP-complete class of problems. This means that as the number of variables
increases, the time to find a solution increases exponentially. Therefore heuristic meth-
ods have been developed that find acceptable, but possibly less than optimal, solutions.
The Espresso program implements heuristic methods that reduce to the
Quine–McCluskey algorithm for small problems. Espresso has been used in a number
of logic synthesis systems. Therefore the approach adopted here is to use Karnaugh
maps for small problems with a single output and up to six inputs. In general, it makes
sense to use an EDA program to solve larger problems.

The Karnaugh map (or K-map, for short) method generates a solution in sum-
of-products or product-of-sums form. Such a solution can be implemented directly as
two-level AND–OR or OR–AND logic (ignoring the cost of generating the inverse val-
ues of inputs). AND–OR logic is equivalent to NAND–NAND logic, and OR–AND
logic is equivalent to NOR–NOR logic. Sometimes, a cheaper (in terms of the number
of gates) method can be found by factorizing the two-level minimized expression to
generate more levels of logic – two-level minimization must be performed before any
such factorization. Again, we shall assume that if such factorization is to be performed
it will be done using an EDA program, such as SIS.

B

B

A.BA, B
A.BA.B, A, B, A.B

26 Combinational logic design

A

0

0

1

1

B

0

1

0

1

Z

Z0

Z1

Z2

Z3

0

Z0

Z1

Z2

Z3

1

0

1

Z:

A
B

Figure 2.3 Two-input Karnaugh map.

00

Z0

Z1

Z2

Z3

01

0

1

Z:

AB
C 11 10

Z6 Z4

Z7 Z5

Figure 2.4 Three-input Karnaugh map.

00

Z1

Z2

Z3

01

Z:

11

10 Z6

Z4

Z7

Z5

00 01 11 10

Z0

AB
CD

Z12 Z8

Z13 Z9

Z15 Z11

Z14 Z10

Z14

Z0
Z8

Z15

Z7

Z6

Z2
Z10

Figure 2.5 Four-input Karnaugh map.

2.3.2 Karnaugh maps

A Karnaugh map is effectively another way to write a truth table. For example, the
Karnaugh map of a general two-input truth table is shown in Figure 2.3.

Similarly, three- and four-input Karnaugh maps are shown in Figures 2.4 and 2.5,
respectively. Note that along the top edge of the three-variable Karnaugh map and
along both edges of the four-variable map only one variable changes at a time – the
sequence is 00, 01, 11, 10, not the normal binary counting sequence. Hence, for
example, the columns in which A is true are adjacent. Therefore the left and right
edges, and the top and bottom in the four-variable map, are also adjacent – B is false in

Combinational logic design 27

0 1

0

1

Z:

A
B

1 0

1 0

Figure 2.6 Karnaugh map for two-input function.

the leftmost and rightmost columns. The three-variable map is therefore really a tube
and the four-variable map is a torus, as shown in Figure 2.5. Of course, the maps are
drawn as squares for convenience!

A five-variable Karnaugh map is drawn as two four-variable maps, one represent-
ing the truth table when the fifth variable, E, is false, the other when E is true.
Squares at the same coordinates on both maps are considered to be adjacent.
Similarly, a six-variable Karnaugh map is drawn as four four-variable maps corre-
sponding to and E.F, respectively. For this to work, the Karnaugh
maps have to be arranged themselves in the pattern as the entries in the two-variable
map. Hence squares at the same location in adjacent maps can be considered adja-
cent. In practice, therefore, it is not feasible to consider Karnaugh maps with more
than six variables.

Implicants can be read from Karnaugh maps by circling groups of 1, 2, 4, 8, . . . , 2n

true values. For example, the function can be expressed as the
following truth table.

A B Z

0 0 1
0 1 1
1 0 0
1 1 0

The corresponding Karnaugh map is shown in Figure 2.6. We can now circle the two
adjacent 1s as shown. This grouping represents the function , because it lies in
the column A � 0, and because within the grouping B takes both 0 and 1 values
and hence we don’t care about its value. Therefore, by grouping patterns of 1s, logic
functions can be minimized. Examples of three- and four-variable Karnaugh maps
are shown in Figures 2.7 and 2.8. In both cases, by considering that the edges of
the Karnaugh maps are adjacent, groupings can be made that include 1s at two or
four edges.

The rules for reading prime implicants from a Karnaugh map are as follows.

� Circle the largest possible groups.

� Avoid circles inside circles (see the definition of a prime implicant).

Z � A

Z � A.B � A.B

E.F, E.F, E.F

28 Combinational logic design

00 01

0

1

Z:

AB
 C

0 1

1 0

11 10

1

0

0

1

Z=B.C+B.C

Figure 2.7 Groupings on three-input Karnaugh map.

1 0 0 100

01 0 1 1 0

11 0 1 1 0

10 1 0 0 1

00 01 11 10

Z: Z=B.D+B.D

AB

CD

Figure 2.8 Groupings on four-input Karnaugh map.

0 1

0

1

Z:

A
B

0 1

1 0

Figure 2.9 Exclusive OR grouping on Karnaugh map.

� Circle 1s and read the sum of products for Z.

� Circle 0s and read the sum of products for .

� Circle 0s and read the product of sums for Z.

� Circle 1s and read the product of sums for .

Diagonal pairs, as shown in Figure 2.9, correspond to XOR functions.

Z

Z

Combinational logic design 29

0 0 0 000

01 0 1 1 0

0

0

11 1 1 0

10 0 0 0

00 01 11 10

Z:

AB

CD

Figure 2.10 Redundant grouping on Karnaugh map.

A

0

0

1

1

B

0

1

0

1

Z

1

0

1

–

0

1

1

0

1

Z:

A
B

–

0

1

Figure 2.11 Don’t care on Karnaugh map.

The Karnaugh map of Figure 2.10 has three prime implicants circled. The function can
be read as . The vertical grouping, shown with a dashed
line, covers 1s covered by the other groupings. This grouping is therefore redundant and
can be omitted. Hence the function can be read as .

Assuming that all the prime implicants have been correctly identified, the mini-
mal form of the function can be read by selecting all the essential prime implicants
(i.e. those circles that circle 1s – or 0s – not circled by any other group), together
with sufficient other prime implicants needed to cover all the 1s (or 0s). Redundant
groupings can be ignored, but under some circumstances it may be desirable to
include them.

Incompletely specified functions have ‘don’t cares’ in the truth tables. These
don’t cares correspond to input combinations that will not (or should not) occur. For
example, consider the truth table of Figure 2.11. The don’t care entries can be
included or excluded from groups as convenient, in order to get the largest possible
groupings, and hence the smallest number of implicants. In the example, we could
treat the don’t care as a 0 and read , or treat the don’t care as a 1 and
read .Z � A � B

Z � A.B � A.B

Z � B.C.D � A.C.D

Z � B.C.D � A.C.D � A.B.D

30 Combinational logic design

Input

Output

Causality

Time

1

0

1

0

Figure 2.12 Timing diagram for inverter.

A

C

B

C

D

E

Z

Figure 2.13 Circuit with Static 1 hazard.

2.4 Timing

The previous section dealt with minimizing Boolean expressions. The minimized
Boolean expressions can then be directly implemented as networks of gates or on pro-
grammable logic. All gates have a finite delay between a change at an input and the
change at an output. If gates are used, therefore, different paths may exist in the net-
work, with different delays. This may cause problems.

To understand the difficulties, it is helpful to draw a timing diagram. This is a diagram
of the input and output waveforms as a function of time. For example, Figure 2.12 shows
the timing diagram for an inverter. Note the stylized (finite) rise and fall times. An arrow
shows causality, i.e. the fact that the change in the output results from a change in the input.

A more complex circuit would implement the function

Z � A.C � B.

The value of is generated from C by an inverter. A possible implementation of this
function is therefore given in Figure 2.13. In practice, the delay through each gate and

C

C

Timing 31

A
0

1

B
0

1

C
0

1

C
0

1

D
0

1

E
0

1

Z
0

1

Figure 2.14 Timing diagram for circuit of Figure 2.13.

0

1

0

1

Static 1

Static 0

0

1

0

1

Dynamic 0

Dynamic 1

Figure 2.15 Types of hazard.

through each type of gate would be slightly different. For simplicity, however, let us
assume that the delay through each gate is one unit of time. To start with, let A � 1 and
B � 1. The output, Z, should be at 1 irrespective of the value of C. Let us see, by way
of the timing diagram in Figure 2.14, what happens when C changes from 1 to 0. One
unit of time after C changes, and D change to 1. In turn, these changes cause E and Z
to change to 0 another unit of time later. Finally, the change in E causes Z to change
back to 1 a further unit of time later. This change in Z from 1 to 0 and back to 1 is
known as a hazard. A hazard occurs as a result of delays in a circuit.

Figure 2.15 shows the different types of hazard that can occur. The hazard in the
circuit of Figure 2.13 is a Static 1 hazard. Static 1 hazards can occur in AND–OR or

C

32 Combinational logic design

A

C

B

C

D

E
Z

F

Figure 2.17 Hazard-free circuit.

00

0

0

1

0

01

0

1

Z:

AB
C 11 10

1

1

0

1

Figure 2.16 Redundant term on Karnaugh map.

NAND–NAND logic. Static 0 hazards can occur in OR–AND or NOR–NOR logic.
Dynamic hazards do not occur in two-level circuits. They require three or more unequal
signal paths. Dynamic hazards are often caused by poor factorization in multi-level
minimization.

Static hazards, on the other hand, can be avoided by designing with redundant logic.
For example, the Karnaugh map of the circuit function of Figure 2.13 is shown in
Figure 2.16. The redundant prime implicant is shown as a dotted circle. The redundant
gate corresponding to this prime implicant can be introduced to eliminate the hazard.
The circuit function is therefore

The circuit is shown in Figure 2.17. Now, F is independent of C. If A � B � 1, F � 0.
F stays at 0 while C changes, therefore Z stays at 1.

2.5 Number codes

Digital signals are either control signals of some kind or information. In general, infor-
mation takes the form of numbers or characters. These numbers and characters have to
be coded in a form suitable for storage and manipulation by digital hardware. Thus one

Z � A.C � B.C � A.B

Number codes 33

integer or one character may be represented by a set of bits. From the point of view of
a computer or other digital system, no one system of coding is better than another.
There do, however, need to be standards, so that different systems can communicate.
The standards that have emerged are generally also designed such that a human being
can interpret the data if necessary.

2.5.1 Integers

The simplest form of coding is that of positive integers. For example, a set of three bits
would allow us to represent the decimal integers 0 to 7. In base 2 arithmetic, 0002 rep-
resents 010, 0112 represents 310 and 1112 represents 710. As with decimal notation, the
most significant bit is on the left.

For the benefit of human beings, strings of bits may be grouped into sets of three or
four and written using octal (base 8) or hexadecimal (base 16) notation. For example,
668 is equal to 110 1102 or 5410. For hexadecimal notation, the letters A to F represent
the decimal numbers 10 to 15. For example, EDA16 is 1110 1101 10102 or 73328

or 380210.
The simple translation of a decimal number into bits is sufficient for zero and posi-

tive integers. Negative integers require additional information. The simplest approach
is to set aside one bit as a sign bit. Therefore, 0 1102 might represent �610, while 1 1102

would represent –610. While this makes translation between binary and decimal num-
bers simple, the arithmetic operations of addition and subtraction require that the sign
bits be checked before an operation can be performed on two numbers. It is common,
therefore, to use a different notation for signed integers: two’s complement. The princi-
ple of two’s complement notation is that the code for –b, where b is a binary number
represented using n bits, is the code given by 2n – b. For example, –610 is represented by
100002 – 01102, which is 10102. The same result is obtained by inverting all the bits and
adding 1: �610 is 10012 � 1 � 10102.

The advantage of two’s complement notation is that addition and subtraction may be
performed using exactly the same hardware as for unsigned arithmetic; no sign check-
ing is needed. The major disadvantage is that multiplication and division become much
more complicated. Booth’s algorithm, described in Section 6.7, is a technique for mul-
tiplying two’s complement numbers.

2.5.2 Fixed-point numbers

For many applications, non-integer data need to be stored and manipulated. The
binary representation of a fixed-point number is exactly the same as for an inte-
ger number, except that there is an implicit ‘decimal’ point. For example, 6.25 is
equal to 22 � 21 � 2�2 or 110.012. Instead of representing the point, the number
110012 (2510) is stored, with the implicit knowledge that it and the results of any
operations involving it have to be divided by 22 to obtain the true value. Notice that
all operations, including those for two’s complement representations, are the same
as for integer numbers.

34 Combinational logic design

2.5.3 Floating-point numbers

The number of bits that have been allocated to represent fractions limits the range of
fixed-point numbers. Floating-point numbers allow a much wider range of accuracy. In
general, floating-point operations are only performed using specialized hardware,
because they are computationally very expensive. A typical single-precision floating-
point number has 32 bits, of which one is the sign bit (s), eight are the exponent (e) in
two’s complement form, and the remaining 23 are the mantissa (m), such that a decimal
number is represented as

(�1)s � 1.m � 2e

The IEEE standard 754-1985 defines formats for 32, 64 and 128 bit floating-point num-
bers, with special patterns for �� and the results of invalid operations, such as √–1.

2.5.4 Alphanumeric characters

Characters are commonly represented by seven or eight bits. The ASCII code is widely
used. Seven bits allow the basic Latin alphabet in upper and lower cases, together with
various punctuation symbols and control codes, to be represented. For example, the letter
A is represented by 1000001. For accented characters eight-bit codes are commonly
used. Manipulation of text is normally performed using general-purpose computers
rather than specialized digital hardware.

2.5.5 Gray codes

In the normal binary counting sequence, the transition from 0111 (710) to 1000 (810)
causes three bits to change. In some circumstances, it may be undesirable that several
bits should change at once, because the bit changes may not occur at exactly the same
time. The intermediate values might generate spurious warnings. A Gray code is one in
which only one bit changes at a time. For example a three-bit Gray code would count
through the following sequence (other Gray codes can also be derived):

000
001
011
010
110
111
101
100

Note that the sequence of bits on a K-map is a Gray code. Another application of Gray
codes is as a position encoder on a rotating shaft, as shown in Figure 2.18.

Number codes 35

100 000

101

111

110 010

001

011

Figure 2.18 Gray code as shaft encoder.

2.5.6 Parity bits

When data are transmitted, either by wire or by using radio communications, there is
always the possibility that noise may cause a bit to be misinterpreted. At the very least
it is desirable to know that an error has occurred, and it may be desirable to transmit
sufficient information to allow any error to be corrected.

The simplest form of error detection is to use a parity bit with each word of data. For
each eight bits of data, a ninth bit is sent that is 0 if there are an even number of ones in
the data word (even parity) or 1 otherwise. Alternatively odd parity can be used, in
which case the parity bit is inverted. This is sufficient if the chances of an error occur-
ring are low. We cannot tell which bit is in error, but knowing that an error has occurred
means that the data can be transmitted again. Unfortunately, if two errors occur, the
parity bit might appear to be correct. A single error can be corrected by using a two-
dimensional parity scheme in which every ninth word is itself a set of parity bits, as
shown below. If a single error occurs, both the row parity and column parity will be
incorrect, allowing the erroneous bit to be identified and corrected. Certain multiple
errors are also detectable and correctable.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Parity

Word 0 0 1 0 1 0 1 1 0 0
Word 1 0 1 0 0 1 0 0 0 0
Word 2 0 1 0 1 0 0 1 1 0
Word 3 0 1 0 0 1 0 0 1 1
Word 4 0 1 0 0 0 0 1 1 1
Word 5 0 1 0 0 1 0 0 0 0
Word 6 0 1 0 0 0 1 0 0 0
Word 7 0 1 0 0 1 1 0 0 1
Parity 0 0 0 0 0 1 1 1 1

36 Combinational logic design

By using a greater number of parity bits, each derived from part of the word, multiple
errors can be detected and corrected. The simplest forms of such codes were derived by
Hamming in 1948. Better codes were derived by Reed and Solomon in 1960.

Summary

Digital design is based on Boolean algebra. The rules of Boolean algebra allow logical
expressions to be simplified. The basic logical operators can be implemented as digital
building blocks – gates. Graphical methods, Karnaugh maps, are a suitable tool for
finding the minimal forms of Boolean expressions with fewer than six variables. Larger
problems can be tackled with computer-based methods. Gates have delays, which
means that non-minimal forms of Boolean expressions may be needed to prevent tim-
ing problems, known as hazards. Data can be represented using sets of bits. Different
types of data can be encoded to allow manipulation. Error-detecting codes are used
when data is transmitted over radio or other networks.

Further reading

The principles of Boolean algebra and Boolean minimization are covered in many
books on digital design. Recommended are those by Wakerly and by Hill and
Peterson. De Micheli describes the Espresso algorithm, which sits at the heart of
many logic optimization software packages. Espresso may be downloaded from
http://www-cad.eecs.berkeley.edu/

Error detection and correction codes are widely used in communications systems.
Descriptions of these codes can be found in, for example, Hamming.

Exercises

2.1 Derive Boolean expressions for the circuits of Figure 2.19; use truth tables to
discover if they are equivalent.

2.2 Minimize

(a) Z � m0 � m1 � m2 � m5 � m7 � m8 � m10 � m14 � m15

(b) Z � m3 � m4 � m5 � m7 � m9 � m13 � m14 � m15

2.3 Describe two ways of representing negative binary numbers. What are the advan-
tages and disadvantages of each method?

2.4 A floating-point decimal number may be represented as:

(�1)s � 1.m � 2e

Explain what the binary numbers s, m and e represent. How many bits would typ-
ically be used for s, m and e in a single-precision floating-point number?

Exercises 37

Figure 2.19 Circuits for Exercise 2.1.

38

Chapter 3

Combinational logic
using VHDL gate models

3.1 Entities and architectures 38

3.2 Identifiers, spaces and comments 40

3.3 Netlists 41

3.4 Signal assignments 44

3.5 Generics 45

3.6 Constant and open ports 47

3.7 Testbenches 48

3.8 Configurations 48

Combinational logic is stateless: changes in inputs are immediately reflected by changes
in outputs. In this chapter we will introduce the basic ideas of modelling in VHDL by
looking at combinational logic described in terms of gates.

3.1 Entities and architectures

Even the most basic VHDL model has two parts: an entity and an architecture.
For example, a two-input AND gate may be described by:

entity And2 is
port (x, y : in BIT; z: out BIT);

end entity And2;

architecture ex1 of And2 is
begin
z <= x and y;

end architecture ex1;

Entities and architectures 39

The entity part describes a black box. We can see the inputs and outputs of the black
box, together with their types, but we know nothing of the internals of the circuit.
The architecture describes the function and/or structure of the circuit. In this
example, the functionality of the circuit is described in terms of Boolean operations.
The reason for having this split is that it is possible to have more than one architecture
for each entity, perhaps describing alternative implementations or different levels of
description. For instance, we can describe an AND gate in terms of a Boolean operator,
as shown, but we could also write a truth table. In either case, the entity, i.e. the ‘black
box’, is the same, but there would be two architectures, one for each model.

The words shown in bold are reserved words. The entity description starts with the
reserved word entity, the name of the entity and the reserved word is. The entity
finishes with the reserved words end entity and the entity name. The entity name
at the end is optional, but if included must be the same as that used in the first line of the
entity declaration. It is, however, strongly recommended that you include all names
after an end for clarity. Note that the entity declaration concludes with a semicolon
(‘;’). Semicolons are used to mark the end of statements.

Words shown in UPPERCASE are built-in types or other identifiers. In later chap-
ters, we will introduce standard libraries. Identifiers from those libraries will not be
shown in uppercase. You should treat any identifiers shown in uppercase as reserved
words. In other words if you redefine them, you may have problems.

The original VHDL standard was defined in 1987. The 1993 standard introduced
some new features and made the syntax of many VHDL constructs much more consis-
tent (and longer). We will use the longer forms of the 1993 standard throughout this
book, in order to make the examples more readable. In the 1987 VHDL standard, end
rather than end entity was used. This also applied to various other structures. To
ensure backward compatibility, it is possible to miss out the reserved word entity
between end and the name. A further revision was agreed in 2002. The differences
between the 1993 and 2002 standards are mostly minor. Appendix A has a summary of
the differences between the 1987, 1993 and 2002 standards.

The entity contains one declaration. The reserved word port is used to specify
connections between the entity and the outside world. Here, two signals of type BIT
(x and y) are defined by the reserved word in to be inputs to the model and one signal
of type BIT is an output. The reserved word in is optional (i.e. unless otherwise
stated, all signals at ports are inputs). Bidirectional signals are indicated by the
reserved word inout. BIT is a predefined type with two values: ‘0’ and ‘1’.

The architecture declaration includes its own name and that of the entity with which
it is associated. The entity name must refer to a previously defined entity. In this
example, the model has only one statement between the reserved word begin and the
end architecture line. Signal z is assigned the value of x and y. And is a
built-in operator, which takes operands of type BIT and returns a result of type BIT.

VHDL has the following operators defined for type BIT: not, and, or, nand,
nor, xor and xnor. The not operator has the highest precedence (i.e. it is evaluated
first). The remaining operators all have the same precedence, and are evaluated in the
order in which they are written, left to right. Note that Boolean algebra normally
defines the AND operator to have a higher precedence than the OR operator: extra care
must be taken when writing VHDL to ensure that expressions are interpreted correctly.

40 Combinational logic using VHDL gate models

3.2 Identifiers, spaces and comments

VHDL is not case-sensitive (unlike C). Thus, ‘architecture’, ‘ARCHITECTURE’
and ‘aRcHiTeCtUrE’ are all equivalent and acceptable to a compiler. Similarly,
identifiers (such as ‘And2’) may be mixed-case. It is strongly recommended, however,
that the usual software engineering rules about identifiers should be applied:

� Meaningful, non-cryptic names should be used, based on English words.

� Use mixed-case with consistent use of case.

� Don’t use excessively long identifiers (use 15 characters or fewer).

� Don’t use identifiers that may be confused (e.g. two identifiers that differ by an
underscore).

� Don’t redefine predefined identifiers, such as BIT or TIME.

� Identifiers may consist of letters, numbers and underscores (‘_’), but the first char-
acter must be a letter, and two underscores in succession are not allowed. Extended
identifiers may consist of any character, provided that the entire identifier is
enclosed in backslashes (‘\’), e.g. \0%$#___&\. The strings in extended identi-
fiers are case-sensitive. Use extended identifiers with extreme caution.

Whitespace (spaces, carriage returns) should be used to make models more readable.
There is no difference between one whitespace character and many.

Comments may be included in a VHDL description by putting two hyphens on a line
(‘--’). All text between the hyphens and the end of the line is ignored. This is similar
to the C++ style of comment, which uses two slashes (‘//’). There is no C-style block
comment (‘/*. . . */’) in VHDL. It is strongly recommended that comments should
be included to aid in the understanding of VHDL code. Each VHDL file should include
a header, which typically contains:

� the name(s) of the design units in the file;

� file name;

� a description of the code;

� limitations and known errors;

� any operating system and tool dependencies;

� the author(s), including a full address;

� a revision list, including dates.

For example:

–––––––––––––––––––––------------------------------------
-- Design unit : And2(Example) (Entity and Architecture)
-- :
-- File name : and2.vhd
-- :
-- Description : Dataflow model of basic 2 input and
-- : gate. Inputs of type BIT.

Netlists 41

-- Limitations : None
-- :
-- System : VHDL'93
-- :
-- Author : Mark Zwolinski
-- : Department of Electronics and Computer
-- : Science
-- : University of Southampton
-- : Southampton SO17 1BJ, UK
-- : mz@ecs.soton.ac.uk
--
-- Revision : Version 1.0 04/02/99

3.3 Netlists

We have seen in Section 3.1 how to describe a two-input AND gate. Combinational
logic is seldom that simple! Suppose we wish to build a circuit to implement the
following truth table:

A B C Z

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

From a K-map, we can deduce that a minimal form of this function is

Therefore a VHDL implementation of this function might be:

entity comb_function is
port (a, b, c : in BIT; z: out BIT);

end entity comb_function;

architecture expression of comb_function is
begin
z <= (not a and b) or (a and c);

end architecture expression;

Note the use of parentheses to ensure the correct order of evaluation – and and or
have the same precedence, as described earlier.

Z � A.B � A.C

42 Combinational logic using VHDL gate models

While this model is perfectly acceptable as a description of a particular logical function,
it does not correspond to any normally available piece of circuitry. It could be imple-
mented as a PLA function, but if we wished to build this function on an integrated circuit
using only standard logic gates we would need to rewrite the model in terms of those gates.
This might be done using some EDA program, but let us see how we can do this manually.

Let us write models of an Or2 gate and a Not1 gate in addition to the And2 gate
shown earlier.

entity Or2 is
port (x, y : in BIT; z: out BIT);

end entity Or2;

architecture ex1 of Or2 is
begin
z <= x or y;

end architecture ex1;

entity Not1 is
port (x : in BIT; z: out BIT);

end entity Not1;

architecture ex1 of Not1 is
begin
z <= not x;

end architecture ex1;

There is no conflict in calling each of the architectures ‘ex1’ as each applies to a dif-
ferent entity.

A VHDL description of the function above using these gates might be written as:

architecture netlist of comb_function is
signal p, q, r : BIT;

begin
g1: entity WORK.Not1(ex1) port map (a, p);
g2: entity WORK.And2(ex1) port map (p, b, q);
g3: entity WORK.And2(ex1) port map (a, c, r);
g4: entity WORK.Or2(ex1) port map (q, r, z);

end architecture netlist;

Several new pieces of VHDL are introduced here. Within the architecture, we need
to create instances of each gate. We also need to identify the signals that connect the
gates to the rest of the world.

To identify the signals connected to each gate within the model, we have a signal
declaration, which simply lists the names of the signals and their types.

To create an instance of a gate, we include a reference to it between the begin
and end in the architecture. Generally, in VHDL objects must be declared before
they are used. Here, however, we do not declare each gate explicitly but we do
have to define exactly where to find each model and which architecture to use.

Netlists 43

‘WORK’ refers to the current working library. As each entity and architecture is com-
piled, it is stored in a directory. We don’t want to know exactly which operating sys-
tem directory or file is to be used; thus WORK is an operating system-independent
way of specifying that the compiler should look in the current working directory.
This is good software engineering practice; we should avoid writing VHDL that is
specific to a particular EDA tool or system. ‘(ex1)’ refers, in each case, to the
architecture of each gate model. This style of hierarchy description is called direct
instantiation.

The instance has a name (g1), the type of the gate (Not1) and a clause showing how
external signal names are mapped to internal signal names. The reserved words port
map are used to show these mappings. Note that, as shown, the order of signals is
important. We can assign signals in a different order:

g2: entity WORK.And2(ex1) port map (z => q, x => p, y =>b);

The direct instantiation style is usually preferred for simple netlists. An alternative
style has the components declared before they are used:

architecture netlist2 of comb_function is
component And2 is
port (x, y : in BIT; z: out BIT);

end component And2;
component Or2 is
port (x, y : in BIT; z: out BIT);

end component Or2;
component Not1 is
port (x : in BIT; z: out BIT);

end component Not1;
signal p, q, r : BIT;

begin
g1: Not1 port map (a, p);
g2: And2 port map (p, b, q);
g3: And2 port map (a, c, r);
g4: Or2 port map (q, r, z);

end architecture netlist2;

The component declaration tells the compiler what each gate looks like. The com-
ponent declaration is identical to an entity declaration, with the reserved word entity
replaced by component. Here, the component declaration has the same name as the
entity declaration and the ports also have the same names. We also assume here that
there is only one architecture for each gate, or more accurately, that if more than one
architecture exists, we will use the last one compiled. This is known as the default con-
figuration. Later, we will see how different architectures can be explicitly mapped to
particular instances, and how we can associate entities and components with different
names.

44 Combinational logic using VHDL gate models

2 ns 5 ns

Suppressed
pulse

4 ns 4 ns

X

Z

Figure 3.1 Inertial delay of 4 ns.

3.4 Signal assignments

The And2 gate has a signal assignment of the form:

z <= x and y;

In other words, a signal z takes the value of the logical AND of two signals x and y.
In its simplest form a signal assignment passes the value of one signal directly to
another:

z <= x;

This can be enhanced to provide more complex logical operations:

z <= not ((x and y) or (a and b));

Thus it is possible to describe a wide variety of gates and other combinational logic,
simply using signal assignments.

In reality, of course, the output of a piece of real hardware does not change instan-
taneously when an input changes. Inevitably, there is a delay. If we were to model
the circuit in terms of circuit components, such as transistors, the cause of delays
would be obvious – transistors have capacitances; interconnects can be thought of as
transmission lines, etc. In digital design, we think of circuits in terms of gates and
other similar building blocks. Therefore we choose to lump all the delay elements
together and describe the propagation of a signal in terms of a single delay. For
example, we can delay a signal assignment by, say, 4 ns, using the following
construct in VHDL:

z <= x after 4 NS;

This is an inertial delay. In other words, the signal is delayed by 4 ns, and in addition,
any pulse that is less than 4 ns wide is suppressed, as shown in Figure 3.1.

Generics 45

A pure or transport delay is modelled with:

z <= transport x after 4 NS;

(Note the space between 4 and NS.) Any pulse is now transmitted. We can include the
keyword inertial if we want to be very specific about the delay model.

The delay construct can be applied to logical expressions. For example:

z <= x and y after 5 NS;

z <= transport not ((x and y) or (a and b)) after 8 NS;

Multiple changes are allowed in response to a single signal change:

z <= x after 4 NS, not x after 8 NS;

would set the value of z in response to a change in x and then set a new value 4 ns after
the first. Although this type of multiple change is not particularly useful for modelling
combinational logic, the construct has other uses, as will be seen in Section 3.7.

At this point it can be seen that we can describe gates and other combinational logic
in terms of their logical functions and in terms of their behaviour in time. We will see
later the restrictions that are placed upon VHDL constructs that are intended for syn-
thesis, but we can already draw an important conclusion about synthesizable models.
The expression describes a logical function. It is possible to imple-
ment this in a number of ways, using NAND gates, programmable logic, etc. Whatever
implementation we choose, the logical function is achieved. On the other hand, if we
define the delay through the gate to be 5 ns, we are stating the behaviour of a particular
implementation.

3.5 Generics

The statement:

z <= x and y after 5 ns;

defines the exact delay for an AND gate. Different technologies, and indeed different
instances, will have different delays. We could declare a number of alternative archi-
tectures for an AND gate, each with a different delay. It would be better to write the
statement as:

z <= x and y after delay;

and to define delay as a parameter to the VHDL model. This is achieved using a
generic:

entity And2 is
generic (delay : DELAY_LENGTH);
port (x, y : in BIT; z: out BIT);

end entity And2;

Z � A.B � A.C

46 Combinational logic using VHDL gate models

architecture ex2 of And2 is
begin
z <= x and y after delay;

end architecture ex2;

When the gate is used in a netlist, a value is passed to the model using a generic
map:

g2: entity WORK.And2(ex2) generic map (5 NS)
port map (p, b, q);

A component declaration must also include the generic declaration. The non-
positional form can also be used:

g2: entity WORK.And2(ex2) generic map (delay => 5 NS)
port map (z => q, x =>p, y =>b);

As we will see later, generics are also useful for passing structural information, for
instance how many bits there are in an adder.

It can be useful to specify a default value for a generic. This allows the generic map
to be omitted if the default value is to be used. For example, the delay through the
And2 gate might normally be 5 ns, but occasionally a gate with a different delay might
exist. Default values are specified as follows:

generic (delay : DELAY_LENGTH := 5 NS);

Therefore if the component is instantiated as

g2: entity WORK.And2(ex2) port map (p, b, q);

a value of 5 ns will be passed to the delay. A different value can override the default if
it is explicitly stated.

g2: entity WORK.And2(ex2) generic map (3 NS)
port map (p, b, q);

If a component declaration is used, the default value can be specified in the entity
declaration or the component declaration or in both. If different default values are
specified in each declaration, the value in the component declaration will be used. If no
default value is given and the generic map part is omitted, delay would be unde-
fined, so an error will be generated. If the component declaration does not include the
generic definition, the default value will automatically be used and the generic map
part of the component instantiation must be omitted.

Finally, the default value of a generic will be used if the reserved word open is used
as the actual value:

g2: entity WORK.And2(ex2) generic map (open)
port map (p, b, q);

Constant and open ports 47

In this case, the entire generic map part of the instantiation is redundant, but if
there were several generics the reserved word open could be used to allow some
generics to take default values while others were given specific values.

3.6 Constant and open ports

There may be occasions on which not all the inputs or outputs of a component are
needed. Therefore these inputs and outputs would be connected to the supply rails or
left unconnected. To illustrate this, let us invent a ‘universal’ gate. This gate has three
inputs and two outputs. The two outputs are the AND and OR functions. Two of the
inputs are the normal logical inputs for an AND or OR function. The third input indi-
cates whether the outputs are to be inverted. Thus the gate implements the AND, OR,
NAND and NOR functions. A VHDL description of this gate follows.

entity universal is
port (x, y, invert : in BIT; a, o : out BIT);

end entity universal;

architecture univ of universal is
begin
a <= (y and (x xor invert)) or (invert and not y);
o <= (not x and (y xor invert)) or (x and not invert);

end architecture univ;

It is left as an exercise for the reader to derive the logic equations. Note that the two
signal assignments occur concurrently, not sequentially. We will return to this in the
next chapter. To use this gate as an AND gate, we would set the invert input to ‘0’ and
leave the o output unconnected. This is done using a value instead of a signal and by
using the reserved word open again:

u0 : entity WORK.universal(univ) port map (x, y, '0', a,
open);

Outputs can be left unconnected, but inputs may be left open only if a default value
has been specified in the entity declaration or the component declaration, as for
generics:

entity universal is
port (x, y : in BIT;

invert : in BIT := '0';
a, o : out BIT);

end entity universal;

The following instantiation would now be legal:

u0 : entity WORK.universal port map (x, y, open, a, open);

48 Combinational logic using VHDL gate models

3.7 Testbenches

If we wish to simulate our circuit to verify that it really does work as expected, we need
to apply some test stimuli. We could, of course, write out some test vectors and apply
them, or, more conveniently, write the test data in VHDL. This type of VHDL model is
often known as a testbench. Testbenches have a distinctive style. Below is a testbench
for a two-input AND gate.

entity TestAnd2 is
end entity TestAnd2;

architecture io of TestAnd2 is
signal a,b,c : BIT;

begin
g1: entity WORK.And2(ex2) port map (x=>a, y=>b, z=>c);
a<= '0', '1' after 100 NS;
b<= '0', '1' after 150 NS;

end architecture io;

Because this is a testbench, i.e. a description of the entire world that affects the model
we are testing, there are no inputs or outputs in the entity. This is characteristic of test-
benches. The description in the architecture consists of an instance of the circuit we are
testing, together with a set of input stimuli. Signals corresponding to the input and out-
put ports of the circuit are also declared. Inside the body of the architecture one
instance of the circuit is created.

This is a very simple example of a testbench. It provides sufficient inputs to run a
simulation, but the designer would need to look at the simulation results to check that
the circuit was functioning as intended. VHDL has the richness of a programming lan-
guage. Therefore a testbench could be written to check simulation results against a file
of expected responses or to compare two versions of the same circuit.

3.8 Configurations

Here is another description of a two-input AND gate in VHDL:

architecture ex3 of And2 is
signal xy : BIT_VECTOR(0 to 1);

begin
xy <= x&y;
with xy select
z <= '1' when "11",

'0' when others;
end architecture ex3;

Configurations 49

We will explain the constructs in the next chapter. We now have two different
architectures (ex1 from Section 3.1 and ex3) associated with the same entity.
(ex2 from Section 3.5 is the same as ex1, but with a delay, and hence has a different
entity declaration.) In the previous examples, the architecture name was explicitly
stated, but it can be omitted. If an entity has only one architecture, there is no ambigu-
ity – both the following have the same meaning:

g1: entity WORK.Not1(ex1) port map (a, p);

g1: entity WORK.Not1 port map (a, p);

If, however, there were two or more architectures in the same file, then in the second
case, by default, we would automatically use the last architecture. Suppose that we
wish to have more control over exactly which architecture to use. With direct instan-
tiation, there is no difficulty. With the alternative style, however, there needs to be
an explicit statement – the configuration specification. For example, the testbench
example of the last section could be written as:

architecture alternate of TestAnd2 is
component A2 is

port (x, y : in BIT; z: out BIT);
end component A2;
for all : A2 use entity WORK.And2(ex2);
signal a,b,c : BIT;

begin
g1: A2 port map (x=>a, y=>b, z=>c);

end architecture alternate;

By using the for . . . use construct we can choose which architecture to use.
With simple testbenches, the style shown above may be appropriate. For complex mod-
els, with several levels of hierarchy, it is often more appropriate to use a
configuration unit. A configuration declaration for the original testbench shown
might be:

configuration Tester1 of TestAnd2 is
for io
for g1 : And2
use entity WORK.And2(ex1);

end for;
end for;

end configuration Tester1;

The complete model therefore consists of the entity and architecture of the And2 gate,
the entity and architecture of the testbench and the configuration. There are other ways to
write configurations, but this style requires one configuration for the entire design. Note
that now we would not include a for . . . use statement within the testbench.

50 Combinational logic using VHDL gate models

It is also possible to use configurations to map port and generic names. Suppose
the testbench were written as:

architecture remapped of TestAnd2 is
component MyAnd2 is
generic (dly : DELAY_LENGTH);
port (in1, in2 : in BIT; out1: out BIT);

end component MyAnd2;
signal a,b,c : BIT;

begin
g1: MyAnd2 generic map (6 NS) port map (a, b, c);

end architecture remapped;

We would write the configuration as:

configuration Tester2 of TestAnd2 is
for remapped
for g1 : MyAnd2
use entity WORK.And2(ex2)
generic map (delay => dly);
port map (x => in1, y => in2, z => out1)

end for;
end for;

end configuration Tester2;

This is a ‘board–socket–chip’ analogy, where the configuration is used to map between
arbitrary internal and external names.

A different style of configuration has one configuration per entity, e.g.:

configuration And2Con of And2 is
for ex1
end for;

end configuration And2Con;

This selects the architecture for an entity. For the testbench example we
then have a configuration such as:

configuration Tester3 of TestAnd2 is
for remapped
for g1 : MyAnd2
use configuration WORK.And2Con;

end for;
end for;

end configuration Tester3;

This approach requires a greater number of configuration units, but each unit is sim-
pler. Configurations are important for controlling projects involving a number of design-
ers. For designs done by a single designer using a single FPGA, either configuration
statements in each architecture or a single configuration unit is likely to be sufficient.

Exercises 51

Summary

A VHDL model has an entity part, which is a description of the interface of the
model, and one or more architecture parts, which describe the functionality of
the model. VHDL models should use meaningful identifiers and include comments. In
this respect, writing good VHDL is much like writing good software. Netlists of VHDL
models can be constructed by instantiating those models. There are a number of alter-
native ways to instantiate models. Parameters may be passed to models using
generics. The reserved word open is used to specify an unconnected port or
defaulted generic. VHDL models may be exercised using testbenches, also written in
VHDL. Configuration statements and units are used to associate architectures
with particular instances of models.

Further reading

The definition of VHDL is contained in the Language Reference Manual (LRM). This
can be bought from the IEEE. Every college or university library should have a copy!
There are a number of VHDL books available, but even some recent editions cover only
the 1987 standard.

Exercises

3.1 Why does VHDL have entities and architectures?

3.2 What is a configuration used for?

3.3 Write a model of a three-input NAND gate with an inertial delay of 5 ns.

3.4 Write a model of a three-input NAND gate with a parameterizable transport
delay.

3.5 A full adder has the following truth table for its sum (S) and carry (Co) outputs, in
terms of its inputs, A, B and carry in (Ci):

A B Ci S Co

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Derive expressions for S and Co using only AND and OR operators. Hence write a
VHDL description of a full adder as a netlist of AND and OR gates and inverters.
Do not include any gate delays in your models.

52 Combinational logic using VHDL gate models

3.6 Write a VHDL testbench to test all combinations of inputs to the full adder of
Exercise 3.5. Verify the correctness of your full adder and of the testbench using a
VHDL simulator.

3.7 Modify the gate models of Exercise 3.5 such that each gate has a delay of 1 ns. What
is the maximum delay through your full adder? Verify this delay by simulation.

53

Chapter 4

Combinational building
blocks

4.1 Three-state buffers 53

4.2 Decoders 58

4.3 Multiplexers 64

4.4 Priority encoder 66

4.5 Adders 69

4.6 Parity checker 72

4.7 Testbenches for combinational blocks 75

While it is possible to design all combinational (and indeed sequential) circuits in terms
of logic gates, in practice this would be extremely tedious. It is far more efficient, in
terms of both the designer’s time and the use of programmable logic resources, to use
higher level building blocks. If we were to build systems using TTL or CMOS integrated
circuits on a printed circuit board, we would look in a catalogue and choose devices to
implement standard circuit functions. If we use VHDL and programmable logic we are
not constrained to using just those devices in the catalogue, but we still think in terms
of the same kinds of circuit functions. In this chapter we will look at a number of com-
binational circuit functions. As we do so, various features of VHDL will be introduced. In
addition, the IEEE dependency notation will also be introduced, allowing us to describe
circuits using both graphical and textual representations.

4.1 Three-state buffers

4.1.1 Multi-valued logic

In addition to the normal Boolean logic functions, it is possible to design digital hard-
ware using switches to disconnect a signal from a wire. For instance, we can connect

54 Combinational building blocks

the outputs of several gates together, through switches, such that only one output is
connected to the common wire at a time. This same functionality could be achieved
using conventional logic, but would probably require a greater number of transistors.
The IEEE symbol for a three-state buffer is shown in Figure 4.1. The symbol ‘1’ shows
the device is a buffer. ‘EN’ is the symbol for an output enable and the inverted equilat-
eral triangle indicates a three-state output.

When a switched gate is disconnected, it is usual to speak of the output of the
entire block, gate and switch, as being in a ‘high-impedance’ state. This state must
be included in the algebra used to define the functionality of gates. We have, so far,
used the VHDL type BIT to describe signals. Such signals can take the values of ‘0’
and ‘1’. If we are going to use the high-impedance state, BIT is no longer adequate
to represent logic signal values. We can define a new type to represent logic signals
in VHDL:

type tri is ('0', '1', 'Z');

Hence we can define signals and ports to be of this type, instead of being of type BIT:

signal a, b, c : tri;

It would obviously now be desirable to be able to use signals of type tri in exactly
the same way as signals of type BIT. In other words, we want to be able to write
VHDL statements of the form:

a <= '0' and '1';

b <= a or c after 5 NS;

Thus we need an and operator described by the following truth table. (This assumes
that a high-impedance input – a floating input – tends to be pulled to the same value
as the other input of an AND gate. This is a modelling decision that may or may not be
realistic.) The first row and first column represent the two inputs to the function. The
nine elements in the body of the table are the outputs.

AND 0 1 Z

0 0 0 0
1 0 1 1
Z 0 1 1

1
EN

Figure 4.1 Three-state buffer.

Three-state buffers 55

In VHDL, functions and operators can be overloaded. For example, the and oper-
ator normally takes two operands of type bit and returns the Boolean AND of the
two operands. We can write a new AND operator to take two operands of type tri
and return the values shown in the truth table. The syntax of this function will
become clear later.

function "and" (Left, Right: tri) return tri is
type tri_array is array (tri, tri) of tri;
constant and_table : tri_array := (('0', '0', '0'),

('0', '1', '1'),
('0', '1', '1'));

begin
return and_table(Left, Right);

end function "and";

The VHDL compiler can work out which is the correct version of the operator to use by
the types of the operands. If we tried to AND together a signal of type BIT and a sig-
nal of type tri, the compilation would fail because such an operator has not been
defined. We could equally write an and operator that implements what is normally
considered to be an or operator. This can easily render a piece of VHDL code incom-
prehensible. Extreme care should be taken with overloading of operators.

4.1.2 Standard logic package

Having defined a new type with values ‘0’, ‘1’ and ‘Z’, we would have to write VHDL
functions for the various logical operations. Moreover, we might wonder whether three
states are sufficient for everything we might wish to model. IEEE standard 1164
defines an enumerated type with nine values:

‘U’ Uninitialized
‘X’ Forcing (i.e. strong) unknown
‘0’ Forcing 0
‘1’ Forcing 1
‘Z’ High impedance
‘W’ Weak unknown
‘L’ Weak 0
‘H’ Weak 1
‘–’ Don’t care

The standard logic type is defined by:

type std_ulogic is ('U', 'X', '0', '1', 'Z', 'W', 'L',
'H', '–');

The and function for std_ulogic is given by the following truth table. As before,
the two inputs are given by the first row and column.

56 Combinational building blocks

U X 0 1 Z W L H –

U U U 0 U U U 0 U U
X U X 0 X X X 0 X X
0 0 0 0 0 0 0 0 0 0
1 U X 0 1 X X 0 1 X
Z U X 0 X X X 0 X X
W U X 0 X X X 0 X X
L 0 0 0 0 0 0 0 0 0
H U X 0 1 X X 0 1 X
– U X 0 X X X 0 X X

If we write a model using signals of type BIT or std_ulogic, we must ensure
that two models do not attempt to put a value onto the same signal. In VHDL terms, a
signal may have one or more sources. A source may be an out, inout or buffer
port of an instantiated component or a driver. In simple terms, a driver is the right-
hand side of a signal assignment. The one occasion when we do try to connect two or
more outputs together is when we use three-state buffers. We still have to be careful
that no more than one output generates a logic 1 or 0 and the rest of the outputs are in
the high-impedance state, but we want the simulator to tell us if there is a design mis-
take. This cannot be done with std_ulogic – a VHDL simulator does not treat ‘Z’
as a special case.

The IEEE 1164 standard defines std_logic, which allows more than one output
to be connected to the same signal. Std_logic is defined as a subtype of
std_ulogic, for which a resolution function is declared. The resolved function
defines the state of a signal if, for example, a ‘Z’ and a ‘1’ are driven onto the same sig-
nal. Because VHDL is strongly typed, operations involving two or more types must be
explicitly defined. A subtype may, however, be used in place of the type from which
it is derived, without causing an error.

subtype std_logic is resolved std_ulogic;

The resolution function is defined by the following truth table.

U X 0 1 Z W L H –

U U U U U U U U U U
X U X X X X X X X X
0 U X 0 X 0 0 0 0 X
1 U X X 1 1 1 1 1 X
Z U X 0 1 Z W L H X
W U X 0 1 W W W W X
L U X 0 1 L W L W X
H U X 0 1 H W W H X
– U X X X X X X X X

Thus a ‘1’ and a ‘0’ driving the same signal would cause that signal to take the value ‘X’.

Three-state buffers 57

1In fact, this is exactly what was done in the first edition of this book.

Ideally, we should use std_ulogic for all signals unless we intend that any con-
tention should be resolved. If we were to do this, the simulator would immediately tell
us (by halting) if we were erroneously trying to force two conflicting values onto the
same piece of wire.1 In practice, however, some synthesis tools have difficulties with
std_ulogic. The use of std_logic now seems to be the accepted industry stand-
ard, so in the rest of this book we will use std_logic as the types of all Boolean
signals. Contention can be recognized by the unexpected appearance of ‘X’ values in
a simulation.

The various standard logic types and the functions needed to use them are gath-
ered together in a package. Packages are described in more detail later. It is suffi-
cient to know that a package is a separately compiled set of functions and types.
This particular package is kept separately from the working library in a library
called IEEE. This may translate to a directory somewhere on the system. Therefore,
every VHDL model that uses the standard logic package must be prefixed with
the lines:

library IEEE;
use IEEE.std_logic_1164.all;

In general these lines should appear before each entity declaration and will apply to any
architectures declared for that entity. If more than one entity declaration appears in a
file (for instance, of a model and of its testbench), the library and use statements
must appear before each entity. In other words, VHDL scope rules apply to design units
and not to the files in which those design units are declared.

4.1.3 When . . . else statement

The behaviour of a three-state buffer can be described verbally as ‘when the enable sig-
nal is asserted connect the output to the input, else let the output float’. This statement
cannot be implemented using standard logic gates. VHDL has a number of program-
ming constructs to perform this task. One is as follows.

library IEEE;
use IEEE.std_logic_1164.all;

entity three_state is
port (a, enable : in std_logic;

z : out std_logic);
end entity three_state;

architecture when_else of three_state is
begin
z <= a when enable = '1' else 'Z';

end architecture when_else;

58 Combinational building blocks

BIN/1-OF-4

1

2

1
2
3
4

Figure 4.2 2 to 4 decoder.

If we wish to model the delay through the buffer, the when statement is changed as
follows:

architecture after_when_else of three_state is
begin
z <= a after 4 NS when enable = '1' else 'Z';

end architecture after_when_else;

4.2 Decoders

4.2.1 2 to 4 decoder

A decoder converts data that has previously been encoded into some other form. For
example, n bits can represent 2n distinct values. The truth table for a 2 to 4 decoder is
given below.

Inputs Outputs

A1 A0 Z3 Z2 Z1 Z0

0 0 0 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0
1 1 1 0 0 0

The IEEE symbol for a 2 to 4 decoder is shown in Figure 4.2. BIN/1-OF-4 indicates a
binary decoder in which one of four outputs will be asserted. The numbers give the
‘weight’ of each input or output.

We could choose to treat each of the inputs and outputs separately, but as they are
obviously related, it makes sense to treat the input and output as two vectors of size 2
and 4 respectively. Vectors can be described using an array of Boolean signals:

type std_logic_vector is array (NATURAL range <>) of
std_logic;

NATURAL is a predefined subtype with integer values from 0 to the maximum
integer value. range <> means an undefined range. Thus std_logic_vector
can be used to represent a logic vector of any size, subject to the constraints of the
compiler.

Decoders 59

The 2 to 4 decoder can be modelled using a when . . . else statement:

library IEEE;
use IEEE.std_logic_1164.all;

entity decoder is
port (a : in std_logic_vector(1 downto 0);

z : out std_logic_vector(3 downto 0));
end entity decoder;

architecture when_else of decoder is
begin
z <= "0001" when a = "00" else

"0010" when a = "01" else
"0100" when a = "10" else
"1000" when a = "11" else
"XXXX";

end architecture when_else;

The std_logic_vectors are declared to have a range of an integer value downto
zero. It is also possible to declare a range of zero to an integer value. In this example, either
form would be equally valid. Integers, however, are normally represented such that the most
significant bit is on the left. As can be seen from the values of a in the when statement,
using downto rather than to allows us to represent integer values in the usual way. The
value of a vector is placed within double quotation marks ("), unlike that of a single bit.

In this example, there are four when . . . else clauses. Each condition (i.e. each
value of a) is tested in turn until a condition is found to be true. If none of the conditions
is true, i.e. if one bit of a is neither 1 nor 0, the value following the final else, corres-
ponding to all bits being unknown, is assigned to z. The final else can be omitted:

z <= "0001" when a = "00" else
"0010" when a = "01" else
"0100" when a = "10" else
"1000" when a = "11";

If the final else is omitted, z continues to take the last value assigned to it. In
VHDL, a signal takes a value until a new value is assigned. This may be interpreted as
z holding its value in a latch. This is equivalent to writing:

z <= "0001" when a = "00" else
"0010" when a = "01" else
"0100" when a = "10" else
"1000" when a = "11" else
unaffected;

An almost equivalent form is:

z <= "0001" when a = "00" else
"0010" when a = "01" else

60 Combinational building blocks

"0100" when a = "10" else
"1000" when a = "11" else
z;

The last version differs from the first two in that any pending assignments to z are
thrown away. As we will see in Chapter 6, it cannot be used with the entity declar-
ation shown. The interpretation of such statements in hardware terms will be described
in detail in Chapter 9 on synthesis, but it is sufficient to note that assigning a signal to
itself or not assigning a new value can be interpreted as meaning that a memory elem-
ent exists. Moreover, as will be described in Chapter 12 on asynchronous design, this
memory element is likely to be poorly implemented. Therefore a when . . . else
statement should normally include the final else clause.

The expression in each when clause must resolve to a Boolean true or false. In the
examples we have simply tested one value of a. We can write more complex logical
expressions:

z <= "0001" when (a = "00" and (en = '1' or inhibit = '0'))
else . . .

4.2.2 With . . . select statement

An alternative to the when . . . else statement is the with . . . select state-
ment. Another model of the 2 to 4 decoder is shown below.

architecture with_select of decoder is
begin

with a select
z <= "0001" when "00",

"0010" when "01",
"0100" when "10",
"1000" when "11",
"XXXX" when others;

end architecture with_select;

At first glance this appears very similar to the when . . . else statement, but there
are important differences. Each clause of a when . . . else statement is interpreted
in turn until one expression evaluates to ‘true’ or, failing that, the final else is chosen.
In a with . . . select statement all the alternatives are checked simultaneously to
find a matching pattern. Therefore, the with . . . select must cover all possible
values of the selector. Being of type std_logic_vector, the bits of a can take
more than the values ‘0’ and ‘1’, so the when others clause must be included. If the
when others line is omitted, compilation will fail. Equally, the same pattern must
not be included in more than one branch. Further, the patterns in the branches must be
constants – the patterns must be determined when the VHDL is compiled, not dynam-
ically in the course of a simulation.

If more than one pattern should give the same output, the patterns can be listed. For
example, the following model describes a seven-segment decoder that displays the

Decoders 61

00010000 0010 0011 0100 0101

01110110 1000 1001 1010 Others

Bit ordering

6

4

10

35

2

Figure 4.3 Seven-segment display.

digits ‘0’ to ‘9’. If the bit patterns corresponding to decimal values ‘10’ to ‘15’ are fed
into the decoder, an ‘E’ (for ‘Error’) is displayed. If the inputs contain X’s or other
invalid values, the display is blanked. These patterns are shown in Figure 4.3.

library IEEE;
use IEEE.std_logic_1164.all;

entity seven_seg is
port (a : in std_logic_vector(3 downto 0);

z : out std_logic_vector(6 downto 0));
end entity seven_seg;

architecture with_select of seven_seg is
begin

with a select
z <= "1110111" when "0000",

"0010010" when "0001",
"1011101" when "0010",
"1011011" when "0011",
"0111010" when "0100",
"1101011" when "0101",
"1101111" when "0110",
"1010010" when "0111",
"1111111" when "1000",
"1111011" when "1001",
"1101101" when "1010"|"1011"|"1100"|

"1101"|"1110"|"1111",
"0000000" when others;

end architecture with_select;

62 Combinational building blocks

4.2.3 n to 2n decoder – shift operators

We have seen two ways to describe a 2 to 4 decoder. The same structures could eas-
ily be adapted to model a 3 to 8 decoder or a 4 to 16 decoder. Although these devices
are clearly more complex than the 2 to 4 decoder, conceptually there is little differ-
ence. It would be convenient to have a general n to 2n decoder that could be described
once but used for any application. We saw in the previous chapter that generics can
be used to pass parameters, such as delays, to VHDL models. We can similarly use a
generic to define the size of a structure. In the entity declaration below, the
generic n is declared to be of type POSITIVE. POSITIVE is a predefined sub-
type of INTEGER that can take values in the range 1 to the maximum integer value.
If we tried to create a decoder with n equal to 0 or to a negative number, we would
get a compilation error. Thus the strong typing of VHDL can be used to ensure we do
not get impossible hardware models.

library IEEE;
use IEEE.std_logic_1164.all;

entity decoder is
generic (n : POSITIVE);
port (a : in std_logic_vector(n-1 downto 0);

z : out std_logic_vector(2**n-1 downto 0));
end entity decoder;

a is now defined to be an n-bit vector and z is defined to be a 2n-bit vector. ‘**’ is the
power operator and has a higher precedence than other arithmetic operators (which is
why 2**n-1 is interpreted as 2n � 1 and not 2n–1). We could have given a default value
to n in the generic clause. Whether or not a default value is supplied, n must be defined
before the decoder can be simulated or synthesized.

The n-bit decoder will have to be written in a different way from the 2-bit
decoder. We have noted that the with . . . select construct must use constants.
We cannot write a list of 2n constants because we do not know the size of n.
Similarly we do not know how many when . . . else clauses to write. Looking
at the values assigned to z, however, reveals another pattern. The value is always
‘00 . . . 01’ rotated left by the number of places given by the decimal value of
a. We can declare a vector of length 2n with all bits set to ‘0’ other than bit ‘0’ with
a constant declaration:

constant z_out : std_logic_vector(2**n-1 downto 0) :=
(0 => '1', others => '0');

A constant is declared in the same way as a signal, but (of course) its value can never be
changed. The value of the constant is given after the ‘:=’ assignment. In this example,
an aggregate is used to define the initial value. An aggregate consists of a set of value
expressions. In this example, bit 0 is set to ‘1’ and all the others are set to ‘0’.

VHDL has six shift operators: sll, sla, rol, srl, sra, and ror. The difference
between these operators is shown in Figure 4.4.

Decoders 63

sII

‘0’

sIa

roI

‘0’

srI

sra

ror

Figure 4.4 VHDL shift operators.

We need to be very careful how we write the code because of VHDL’s strong typing.
These operators are defined, by default, to shift a BIT_VECTOR by an integer number
of places. We want to shift a std_logic_vector by a number of places given by
the integer interpretation of another std_logic_vector. Therefore, it would be
easier to declare z_out as a BIT_VECTOR, to convert a to an INTEGER and to con-
vert the final result to a std_logic_vector. This last conversion can be done by a
function in the std_logic_1164 package. The other conversion function is not,
however, provided. To do this we need to use another package, numeric_std, that
provides a set of numeric operators for vectors of std_logic – but not
std_logic_vectors! Because vectors of bits can be interpreted to be either signed
(two’s complement) or unsigned integers, we need to distinguish the operations per-
formed on such vectors. Therefore the numeric_std package defines two new types:
signed and unsigned. VHDL’s strong typing means that we cannot mix signed,
unsigned and std_logic_vector by accident, but because all three types con-
sist of arrays of std_logic, we can explicitly convert from one to the other using
statements of the kind

x <= unsigned(y);

y <= std_logic_vector(x);

where x is of type unsigned and y is of type std_logic_vector. Although
these look like function calls, no such function has been defined. These are known as
type conversions (sometimes such a conversion is known as a cast). On the other hand,
to convert from an unsigned to an INTEGER does require a function call because the
possible values (‘X’, ‘Z’, etc.) of the std_logic type need to be interpreted. The
function to_integer is provided in numeric_std to achieve this. To convert
from an INTEGER to an unsigned type, the to_unsigned(i, n) function
should be used, where i is the integer and n is the number of bits in the result. The
complete model is given below.

64 Combinational building blocks

0
1
0
1
2
3

G0
3

MUX

Figure 4.5 4 to 1 multiplexer.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity decoder is
generic (n : POSITIVE);
port (a : in std_logic_vector(n-1 downto 0);

z : out std_logic_vector(2**n-1 downto 0));
end entity decoder;

architecture rotate of decoder is
constant z_out : BIT_VECTOR(2**n-1 downto 0) :=

(0 => '1', others => '0');
begin
z <= to_StdLogicVector (z_out sll

to_integer(unsigned(a)));
end architecture rotate;

4.3 Multiplexers

4.3.1 4 to 1 multiplexer

A multiplexer can be used to switch one of many inputs to a single output. Typically
multiplexers are used to allow large, complex pieces of hardware to be reused. The
IEEE symbol for a 4 to 1 multiplexer is given in Figure 4.5. G is a select symbol. is
not a fraction, but means 0–3. Therefore the binary value on the top two inputs is used
to select one of the inputs 0–3.

Two possible models of a 4 to 1 multiplexer are given below.

library IEEE;
use IEEE.std_logic_1164.all;

entity mux is
port (a, b, c, d: in std_logic;

s: in std_logic_vector(1 downto 0);

0
3

Multiplexers 65

y: out std_logic);
end entity mux;

architecture mux1 of mux is
begin

with s select
y <= a when "00",

b when "01",
c when "10",
d when "11",
'X' when others;

end architecture mux1;

architecture mux2 of mux is
begin

y <= a when s = "00" else
b when s = "01" else
c when s = "10" else
d when s = "11" else
'X';

end architecture mux2;

Both these forms of multiplexer represent conventional logic. It is also possible to
use three-state logic to build a multiplexer. It was noted in Section 4.1 that the outputs
of several three-state buffers can be connected together, provided that only one buffer is
enabled at one time. A 4 to 1 multiplexer implemented in three-state logic is shown
below. There are four assignments to ‘y’, and therefore four drivers for ‘y’. At any
time, three are ‘Z’ and one is an input value. In order for the output value to be correctly
determined, and in order not to cause a compilation error, y must be declared to be a
resolved type – std_logic. It can be seen from the truth table of the standard logic
resolution function that one input is propagated to the output.

library IEEE;
use IEEE.std_logic_1164.all;

entity mux is
port (a, b, c, d: in std_logic;

s: in std_logic_vector(1 downto 0);
y: out std_logic);

end entity mux;

architecture three_state of mux is
begin

y <= a when s = "00" else 'Z';
y <= b when s = "01" else 'Z';
y <= c when s = "10" else 'Z';
y <= d when s = "11" else 'Z';

end architecture three_state;

66 Combinational building blocks

HPRI/BIN

3/Z13

2/Z12

1/Z11

0/Z10

13

12

11

10

1

2

≥1

Figure 4.6 4 to 2 priority encoder.

4.4 Priority encoder

4.4.1 Don’t cares

An encoder takes a number of inputs and encodes them in some way. The difference
between a decoder and an encoder is therefore somewhat arbitrary. In general,
however, an encoder has fewer outputs than inputs. A priority encoder attaches an order
of importance to the inputs. Thus if two inputs are asserted, the most important input
takes priority. The symbol for a priority encoder is shown in Figure 4.6. There are three
outputs. The lower two are the encoded values of the four inputs. The upper output
indicates whether the output combination is valid. An OR function (�1) is used to
check that at least one input is 1. Z is used to denote an internal signal. Thus Z10 is
connected to 10. This avoids unsightly and confusing lines across the symbol.

An example of a priority encoder is given in the truth table below. The ‘Valid’ output
is used to signify whether at least one input has been asserted and hence whether the
outputs are valid.

Inputs Outputs

A3 A2 A1 A0 Y1 Y0 Valid

0 0 0 0 0 0 0
0 0 0 1 0 0 1
0 0 1 – 0 1 1
0 1 – – 1 0 1
1 – – – 1 1 1

This piece of VHDL looks as if it ought to model the truth table:

library IEEE;
use IEEE.std_logic_1164.all;

entity priority is
port (a: in std_logic_vector(3 downto 0);

y: out std_logic_vector(1 downto 0);
valid: out std_logic);

end entity priority;

Priority encoder 67

architecture DontCare of priority is
begin

with a select
y <= "00" when "0001",

"01" when "001-",
"10" when "01--",
"11" when "1---",
"00" when others;

valid <= '1' when a(0) = '1' or a(1) = '1' or a(2) = '1'
or a(3) = '1' else '0';

end architecture DontCare;

However, as far as VHDL is concerned, the ‘don’t know’ logic value is simply another
value and cannot be matched to all other possibilities. Therefore this example will not
work as intended. One alternative is to select the inputs in order:

architecture Ordered of priority is
begin
y <= "11" when a(3) = '1' else

"10" when a(2) = '1' else
"01" when a(1) = '1' else
"00" when a(0) = '1' else
"00";

valid <= '1' when a(0) = '1' or a(1) = '1' or a(2) = '1'
or a(3) = '1' else '0';

end architecture Ordered;

The numeric_std package includes a function, std_match, that treats the don’t
care value as a real don’t care condition. We can’t use std_match in a with . . .
select statement because the choices must be constant. We can write instead:

use IEEE.numeric_std.all;

architecture Match of priority is
begin
y <= "00" when std_match(a, "0001") else

"01" when std_match(a, "001-") else
"10" when std_match(a, "01--") else
"11" when std_match(a, "1---") else
"00";

valid <= '1' when a(0) = '1' or a(1) = '1' or a(2) = '1'
or a(3) = '1' else '0';

end architecture Match;

(Note that the use statement can be prefixed to an architecture, in which case it applies
to just that architecture.) This model is awkward, however. There are two signal assign-
ments which duplicate each other to some extent. It would be more natural to test the

68 Combinational building blocks

bits of a and to set y and valid at the same time. To do this in VHDL, we need to use
an entirely different style.

4.4.2 Sequential VHDL

There are three styles of VHDL: structural, dataflow and sequential. All the examples
in this chapter have used the dataflow style. Dataflow statements are concurrent signal
assignment statements. Structural VHDL consists of component instantiations.
Sequential VHDL resembles a conventional programming language. Sequential VHDL
statements can be used only in subprograms (procedures and functions) or processes.

The priority encoder can be described in sequential VHDL as follows:

architecture Sequential of priority is
begin

process (a) is
begin

if a(3) = '1' then
y <= "11";
valid <= '1';

elsif a(2) = '1' then
y <= "10";
valid <= '1';

elsif a(1) = '1' then
y <= "01";
valid <= '1';

elsif a(0) = '1' then
y <= "00";
valid <= '1';

else
y <= "00";
valid <= '0';

end if;
end process;

end architecture Sequential;

Although this is a sequential style of programming, this model represents a piece of
combinational hardware. Models of sequential hardware will be discussed in Chapters
5 and 6. We will also introduce different programming constructs as needed.

The process has a sensitivity list with one signal, a. The process is evaluated only
when the signals in the sensitivity list change. Thus it is important that the sensitivity
list includes all signals that might cause an output to change. In this case, a is a vector
and the process is evaluated when any bit of a changes.

The main part of the process consists of an if statement. In each branch of the
if statement, assignments are made to y and to valid according to the value
of a. In modelling combinational logic, the following rule should be observed: if
an assignment is made to a signal in one path through a process, an assignment

Adders 69

should be made to that signal in all paths. If this is not done, the VHDL model will
simulate correctly, but a synthesis tool will infer that latches exist in the hardware.
This will be discussed further later. It is, however, possible to write the encoder
as follows:

architecture Sequential2 of priority is
begin

process (a) is
begin
valid <= '1';
if a(3) = '1' then
y <= "11";

elsif a(2) = '1' then
y <= "10";

elsif a(1) = '1' then
y <= "01";

elsif a(0) = '1' then
y <= "00";

else
valid <= '0';
y <= "00";
end if;

end process;
end architecture Sequential2;

The value of valid is set at the beginning of the process. If a does not have at least
one bit set to ‘1’, valid is given a new value in the else clause. It might appear that
two drivers would be created for valid. In fact, this is not the situation. Only one
driver per signal is created in a process. Because a process is sequential, there is
no conflict between two assignments to the same signal.

4.5 Adders

4.5.1 Functional model

The IEEE symbol for a 4-bit adder is shown in Figure 4.7. The � symbol denotes an
adder. P and Q are assumed to be the inputs to the adder. CI and CO are carry in and
carry out, respectively.

The VHDL entity declaration of an n-bit adder can be written as follows:

library IEEE;
use IEEE.std_logic_1164.all, IEEE.numeric_std.all;

entity NBitAdder is
generic (n: NATURAL :=4);
port (A, B: in std_logic_vector(n-1 downto 0);

Cin : in std_logic;

70 Combinational building blocks

P

0

3

0

3

Q

0

3

CI

CO

∑

∑

Figure 4.7 4-bit adder.

Sum : out std_logic_vector(n-1 downto 0);
Cout: out std_logic);

end entity NBitAdder;

We have chosen to define the inputs and outputs in terms of std_logic_vectors,
but as the numeric_std package has been included, signed or unsigned types
could have been used instead. We can use the arithmetic operator, +, defined in
numeric_std to perform the adding operation. This operator takes two vectors, of
type signed or unsigned, and returns a result of the same length as the longest
operand. The addition of two n-bit integers produces a result of length n � 1, where the
most significant bit is the carry out bit. Therefore within the VHDL description we must
convert Cin from a single bit to a vector of length n � 1, convert A and B to vectors of
length n � 1 and separate the result into an n-bit sum and a carry out bit. The code below
performs these actions for unsigned addition. The ampersand, ‘&’, is the concatenation
operator. Thus '0' & unsigned(A) concatenates a single bit and an n-bit vector to
give a vector of length n � 1. The carry vector is initialized in the same way as the
constant declaration in Section 4.2.3. A and B are converted to type unsigned. After
addition of three n � 1 bit vectors, the lowest n bits of the result are converted back
to a std_logic_vector and the most significant bit is taken as the carry out.

architecture unsgned of NBitAdder is
signal result : unsigned(n downto 0);
signal carry : unsigned(n downto 0);
constant zeros : unsigned(n-1 downto 0) := (others =>

'0');
begin
carry <= (zeros & Cin);
result <= ('0' & unsigned(A)) + ('0' & unsigned(B))

+ carry;
Sum <= std_logic_vector(result(n-1 downto 0));
Cout <= result(n);

end architecture unsgned;

Adders 71

The equivalent code for signed arithmetic is given below. The major difference
here is that the most significant bits of the A and B vectors are used to extend those
vectors to the left. If A or B is negative, its most significant bit would be ‘1’ and this
must be preserved.

architecture sgned of NBitAdder is
signal result : signed(n downto 0);
signal carry : signed(n downto 0);
constant zeros : signed(n-1 downto 0) := (others => '0');

begin
carry <= (zeros & Cin);
result <= (A(n-1) & signed(A)) + (B(n-1) & signed(B))

+ carry;
Sum <= std_logic_vector(result(n-1 downto 0));
Cout <= result(n);

end architecture sgned;

It should be noted that the underlying structure of these two versions of the adder
would be the same. The conversion between types is a feature of VHDL and not of any
resulting hardware.

4.5.2 Ripple adder

A simple model of a single-bit full adder might be:

library IEEE;
use IEEE.std_logic_1164.all;

entity FullAdder is
port (a, b, Cin : in std_logic;

Sum, Cout: out std_logic);
end entity FullAdder;

architecture concurrent of FullAdder is
begin
Sum <= a xor b xor Cin;
Cout <= (a and b) or (a and Cin) or (b and Cin);

end architecture concurrent;

This model contains two assignments, to Sum and Cout. Note that in VHDL, these two
assignments are concurrent – it does not matter in which order statements are written.
The simple rule to remember is that unless otherwise stated, all statements in VHDL
are concurrent.

We can build a multi-bit adder using several instances of this full adder. If we
know how many bits will be in our adder we simply instantiate the model several
times. If, however, we want to create a general n-bit adder, we need some type
of iterative construct. The for . . . generate construct allows repetition in a
dataflow description. This example creates n instances of the FullAdder and,

72 Combinational building blocks

through the Carry vector, wires them up. Notice that the loop variable i is impli-
citly declared.

g1 : for i in 0 to n-1 generate
fm : entity WORK.FullAdder port map (A(i), B(i),

Carry(i), Sum(i),
Carry(i+1));

end generate g1;

We can similarly count down:

for i in n-1 downto 0 generate

The first and last bits of the adder do not conform to this pattern, however. Bit 0 should
have Cin as an input and bit n � 1 should generate Cout. We can make special cases
of the first and last elements by using if . . . generate statements.

architecture StructIterative of NBitAdder is
signal Carry: std_logic_vector(0 to n);

begin
g1: for i in 0 to n-1 generate
lt : if i = 0 generate
f0 : entity WORK.FullAdder port map

(A(i), B(i), Cin, Sum(i), Carry(i+1));
end generate lt;
rt : if i = n-1 generate
fn : entity WORK.FullAdder port map

(A(i), B(i), Carry(i), Sum(i), Cout);
end generate rt;
md : if i > 0 and i < n-1 generate
fm : entity WORK.FullAdder port map

(A(i), B(i), Carry(i), Sum(i), Carry(i+1));
end generate md;

end generate g1;
end architecture StructIterative;

Note that there is no ‘else’ clause to an if . . . generate. Note also that all the
elements of this description have labels. Instantiation and generate statements must
have labels.

4.6 Parity checker

The principle of parity checking was explained in Chapter 2. The IEEE symbol for a
parity checker is shown in Figure 4.8. The symbol 2k indicates that the output is
asserted if 2k inputs are asserted for any integer k. Thus the output is asserted for even
parity. An odd parity checker has the output inverted.

Parity checker 73

2k

Figure 4.8 Even parity checker.

We could implement a parity checker in VHDL using a network of XOR gates (see
Exercises). A more natural method would be to check each bit of the input vector in
turn using some kind of loop and to determine the cumulative parity of the bits. VHDL
provides a sequential looping construct that has three forms:

loop

while condition loop

and

for identifier in range loop

The first form implements an infinite loop. Although VHDL provides means of break-
ing out of the loop, this form is probably the least useful of the three. The while form
is useful when the extent of the loop is not known, but the conditions for exiting the
loop are known in advance. The while form is not supported by the 1076.6 RTL syn-
thesis standard. The for form is probably the most useful. For example, we could loop
through all the bits of a vector of length n using a loop of the form:

for i in 0 to n-1 loop

The counting sequence can be reversed by using n-1 downto 0. In both cases, the
size of the vector, n, would have to be stated explicitly, perhaps using a generic. If the
size is not explicitly stated, the loop can be written as:

for i in a'RANGE loop

where a is the vector. 'RANGE is an attribute of a. We will discuss attributes in more detail
below. If a has been declared as a vector of range (0 to n) then a'RANGE is interpreted
as (0 to n). Similarly, if a has been declared to have a range (n downto 0), a'RANGE
is interpreted as (n downto 0). The opposite interpretations can be made using the
'REVERSE_RANGE attribute.

It is possible to terminate a loop early using the exit statement. Part of a loop can
be omitted using a next statement to jump from that point to the next loop iteration.

74 Combinational building blocks

A VHDL model of a parity checker is given below. We want to use the sequential
coding constructs loop and if; therefore a process is used. The size of the vec-
tor, a, is not stated because the 'RANGE attribute is used as the loop range. To keep
track of whether there have been an even or odd number of 1s in the vector, a
variable is used inside the process. Variables are different from signals in two
respects. A variable can only be declared inside a process (a signal may not be
declared in a process) and an assignment to a variable (denoted by ‘:=’) takes imme-
diate effect. A signal assignment does not take effect until the process restarts. We
will return to this distinction in later chapters. Notice that even is reset to ‘0’ at the
top of the process. Variables hold on to their values between activations of a process.
If this reset were not done, the result of the last parity evaluation would remain,
which could give an incorrect result.

library IEEE;
use IEEE.std_logic_1164.all;

entity parity is
port (a : in std_logic_vector;

y : out std_logic);
end entity parity;

architecture iterative of parity is
begin

process (a) is
variable even : std_logic;

begin
even := '0';
for i in a'RANGE loop
if a(i) = '1' then
even := not even;

end if;
end loop;
y <= even;

end process;
end architecture iterative;

4.6.1 Attributes

Attributes are pieces of information about VHDL units, signals or other types that may
be used in models or to control simulators or other tools. For example, the current value
of a signal may be passed to another signal by the assignment:

a <= b;

If we wanted (for whatever reason) to assign the value before the last change of b to a,
we could write:

a <= b'LAST_VALUE;

Testbenches for combinational blocks 75

All attributes are separated from the name to which they refer by an apostrophe (').
We have seen that the range of a vector can be used to control a loop. We could find

the vector size explicitly using the attribute 'LENGTH:

entity parity is
port (a : in std_logic_vector;

y : out std_logic);
constant n : NATURAL := a'LENGTH;

end entity parity;

It is equally possible to put the constant declaration in the architecture.
Any declaration in an entity is valid for all architectures of that entity.

We will meet further predefined attributes later. It is possible to define your own
attributes.

4.7 Testbenches for combinational blocks

In the last chapter, we introduced the idea of writing simulation testbenches in VHDL
for simple combinational circuits. Testbenches are not synthesizable and therefore the
entire scope of VHDL can be used to write them. Testbenches are also notable for
the fact that their entity descriptions do not include any ports – a testbench represents
the rest of the world.

Two functions are generally performed in a testbench: generation of input stimuli and
checking of results. The simple testbenches shown in the last chapter did not perform
any checking. Moreover, input stimuli were generated using concurrent assignments.
This style is fine for simple circuits, but is not appropriate for circuits with multiple
inputs. For example, let us write a testbench for the n-bit adder of Section 4.5.1.

library IEEE;
use IEEE.std_logic_1164.all;

entity TestNBitAdder is
end entity TestNBitAdder;

architecture TestBench_1 of TestNBitAdder is
constant n: NATURAL := 4;
signal A, B, Sum: std_logic_vector (n-1 downto 0);
signal Cin, Cout: std_logic;

begin
s0: entity WORK.NBitAdder(unsgned) generic map (n)

port map(A, B, Cin, Sum, Cout);
Cin <= '0', '1' after 10 NS, '0' after 25 NS;
A <= "0000", "1111" after 5 NS, "0111" after 15 NS;
B <= "0000", "1111" after 20 NS;

end architecture TestBench_1;

76 Combinational building blocks

There is a very obvious problem with this testbench – it’s very difficult to see what is
happening and when. It would be a lot clearer if all three signals were updated in one
process. We can replace the three concurrent assignment statements with the following
process:

process is
begin
Cin <= '0';
A <= "0000";
B <= "0000";
wait for 5 NS;
A <= "1111";
wait for 5 NS;
Cin <= '1';
wait for 5 NS;
A <= "0111";
wait for 5 NS;
B <= "1111";
wait for 5 NS;
Cin <= '0';
wait;

end process;

The behaviour of this process is exactly the same as that of the three assignments.
From a human point of view, the big difference is that the time is relative (we wait for
5 ns at a time), rather than absolute. Despite this, it is far easier to see what is happen-
ing and, importantly, it is easier to write the testbench and to modify it. Note the inclu-
sion of the final wait statement. Without this, the process will simply repeat. This
form of the process is different from others that we have seen. In modelling synthesiz-
able hardware, all processes have included a sensitivity list. A process can have a sen-
sitivity list or wait statements, but not both (and not neither – a process without any
wait statements and without a sensitivity list will run forever at time 0).

As far as combinational circuits are concerned, this is about as complex as we ever
need to get. It is still difficult, however, to work out what is going on. For example, we
try to add ‘0111’ to ‘0000’ with a carry in bit of ‘1’. The simulation tells us that the sum
is ‘1000’ with a carry out bit of ‘0’. It is just about possible to work out that this is cor-
rect, but it is not easy. Instead, we could use integers and convert these to bit patterns.

architecture TestBench_3 of TestNBitAdder is
constant n: NATURAL := 4;
signal A, B, Sumint : NATURAL;
signal Aslv, Bslv, Sum: std_logic_vector (n-1 downto 0);
signal Cin, Cout: std_logic;

begin
s0: entity WORK.NBitAdder(unsgned) generic map (n)

port map(Aslv, Bslv, Cin, Sum, Cout);
Aslv <= std_logic_vector(to_unsigned(A, n));

Testbenches for combinational blocks 77

Bslv <= std_logic_vector(to_unsigned(B, n));
Sumint <= to_integer(unsigned(Cout & Sum));
process is
begin
Cin <= '0';
A <= 0;
B <= 0;
wait for 5 NS;
A <= 15;
wait for 5 NS;
Cin <= '1';
wait for 5 NS;
A <= 7;
wait for 5 NS;
B <= 15;
wait for 5 NS;
Cin <= '0';
wait;

end process;
end architecture TestBench_3;

Now we can easily see that 7 � 0 � 1 is equal to 8 (with no carry out). Better still,
we could let the testbench itself check the addition. In general, we do not necessarily
want to be told that the design is correct, but we do want to know if there is an error.
In Chapter 5, we will see how warning messages can be generated. Another tech-
nique is to generate an error signal when unexpected behaviour occurs. It is then rela-
tively easy to spot one signal changing state in a long simulation with lots of
complex data.

To the testbench above, we simply add an error signal:

signal error: BOOLEAN := FALSE;

together with a process that is triggered whenever one of the outputs from the adder
changes:

resp: process (Cout, Sum) is
begin
error <= (A + B + BIT'POS(to_bit(Cin))) /= Sumint;

end process resp;

Notice that we have to convert a single bit of type std_logic to an integer. Here,
this is done by converting to type BIT (values other than ‘0’ or ‘1’ will be converted to
‘0’ using the to_bit function) and then using the 'POS attribute to give the integer
position of the value in the type definition. For type BIT, ‘0’ is at position 0 and ‘1’ is
at position 1.

In later chapters we will see again the principle of performing the operation that
we are checking in a different way. We will also use processes, triggered by changing
signals, to monitor outputs.

78 Combinational building blocks

Summary

In this chapter we have introduced a number of typical combinational building blocks.
The IEEE standard symbols for these blocks have been described. The VHDL standard
logic package has been introduced. Various VHDL constructs have been described:
when . . . else, with . . . select, generate, shift operators, the
numeric_std package, processes, and sequential constructs. In general, the mod-
els given in this chapter are suitable for RTL synthesis. Finally, we have seen how test-
benches can be constructed to verify VHDL code.

Further reading

A full description of the IEEE symbols is given in the IEEE standard and in a number
of digital design textbooks. Manufacturers’ data sheets may use the IEEE symbols or a
less standard form. VHDL models of synthesizable components (so-called IP Cores)
can be found by searching the Web. Bergeron covers testbenches in great detail.

Exercises

4.1 What are the three styles of description in VHDL? How are they used? Give a brief
example of each.

4.2 VHDL models can be written using concurrent and sequential coding con-
structs. Explain, with examples, the meaning of concurrent and sequential in
this context.

4.3 Write an entity description and three architecture models of a 3 to 8 decoder using
(a) Boolean operators, (b) a when . . . else statement, and (c) a with . . .
select statement. Write a testbench to compare the three versions concurrently.
(Note that you will have to use configuration clauses or direct instantiation to do
this.) Simulate the testbench and the decoder models.

4.4 Write a VHDL model of a 2n to n priority encoder.

4.5 A comparator is used to determine whether two signals have equal values. A one-
bit comparator is described by

EQO <= EQI and (X xnor Y);

where EQI is the result of the comparison of other bits and EQO is passed to the
next comparison operation. Write a model of an n-bit iterative comparator.

4.6 Open-drain CMOS logic is used to allow several gates to drive a common bus.
Each gate output can be in a ‘Z’ state or in a ‘0’ state. Only one gate at a time
should assert a ‘0’ state. The bus is in a ‘1’ state if all the gates driving it are in a
‘Z’ state. This is achieved by a pull-up resistor. Design a four-value logic type to
model this bus and a suitable resolution function. (The pull-up resistor does not
need to be explicitly modelled.) Write a model of an open-drain two-input NAND

Exercises 79

gate, and hence model a bus driven by four such gates. To simulate this model, the
type definitions and the resolution function will need to be put into a package. You
may wish to return to this problem after packages have been described in
Chapter 7.

4.7 What is meant by a driver in VHDL? Explain, with an example, how a signal with
multiple drivers may be resolved in VHDL.

80

Chapter 5

Synchronous sequential
design

5.1 Synchronous sequential systems 80

5.2 Models of synchronous sequential systems 81

5.3 Algorithmic state machines 85

5.4 Synthesis from ASM charts 89

5.5 State machines in VHDL 99

5.6 VHDL testbenches for state machines 109

We have so far looked at combinational logic design. Real digital systems are usually
sequential. Moreover, most sequential systems are synchronous; that is, they are con-
trolled by a clock. In this chapter we will explain how synchronous sequential systems
are designed. We will then describe how such systems may be modelled in VHDL.

5.1 Synchronous sequential systems

Almost all large digital systems have some concept of state built into them. In other
words, the outputs of a system depend on past values of its inputs as well as the
present values. Past input values either are stored explicitly or cause the system to
enter a particular state. Such systems are known as sequential systems, as opposed
to combinational systems. A general model of a sequential system is shown in
Figure 5.1. The present state of the system is held in the registers – hence the out-
puts of the registers give the value of the present state and the inputs to the registers
will be the next state.

The present state of the system can be updated either as soon as the next state
changes, in which case the system is said to be asynchronous, or only when a clock sig-
nal changes, which is synchronous behaviour. In this chapter, we shall describe the

Models of synchronous sequential systems 81

Inputs Outputs

Combinational
logic

Registers

Present
state

Next
state

Figure 5.1 General sequential system.

design of synchronous systems. In general, synchronous design is easier than asyn-
chronous design and so we will leave discussion of the latter topic until Chapter 12.

In this chapter we will consider the design of synchronous sequential systems. Many
real systems are too complex to design in this way, thus in Chapter 7 we will show that
more complex designs can be partitioned. Nevertheless, the formal design methods
described in this chapter must be applied to at least part of the design of larger systems.
In the next section, we will introduce, by way of a simple example, a method of for-
mally specifying such systems. We will then go on to describe the problems of state
assignment, state minimization and the design of the next state and output logic.
Throughout we will illustrate how designs can also be modelled using VHDL.

5.2 Models of synchronous sequential systems

5.2.1 Moore and Mealy machines

There are two common models of synchronous sequential systems: the Moore machine
and the Mealy machine. These are illustrated in Figure 5.2. Both types of system are
triggered by a single clock. The next state is determined by some (combinational) func-
tion of the inputs and the present state. The difference between the two models is that
in the Moore machine the outputs are solely a function of the present state, while in the
Mealy machine the outputs are a function of the present state and of the inputs. Both
the Moore and Mealy machines are commonly referred to as state machines. That is to
say, they have an internal state that changes.

5.2.2 State registers

As was seen in Chapter 2, combinational logic can contain hazards. The next state logic
of the Moore and Mealy machines is simply a block of combinational logic with a
number of inputs and a number of outputs. The existence of hazards in this next state
logic could cause the system to go to an incorrect state. There are two ways to avoid

82 Synchronous sequential design

Moore machine

Inputs
Next
state
logic

State
register Output

logic

Outputs

Clock

Mealy machine

Inputs
Next
state
logic

State
register Output

logic

Outputs

Clock

Figure 5.2 Moore and Mealy machines.

such a problem: either the next state logic should include the redundant logic needed to
suppress the hazard, or the state machine should be designed such that a hazard is
allowed to occur, but is ignored. The first solution is not ideal, as the next state logic is
more complex; hence, the second approach is used. (Note that asynchronous systems
are susceptible to hazards and the next state logic must prevent any hazards from occur-
ring, which is one reason why synchronous systems are usually preferred.)

To ensure that sequential systems are able to ignore hazards, a clock is used to
synchronize data. When the clock is invalid, any hazards that occur can be ignored.
A simple technique, therefore, is to logically AND a clock signal with the system
signals – when the clock is at logic 0, any hazards would be ignored. The system is,
however, still susceptible to hazards while the clock is high. It is common, therefore, to
use registers that are only sensitive to input signals while the clock is changing. The
clock edge is very short compared with the period of the clock. Therefore, the data has
only to be stable for the duration of the clock change, with small tolerances before and
after the clock edge. These timing tolerance parameters are known as the setup and
hold times (tSETUP, tHOLD) respectively, as shown in Figure 5.3.

The state registers for a synchronous state machine are therefore edge-triggered ele-
ments. The symbol and truth table for a positive edge-triggered D type flip-flop are
shown in Figure 5.4. The logic value at the D input is stored in the flip-flop, and is
available at the Q output, at the rising clock edge. In the symbol, the triangle indicates
edge-triggered behaviour. A negative edge-triggered flip-flop would have the clock sig-
nal inverted (using the usual circle). The notation C1, 1D shows the dependence of the
D input on the clock. In the truth table, the notation Q+ is used to show the next state of
Q (i.e. after the next clock edge). An upward pointing arrow is used to show a rising
edge. Flip-flops may also include asynchronous set or reset inputs, but these should

Models of synchronous sequential systems 83

tRISE

tSETUP tHOLD

Figure 5.3 Setup and hold times.

D

C

Q

QC1

1D
D C Q+ Q+

0 0 1

1 1 0

– 0 Q Q

– 1 Q Q

Figure 5.4 D type flip-flop.

only ever be used to initialize the system when it is first turned on. Asynchronous set
and reset inputs should never be used during normal operation.

Other types of flip-flop exist and may be used to design synchronous systems, but
they offer few advantages and are not common in programmable logic. We shall
describe these flip-flops in the next chapter.

5.2.3 Design of a three-bit counter

In the next section, we will introduce a formal notation for synchronous sequential sys-
tems. First, however, we will consider the design of a simple system that does not need
a formal description. Let us design, using positive edge-triggered D flip-flops, a counter
that, on rising clock edges, counts through the binary sequence from 000 to 111, at
which point it returns to 000 and repeats the sequence.

The three bits will be labelled A, B and C. The truth table is shown below, in which
A�, B� and C� are the next states of A, B and C.

ABC A�B�C�

0 0 0 0 0 1
0 0 1 0 1 0
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 1 0 1
1 0 1 1 1 0
1 1 0 1 1 1
1 1 1 0 0 0

84 Synchronous sequential design

A+

1D

C1

B+

1D

C1

C+

1D

C1

A

B

C

Clock

Next
state
logic

Figure 5.5 Structure of 3-bit counter.

00

0

0

0

1

01

0

1

A+:

AB
C 11 10

1 1

0 1

00

0

1

1

0

01

0

1

B+:

AB
C 11 10

1 0

0 1

00

1

0

1

0

01

0

1

C+:

AB
C 11 10

1 1

0 0

Figure 5.6 K-maps for 3-bit counter.

A� etc. are the inputs to the state register flip-flops; A etc. are the outputs.
Therefore the counter has the structure shown in Figure 5.5. The design task is thus
to derive expressions for A�, B� and C� in terms of A, B and C. From the truth table
above, K-maps can be drawn, as shown in Figure 5.6. Hence the following expres-
sions for the next state variables can be derived.

Algorithmic state machines 85

A+

1D

C1

B+

1D

C1

C+

1D

C1

Clock

A

B

C

A

B

C

Figure 5.7 3-bit counter circuit.

A� � A. � A. � .B.C
B� � B. � .C
C� �

The full circuit for the counter is shown in Figure 5.7.

5.3 Algorithmic state machines

The counter designed in the last section could easily be described in terms of state
changes. Most sequential systems are more complex and require a formal notation to
fully describe their functionality. From this formal notation, a state table and hence
Boolean expressions can be derived. There are a number of types of formal notation
that may be used. We will briefly refer to one before introducing the principal tech-
nique used in this book – the algorithmic state machine (ASM) chart.

The form of an ASM chart is best introduced by an example. Let us design a simple
controller for a set of traffic signals, as shown in Figure 5.8. This example is signifi-
cantly simpler than a real traffic signal controller (and would probably be more danger-
ous than an uncontrolled junction!). The traffic signals have two lights each – red and
green. The major road normally has a green light, while the minor road has a red light.
If a car is detected on the minor road, the signals change to red for the major road and
green for the minor road. When the lights change, a timer is started. Once that timer
completes, a ‘TIMED’ signal is asserted, which causes the lights to change back to
their default state.

The functionality of this system can be described by the state machine diagram of
Figure 5.9. This form of diagram is commonly used, but can be unclear. For some sys-
tems (e.g. that of Figure 11.19), such diagrams are sufficient. In this book, however, we

C
BC

ABC

86 Synchronous sequential design

Sensor Minor road

Major road

Figure 5.8 Traffic signal problem.

MAJOR=G
MINOR=R

MAJOR=R
MINOR=G

CAR/START_TIMER

TIMED

CAR

TIMED

Figure 5.9 State machine of traffic signal controller.

will generally use ASM charts, which are much less ambiguous. The ASM chart for the
traffic signal controller is shown in Figure 5.10.

ASM charts resemble flow charts, but contain implicit timing information – the
clock signal is not explicitly shown in Figure 5.10. It should be noted that ASM charts
represent physical hardware. Therefore all transitions within the ASM chart must form
closed paths – hardware cannot suddenly start or stop (the only exception to this might
be a reset state to which the system never returns).

The basic component of an ASM chart is the state box, shown in Figure 5.11(a). The
state takes exactly one clock cycle to complete. At the top left-hand corner the name of
the state is shown. At the top right-hand corner the state assignment (see below) may be
given. Within the state box, the output signals are listed. The signals take the values
shown for the duration of the clock cycle and are reset to their default values for the
next clock cycle. If a signal does not have a value assigned to it (e.g. Y), that signal is
asserted (logic 1) during the state and is deasserted elsewhere. The notation X 1
means that the signal is assigned at the end of the state (i.e. during the next clock cycle)
and holds its value until otherwise set elsewhere.

A decision box is shown in Figure 5.11(b). Two or more branches flow from the
decision box. The decision is made from the value of one or more input signals. The

d

Algorithmic state machines 87

MAJOR=GRN
MINOR=RED

MAJOR=RED
MINOR=GRN

START_TIMER

TIMED

CAR
0

0

1

G

1

R

Figure 5.10 ASM chart of traffic signal controller.

A

X = 1
Y

1011

(a) (b) (c)

J

1

0 Z = 1

Figure 5.11 ASM chart symbols.

decision box must follow and be associated with a state box. Therefore the decision is
made in the same clock cycle as the other actions of the state. Hence the input signals
must be valid at the start of the clock cycle.

A conditional output box is shown in Figure 5.11(c). A conditional output must
follow a decision box. Therefore the output signals in the conditional output box are
asserted in the same clock cycle as those in the state box to which it is attached (via one
or more decision boxes). The output signals can change during that state as a result of
input changes. The conditional output signals are sometimes known as Mealy outputs
because they are dependent on input signals, as in a Mealy machine.

It can therefore be seen that one state, or clock cycle, consists of more than just the state
box. Decision boxes and conditional output boxes also form part of the state. Figure 5.10
can be redrawn, as in Figure 5.12, where all the components of a state are enclosed within
dashed lines.

88 Synchronous sequential design

MAJOR=GRN
MINOR=RED

MAJOR=RED
MINOR=GRN

START_TIMER

TIMED

CAR
0

0

1

G

1

1 clock cycle

R

Figure 5.12 ASM chart showing clock cycles.

Z

W

Y

C

0

1

(a)

Z

W

Y

C

0

1

(b)

Figure 5.13 Conditional and unconditional outputs.

The difference between state boxes and conditional output boxes is illustrated in
Figure 5.13. In Figure 5.13(a), there are two states. Output Y is asserted during the first
state if input C is true or becomes true. In Figure 5.13(b) there are three states. The dif-
ference can be seen in the timing diagrams of Figure 5.14.

Synthesis from ASM charts 89

C tested here

Clock

ASM (a)

Z

Y, C=1

Y, C=0

W

ASM (b)

Z

Y, C=1

W, C=1

Y, C=0

W, C=0

Figure 5.14 Timing diagram for Figure 5.13.

Present
state

CAR, TIMED

Next state, START_TIMER

00

G, 0

R, 0

01

G, 0

G, 0

11

R, 1

G, 0

10

R, 1

R, 0

G

R

Figure 5.15 State and output table.

5.4 Synthesis from ASM charts

5.4.1 Hardware implementation

An ASM chart is a description or specification of a synchronous sequential system. It is
an abstract description in the sense that it describes what a system does, but not how it
is done. Any given (non-trivial) ASM chart may be implemented in hardware in more
than one way. The ASM chart can, however, be used as the starting point of the hard-
ware synthesis process. To demonstrate this, an implementation of the traffic signal
controller will first be designed. We will then use further examples to show how the
state minimization and state assignment problems may be solved.

The ASM chart of Figure 5.10 may be equivalently expressed as a state and output
table, as shown in Figure 5.15. The outputs to control the traffic signals themselves are

90 Synchronous sequential design

A
CAR, TIMED

A+, START_TIMER

00

0, 0

1, 0

01

0, 0

0, 0

11

1, 1

0, 0

10

1, 1

1, 0

0

1

Figure 5.16 Transition and output table.

00 01

0

1

A+:

CAR, TIMED

 A

0 1

1 0

11 10

0

0

1

1

00 01

0

1

START_TIMER:

CAR, TIMED

 A

0 1

0 0

11 10

0

0

1

0

Figure 5.17 K-maps for traffic signal controller.

not shown, but otherwise the state and output table contains the same information as
the ASM chart. As we will see, the state and output table is more compact than an ASM
chart and is therefore easier to manipulate.

To implement this system in digital hardware, the abstract states G and R have to be
represented by Boolean variables. Here, the problem of state assignment is nearly trivial.
Two states can be represented by one Boolean variable. For example, when the Boolean
variable A is 0 it can represent state G, and when it is 1, state R. It would be equally valid
to use the opposite values. These values for A can be substituted into the state and output
table to give the transition and output table shown in Figure 5.16.

This transition and output table is effectively two K-maps superimposed on each
other. These are explicitly shown in Figure 5.17. From these, expressions can be
derived for the state variable and the output.

START_TIMER � A.CAR
A� � A.CAR � A.TIMED

Synthesis from ASM charts 91

TIMED

CAR

START_TIMER

Clock

A+

1D

C1

A

A

Figure 5.18 Circuit for traffic signal controller.

For completeness, a hardware implementation is shown in Figure 5.18. The two flip-
flop outputs can be used directly to control the traffic signals, so that when A is 1 (and

is 0) the signal for the major road is green and the signal for the minor road is red.
When A is 0, the signals are reversed.

5.4.2 State assignment

In the previous example there were two possible ways to assign the abstract states
G and R to the Boolean state variable A. With more states, the number of possible state
assignments increases. In general, if we want to code s states using a minimal number
of D flip-flops, we need m Boolean variables, where 2m�1 � s � 2m. The number of pos-
sible assignments is given by

This means, for example, that there are 24 ways to encode three states using two
Boolean variables and 6720 ways to encode five states using three Boolean variables.
In addition, there are possible state assignments that use more than the minimal number
of Boolean variables, which may have advantages under certain circumstances. There
is no known method for determining in advance which state assignment is ‘best’ in the
sense of giving the simplest next state logic. It is obviously impractical to attempt every
possible state assignment. Therefore a number of ad hoc guidelines can be used to per-
form a state assignment. Again, let us use an example to demonstrate this.

A synchronous sequential system has two inputs, X and Y, and one output, Z. When
the sum of the inputs is a multiple of 3, the output is true, otherwise it is false. The
ASM chart is shown in Figure 5.19.

To encode the three states we need (at least) two state variables and hence two flip-
flops. As noted above, there are 24 ways to encode three states; which should we use?
We could arbitrarily choose any one of the possible state assignments, or we could
apply one or more of the following guidelines:

� It is good practice to provide some means of initializing the state machine when
power is first applied. This can be done using the asynchronous resets or sets on the

12m 2 !

12m � s 2 !

A

92 Synchronous sequential design

X

Z=1

A

Y Y

0

0 1

1

0 1

X

Z=0

B

Y Y

0

0 1

1

0 1

X

Z=0

C

Y Y

0

0 1

1

0 1

Figure 5.19 ASM chart for sequence detector.

system flip-flops. Therefore the first state (state A in this example) can be coded as
all 0s or all 1s.

� We can use the normal binary counting sequence for further states (e.g. B becomes
01 and C becomes 10).

� We can minimize the number of bits that change between states, e.g. by using a
Gray code. (This doesn’t help in this example as transitions exist from each state to
every other state.)

� The states might have some particular meaning. Thus a state variable bit might be
set in one state but in no others. (This can result in a non-minimal number of state
variables but very simple output logic, which under some circumstances can be very
desirable.)

� We can use one variable per state. For three states, we would have three state variables
and hence three flip-flops. The states would be encoded as 001, 010 and 100. This is

Synthesis from ASM charts 93

(a)

P

A

B

C

00

A,1

B, 0

C, 0

01

B,1

C, 0

A, 0

11

C,1

A, 0

B, 0

10

B,1

C, 0

A, 0

X,Y

P+, Z

(b)

S1S0

00

01

11

00

00, 1

01, 0

11, 0

01

01, 1

11, 0

00, 0

11

11, 1

00, 0

01, 0

10

01, 1

11, 0

00, 0

X,Y

S1
+S0

+, Z

Figure 5.20 (a) State and output table; (b) transition and output table for sequence detector.

known as ‘one-hot’ encoding, as only one flip-flop is asserted at a time. Although this
appears to be very non-optimal, there may be advantages to the one-hot (or ‘one-
cold’) method. The next state logic may be relatively simple. In some forms of pro-
grammable logic, such as FPGAs, there is a very high ratio of flip-flops to
combinational logic. A one-hot encoded system may therefore use fewer resources
than a system with a minimal number of flip-flops. Furthermore, because exactly one
flip-flop output is asserted at a time, it is relatively easy to detect a system malfunction
in which this condition is not met. This can be very useful for safety-critical systems.

Let us therefore apply a simple state encoding to the example. The state and output
table is shown in Figure 5.20(a) and the transition and output table is shown in
Figure 5.20(b), where state A is encoded as 00, B as 01 and C as 11. The combination
10 is not used.

The fact that we have one or more unused combinations of state variables may cause
a problem. These unused combinations are states of the system. In normal operation,
the system would never enter these ‘unused states’. Therefore, in principle, we can treat
the next state and output values as ‘don’t cares’, as shown in Figure 5.21.

This gives the next state equations:

The output expression can be read directly from the transition and output table:

Z � S0

 S0
�

� S0.X.Y � S1.X.Y � S0.X � S1.S0.Y � S1.X.Y
 S1

� � S1.X.Y � S1.S0.X.Y � S0.X.Y � S1.S0.X.Y

94 Synchronous sequential design

0

0

1

–

00 01 11 10

S1
+:

XY

S1S0

00

01

11

10

0

1

0

–

1

0

0

–

0

1

0

–

0

1

1

–

00 01 11 10

S0
+:

XY

S1S0

00

01

11

10

1

1

0

–

1

0

1

–

1

1

0

–

Figure 5.21 K-maps with don’t cares.

S1S0

00

01

11

10

00

00, 1

01, 0

11, 0

10, 1

01

01, 1

11, 0

00, 0

00, 1

11

11, 1

00, 0

01, 0

11, 1

10

01, 1

11, 0

00, 0

01, 1

X,Y

S1
+S0

+, Z

Figure 5.22 Transition table implied by don’t cares.

By default, therefore, the transitions from the unused state have now been
defined, as shown in Figure 5.22. Although this unused state should never be
entered, it is possible that a ‘non-logical’ event, such as a glitch on the power sup-
ply, might cause the system to enter this unused state. It can be seen from Figure
5.22 that if, for example, the inputs were both 0, the system would stay in the
unused state. In the worst case, once having entered an unused state, the system
might be stuck in one or more unused states. The unused states could therefore form
a ‘parasitic’ state machine (or perhaps a ‘parallel universe’!), causing the system to
completely malfunction. We could, reasonably, decide that the chances of entering
an unused state are so low as to be not worth worrying about. Hence we treat
the transition table entries for the unused states as ‘don’t cares’, as shown, which
minimizes the next state logic. On the other hand, the system might be used in a
safety-critical application. In this case, it might be important that all transitions
from unused states are fully defined, so that we can be certain to return to normal
operation as soon as possible. In this case, the transitions from the unused state
would not be left as ‘don’t cares’ in the K-maps, but would be explicitly set to lead

Synthesis from ASM charts 95

to, say, the all 0s state. Hence the ‘X’ entries in the K-maps of Figure 5.21 become
0s and the next state equations would be:

These equations are more complex than the previous set that includes the ‘don’t cares’;
hence the next state logic would be more complex.

Therefore we have a choice: either we can assume that it is impossible to enter an
unused state and minimize the next state equations by assuming the existence of ‘don’t
cares’; or we can try to reduce the risk of becoming stuck in an unused state by explic-
itly defining the transitions from the unused states and hence have more complex next
state logic.

5.4.3 State minimization

We have noted in the previous section that to encode s states we need m flip-flops, where
2m�1 � s � 2m. If we can reduce the number of states in the system, we might reduce the
number of flip-flops, hence making the system simpler. Such savings may not always
be possible. For instance, the encoding of 15 states requires four flip-flops. If we reduced
the number of states to nine, we would still need four flip-flops. So there would be no
obvious saving and we would have increased the number of unused states, with the poten-
tial problems discussed in the previous section. As will be seen, state minimization is a
computationally difficult task, and in many cases it would be legitimate to decide that
there would be no significant benefits and hence the task would not be worth performing.

State minimization is based on the observation that if two states have the same out-
puts and the same next states, given a particular sequence of inputs, it is not possible to
distinguish between the two states. Hence the two states are considered to be
equivalent and hence they may be merged, reducing the total number of states.

For example, let us design the controller for a drinks vending machine. A drink costs
40c. The machine accepts 20c and 10c coins (all other coins are rejected by the
mechanics of the system). Once 40c have been inserted, the drink is dispensed. If more
than 40c are inserted, all coins are returned. The machine has two lights: one to show
that it is ready for the next transaction, and one to show that further coins need to be
inserted. The ASM chart for the machine is shown in Figure 5.23. The ASM chart has
been split into two parts (Figures 5.23(a) and (b)) – the connections between the two
parts are shown by circles with lower-case letters.

There are nine states in this state machine. Four flip-flops would therefore be
required to implement it. If we could merge at least two states, we would save our-
selves a flip-flop. From Figure 5.23 notice that states F, G and H all have transitions to
state I if a 20c coin is inserted and to state B if a 10c coin is inserted. Otherwise all three
states have transitions back to themselves. Intuitively, these three states would appear
to be equivalent. Another way of looking at this is to say that states F, G and H all rep-
resent the condition where another 10c is expected to complete the sale of a drink.
From the point of view of the purchaser, these states are indistinguishable.

 S0
�

� S0.X.Y � S1.X.Y � S1.S0.X � S1. S0.Y � S1.S0.X.Y
 S1

�
� S1.S0.X.Y � S1.S0.X.Y � S1.S0 .X.Y � S1.S0.X.Y

96 Synchronous sequential design

a

A

Dispense
Ready

B

Y
20c

10c
NY

N

C

Coin

Y
20c

10c

Y

N

D

Coin

Y
20c

10c

Y

N

c d e b

(a)

NN

Figure 5.23(a) ASM chart of vending machine.

Instead of attempting to manipulate the ASM chart, it is probably clearer to rewrite it
as a state and output table (Figure 5.24). The ‘Other’ column shows the next state if no
valid coin is inserted. Because there are no conditional outputs, it is possible to separate
the outputs from the next state values.

The condition for two states to be considered equivalent is that their next states and
outputs should be the same. States A, B and I have unique outputs and therefore cannot
be equivalent to any other states. States C to H inclusive have the same outputs. States
F, G and H have the same next states, other than their default next states, which are the
states themselves. In other words, states F, G and H are equivalent if states F, G and H
are equivalent – which is a tautology! Therefore we can merge these three states. In
other words, we will delete states G and H, say, and replace all instances of those two
states with state F (Figure 5.25). Now states D and E are equivalent, so E can be deleted
and replaced by D (Figure 5.26). The system has therefore been simplified from having
nine states to having six. It should be remembered that the system may be implemented
with nine states or with six, but it is not possible for an external observer to know which
version has been built simply by observing the outputs. The two versions are therefore
functionally identical.

Synthesis from ASM charts 97

Figure 5.23(b)

E

Coin

Y
20c

10c

N

N

c

G

Coin

Y
20c

10c

N

N

F

Coin

Y
20c

10c

N

N

e

H

Coin

Y
20c

10c

N

N

d

Return

b a

Y

Y

Y

Y

I

State

A
B
C
D
E
F
G
H
I

20c 10c Ready Dispense Return Coin

D C 1 0 0 0
A A 0 1 0 0
H E 0 0 0 1
B F 0 0 0 1
B G 0 0 0 1
I B 0 0 0 1
I B 0 0 0 1
I B 0 0 0 1
A A 0 0 1 0

Other

A
A
C
D
E
F
G
H
A

Figure 5.24 State and output table for vending machine.

98 Synchronous sequential design

State 20c 10c Other Ready Dispense Return Coin

A D C A 1 0 0 0
B A A A 0 1 0 0
C H F E C 0 0 0 1
D B F D 0 0 0 1
E B G F E 0 0 0 1
F I B F 0 0 0 1
G I B G 0 0 0 1
H I B H 0 0 0 1
I A A A 0 0 1 0

Next state Outputs

Figure 5.25 State table with states G and H removed.

State 20c 10c Other Ready Dispense Return Coin

A D C A 1 0 0 0
B A A A 0 1 0 0
C H F E D C 0 0 0 1
D B F D 0 0 0 1
E B G F E 0 0 0 1
F I B F 0 0 0 1
G I B G 0 0 0 1
H I B H 0 0 0 1
I A A A 0 0 1 0

Next state Outputs

Figure 5.26 State table with states E, G and H removed.

To conclude this example, the next state and output expressions will be written
assuming a ‘one-hot’ implementation, i.e. there is one flip-flop per state, of which
exactly one has a ‘1’ output at any time. The next state and output expressions can be
read directly from the state and output table of Figure 5.26.

 Coin � C � D � F
 Return � I
 Dispense � B
 Ready � A
 I� � F.20c
 F� � C.20c � D.10c � 20c.10c.F
 D� � A.20c � C.10c � 20c.10c.D
 C� � A.10c � 20c.10c.C
 B� � D.20c � F.10c
 A� � B � I � 20c.10c.A

State machines in VHDL 99

5.5 State machines in VHDL

5.5.1 A first example

Although state machines can be described using concurrent VHDL constructs, the task
is far easier using sequential VHDL. We have seen that a VHDL process is evaluated
when a signal in its sensitivity list changes. If the process models a combinational
block, all the combinational inputs must be present in the sensitivity list to cause the
process to be evaluated. A process may alternatively contain one or more wait state-
ments. A process cannot have both a sensitivity list and wait statements. A sensitivity
list is equivalent to putting a wait statement with the signals listed at the end of the
process. A state machine changes state at a clock edge. Therefore, the sensitivity list of
a process modelling a state machine must include the clock, or the clock must be
included in a wait statement. A decision to change state then has to be made on the
appropriate clock edge.

The state of the system must be held in an internal variable. The state can be repre-
sented by an enumerated type. The possible values of this type are the state names, e.g.

type state_type is (G, R);

Because the abstract state names are used, it is not necessary to perform a state assign-
ment. Moreover, because only valid states are listed, there is automatic range checking.
This would not be the case if integers or Boolean values were used.

In the following listing, a variable is used to hold the current state value.
A case statement is used to branch according to the current value of the state. Each
branch of the case statement is therefore equivalent to one of the ‘large states’ of
Figure 5.12. Within the first when statement branch, the two lights are set – when
major_green is 1, the signal on the major road is green; otherwise it is red. The
same interpretation applies to minor_green. The process then waits until the
clock input changes to ‘1’. The meaning of the wait until statement is some-
times misunderstood. If the clock is already at ‘1’, the process waits until the clock
changes to ‘0’ and back to ‘1’. Therefore this statement causes the process to wait
for a rising edge. Once a rising clock edge has occurred, the car input is tested to
set the start_timer output. Note that start_timer is given a default value at
the beginning of the process. This is good practice, as it ensures that latches will not
be accidentally created if the state machine model is used with a synthesis tool
(see Chapter 9).

The other state is structured in a similar way.

library IEEE;
use IEEE.std_logic_1164.all;

entity traffic is
port (clock, timed, car : in std_logic;

start_timer, major_green,
minor_green : out std_logic);

end entity traffic;

100 Synchronous sequential design

architecture asm1 of traffic is
begin
process is

type state_type is (G, R);
variable state : state_type;

begin
start_timer <= '0';
case state is
when G =>
major_green <= '1';
minor_green <= '0';
wait until clock = '1';
if (car = '1') then

start_timer <= '1';
state := R;

end if;
when R =>
major_green <= '0';
minor_green <= '1';
wait until clock = '1';
if (timed = '1') then

state := G;
end if;

end case;
end process;

end architecture asm1;

In fact, this is an unusual way to write a state machine model. It’s not wrong – a sim-
ulation would demonstrate that the state machine model behaves as expected, but
the structure would not be recognized by many synthesis tools. It is more usual to have
one edge detection statement at the beginning of a process. We could write the process
as follows:

process (clock) is
type state_type is (G, R);
variable state : state_type;

begin
start_timer <= '0';
wait until clock = '1'
case state is
when G =>
major_green <= '1';
minor_green <= '0';
if (car = '1') then
start_timer <= '1';
state := R;

end if;

State machines in VHDL 101

when R =>
major_green <= '0';
minor_green <= '1';
if (timed = '1') then

state := G;
end if;

end case;
end process;

This is almost but not quite the same as the first version. The difference is in the behav-
iour of the start_timer output. A Mealy output depends on the present state and
the values of any input signals. In the example shown, the output will change only at a
clock edge. As most synthesis tools and the 1076.6 RTL Synthesis standard expect
there to be one edge-sensitive statement in a process, it is not possible to correctly
model state machines with Mealy outputs using a single VHDL process.

A common modelling style for state machines therefore uses two processes. One
process is used to model the state registers, while the second process models the
next state and output logic. The two processes therefore correspond to the two boxes
in Figure 5.1. From Figure 5.1, it can be seen that the communication between the
two processes is achieved using the present and next values of the state registers.
Therefore if two VHDL processes are used, communication between them must
be performed using present and next state signals. In VHDL, a variable
(other than a shared variable) can exist only within a process. Therefore, the
type definition and the signal declarations have to occur at the head of the
architecture.

The two processes shown below have been given labels: seq and com. These labels
are also included in the end process lines. For the rest of this chapter, we will use
a sensitivity list with the clock signal instead of a wait statement. The process is trig-
gered on both clock edges, so we use the rising_edge function to distinguish
between them. When a rising edge is detected, the value of the next_state signal is
assigned to the present_state signal.

The com process has the two inputs, car and timed, in its sensitivity list, together
with the present_state signal. The remainder of the process is similar to the pre-
vious versions except that the case statement selects on the present_state, and
next_state is updated. Note also that next_state is updated (to its existing
value) even when a change of state does not occur. Failure to do this would result
in unnecessary latches being created if the state machine model were fed through a
synthesis tool. To repeat the observation made in Section 4.4.2, a process that models
combinational logic must assign a value to a signal in every path through that process if
an assignment is made to that signal in any path.

architecture asm2 of traffic is
type state_type is (G, R);
signal present_state, next_state : state_type;

begin
seq: process (clock) is

102 Synchronous sequential design

begin
if (rising_edge(clock)) then
present_state <= next_state;

end if;
end process seq;
com: process (car, timed, present_state) is
begin
start_timer <= '0';
case present_state is
when G =>
major_green <= '1';
minor_green <= '0';
if (car = '1') then
start_timer <= '1';
next_state <= R;

else
next_state <= G;

end if;
when R =>
major_green <= '0';
minor_green <= '1';
if (timed = '1') then
next_state <= G;

else
next_state <= R;

end if;
end case;

end process com;
end architecture asm2;

The two-process model, registers and next state and output logic, is a very com-
mon way to model state machines in VHDL. It is also possible to have a three-
process model. The register process is the same as before, but the next state (ns)
and output (op) logic blocks are separated, as in the Moore and Mealy models
(Figure 5.2). For example:

ns: process (car, timed, present_state) is
begin

case present_state is
when G =>

if (car = '1') then
next_state <= R;

else
next_state <= G;

end if;
when R =>
if (timed = '1') then

State machines in VHDL 103

next_state <= G;
else
next_state <= R;

end if;
end case;

end process ns;

op: process (car, present_state) is
begin
start_timer <= '0';
if (present_state = G) then
major_green <= '1';
minor_green <= '0';
if (car = '1') then
start_timer <= '1';

end if;
else
major_green <= '0';
minor_green <= '1';

end if;
end process op;

The op process could also be written as concurrent statements:

start_timer <= '1' when (present_state = G and car = '1')
else '0';

major_green <= '1' when (present_state = G) else '0';
minor_green <= '1' when (present_state = R) else '0';

It does not matter which style (one, two or three processes) is used to model a state
machine; for different applications one style may be more appropriate than another. If
the model is to be synthesized, however, care must be taken to ensure that processes
modelling combinational logic really are combinational and that processes modelling
sequential logic have only one edge-sensitive statement.

5.5.2 A sequential parity detector

Consider the following system. Data arrives at a single input, with one new bit per
clock cycle. The data is grouped into packets of four bits, where the fourth bit is a par-
ity bit. (This problem could easily be scaled to have more realistically sized packets.)
The system uses even parity. In other words, if there is an odd number of 1s in the first
three bits, the fourth bit is a 1. If an incorrect parity bit is detected, an error signal is
asserted during the fourth clock cycle.

The parity detector can be implemented as a state machine. We will leave the design
as an exercise and simply show a VHDL implementation. In this example, an asyn-
chronous reset is included to set the initial state to s0. Notice that the error signal is
given a default value at the top of process com.

104 Synchronous sequential design

library IEEE;
use IEEE.std_logic_1164.all;

entity parity is
port (clock, reset, a : in std_logic;

error : out std_logic);
end entity parity;

architecture asm of parity is
type state is (s0, s1, s2, s3, s4, s5, s6);
signal present_state, next_state : state;

begin
seq: process (reset, clock) is
begin

if reset = '1' then
present_state <= s0;

elsif rising_edge(clock) then
present_state <= next_state;

end if;
end process seq;
com: process (present_state, a) is
begin
error <= '0';
case present_state is
when s0 =>

if a = '0' then
next_state <= s1;

else
next_state <= s2;

end if;
when s1 =>

if a = '0' then
next_state <= s3;

else
next_state <= s4;

end if;
when s2 =>

if a = '0' then
next_state <= s4;

else
next_state <= s3;

end if;
when s3 =>

if a = '0' then
next_state <= s5;

else
next_state <= s6;

State machines in VHDL 105

end if;
when s4 =>

if a = '0' then
next_state <= s6;

else
next_state <= s5;

end if;
when s5 =>

if a = '0' then
next_state <= s0;

else
error <= '1';
next_state <= s0;

end if;
when s6 =>

if a = '0' then
error <= '1';
next_state <= s0;

else
next_state <= s0;

end if;
end case;

end process com;
end architecture asm;

5.5.3 Vending machine

The following piece of VHDL is a model of the (minimized) vending machine of
Section 5.4.3. Two processes are used. Note that here an asynchronous reset has been
provided to initialize the system when it is first turned on.

library IEEE;
use IEEE.std_logic_1164.all;

entity vending is
port (clock, reset, twenty, ten : in std_logic;

ready, dispense, ret, coin : out std_logic);
end entity vending;

architecture asm of vending is
type state_type is (A, B, C, D, F, I);
signal present_state, next_state : state_type;

begin
seq: process (clock, reset) is
begin

if (reset = '1') then
present_state <= A;

106 Synchronous sequential design

elsif (rising_edge(clock)) then
present_state <= next_state;

end if;
end process seq;
com: process (twenty, ten, present_state) is
begin
ready <= '0';
dispense <= '0';
ret <= '0';
coin <= '0';
case present_state is
when A =>
ready <= '1';
if (twenty = '1') then
next_state <= D;

elsif (ten = '1') then
next_state <= C;

else
next_state <= A;

end if;
when B =>
dispense <= '1';
next_state <= A;

when C =>
coin <= '1';
if (twenty ='1') then
next_state <= F;

elsif (ten ='1') then
next_state <= D;

else
next_state <= C;

end if;
when D =>
coin <= '1';
if (twenty = '1') then
next_state <= B;

elsif (ten = '1') then
next_state <= F;

else
next_state <= D;

end if;
when F =>
coin <= '1';
if (twenty = '1') then
next_state <= I;

State machines in VHDL 107

elsif (ten = '1') then
next_state <= B;

else
next_state <= F;

end if;
when I =>
ret <= '1';
next_state <= A;

end case;
end process com;

end architecture asm;

5.5.4 Storing data

One of the many problems with the traffic light controller of Section 5.5.1 is that the
minor road lights will switch to green as soon as a car is detected. This will happen
even if the lights have just changed. It would be preferable if the timer were used to
keep the major road lights at green for a period of time. If we did this simply by assert-
ing the start_timer signal in both states and waiting for the timed signal to appear,
as follows, an arriving car could easily be missed.

com: process (car, timed, present_state) is
begin
start_timer <= '0';
case present_state is
when G =>
major_green <= '1';
minor_green <= '0';
if (car = '1' and timed = '1') then
start_timer <= '1';
next_state <= R;

else
next_state <= G;

end if;
when R =>
major_green <= '0';
minor_green <= '1';
if (timed = '1') then
start_timer <= '1';
next_state <= G;

else
next_state <= R;

end if;
end case;

end process com;

108 Synchronous sequential design

Therefore, the fact that a car has arrived needs to be remembered in some way.
This could be done by adding further states to the state machine. Alternatively, the
car arrival could be stored. It is not possible to say that one approach is better
than the other. We will look at the idea of using a state machine to control other
hardware in Chapter 7. Meanwhile, let us consider how a simple piece of data can
be stored.

In a purely simulation model, it is possible to store the state of a variable or signal in
a combinational process. This is done by assigning a value in one branch of the process.
As we will see in Chapter 9, when synthesized this would inevitably lead to asynchron-
ous latches and hence timing problems. Instead, any data that is to be stored must be
explicitly saved in a register, modelled as a clocked process. Storing data in this way is
exactly the same as storing a state. Therefore, separate signals are needed for the present
value of the car register and for the next value. We will use more meaningful names for
these signals:

signal car_arrived, car_waiting : std_logic;

The car_waiting signal is updated at the same time as the present_state
signal.

seq: process (clock) is
begin

if rising_edge(clock) then
present_state <= next_state;
car_waiting <= car_arrived;

end if;
end process seq;

The car_arrived signal is set or reset in the following process:

car_update: process (car, car_waiting, timed,
present_state) is

begin
if (present_state = G and car_waiting = '1'

and timed = '1') then
car_arrived <= '0';

elsif car = '1' then
car_arrived <= '1';

else
car_arrived <= car_waiting;

end if;
end process car_update;

Finally, both references to car in process com at the start of this section need to
be replaced by references to car_waiting. Notice that each signal is assigned in
only one process. It often helps to sketch a diagram of the system with each process

VHDL testbenches for state machines 109

represented by a box and showing all the inputs and outputs of each process. If a
signal appears to be an output from two boxes, or if a signal is not an input to a process,
something is not right!

5.6 VHDL testbenches for state machines

In the last chapter, we looked at how testbenches for combinational circuits can be
designed. Here and in the next chapter, we will consider testbenches for sequential cir-
cuits. In this section we will consider clock generation, modelling asynchronous resets
and other deterministic signals and how to synchronize inputs with the clock. We will
also look at collecting responses. In the next chapter, we will extend these ideas to
include a degree of randomness in signals.

5.6.1 Clock generation

The most important signal in any design is the clock. In the simplest case, a clock can
be generated by inverting its value at a regular interval:

clock <= not clock after 10 NS;

If clock is of type BIT, the initial value is automatically '0'. If clock is of type
std_logic, an initial value must be assigned at the time of declaration:

signal clock : std_logic := '0';

If this initialization is not performed, the initial value is 'U', and ‘not 'U'’ is also
'U'.

The same effect can be achieved by explicitly assigning values to the clock within a
process:

clk: process is
begin
clock <= '0';
wait for 10 NS;
clock <= '1';
wait for 10 NS;

end process clk;

5.6.2 Reset and other deterministic signals

After the clock, the next most important signal is probably the reset (or set). The clock
generation process repeats, but the reset signal is usually asserted only once, at the
beginning of a simulation, so the process is prevented from repeating by putting an
unconditional wait statement at the end.

110 Synchronous sequential design

rst: process is
begin
reset <= '1';
wait for 5 NS;
reset <= '0';
wait for 5 NS;
reset <= '1';
wait;

end process rst;

This is exactly the same, in form, as the signal generation process for combinational
circuits as given in the last chapter. Note that the reset is deasserted at the start of the
simulation and asserted a short time later. This is to ensure that the state of the circuit
prior to the reset can be observed.

In exactly the same way, other inputs to a state machine can be generated. The diffi-
culty with this is that it soon becomes easy to lose track of how many clock cycles have
passed or whether a signal is asserted in time for a rising edge or for a falling edge. For
testing many types of state machine and other sequential circuit, it may be desirable to
synchronize input changes with the clock.

5.6.3 Synchronized inputs

In exactly the same way that an RTL model can be made sensitive to the clock or to
some other signal, parts of the testbench can also be made sensitive to the clock. For
clarity, however, we may wish to delay a signal slightly. This suggests the use of a
wait for statement, but we cannot mix wait statements and sensitivity lists.

inc: process is
begin

wait until clock = '1';
wait for 5 NS;
a <= a + 1;

end process inc;

The wait until clock = '1' statement means wait until the clock changes to 1,
i.e. wait until the next rising edge. If the clock is already 1, we still wait for the next rising
edge. After that edge, the process then waits for a further 5 ns, before performing some
data operation. The process repeats each clock cycle (provided the clock period is greater
than 5 ns). Therefore an input can be updated without having to count clock cycles.

Similarly, we can synchronize with an output signal. In the traffic light controller
example, we can emulate the timer with the following process.

tim: process is
begin

wait until start_timer = '1';
timed <= '0';

Summary 111

wait for 100 NS;
timed <= '1';

end process tim;

5.6.4 Checking responses

In the last chapter, we saw how an error signal can be generated if a combinational
model behaves in a different way from that expected. For a state machine, we can
monitor output changes in a similar way. Here, we will output a message when an
output changes.

mon: process(major_green, minor_green) is
variable lb : line;

begin
write(lb, NOW);
if major_green = '1' then
write(lb, STRING'(" Major Road is Green"));

elsif minor_green = '1' then
write(lb, STRING'(" Minor Road is Green"));

end if;
writeline(output, lb);

end process mon;

This example uses the built-in text output routines. In order to make these visible the
following clause must be inserted before the entity declaration of the testbench:

use STD.textio.all;

Two forms of the write procedure are shown. Both copy a string to an output line
buffer, lb. First of all the current simulation time, given by the function NOW, is copied
to lb. Then a string is written to lb, depending on which of the outputs is asserted.
The STRING qualifier is needed to ensure that the correct form of the write proce-
dure is chosen. Finally, the line buffer is copied to the output with writeline.
This might appear to be a complicated way to construct a monitor process, but it should
be noted that an std_logic signal cannot be passed to a write procedure using
standard packages.

Summary

State machines can be formally described using ASM charts. The design of a synchro-
nous state machine from an ASM chart has a number of distinct steps: state minimiza-
tion, state assignment, derivation of next state, and output logic. By using abstract data
types, a VHDL model of a state machine can be written that is equivalent to an ASM
chart. This VHDL model may be automatically synthesized to hardware using an RTL
synthesis tool.

112 Synchronous sequential design

Further reading

State machine design is a core topic in digital design and therefore covered in many
textbooks. Not all books use ASM notation; many use the style of Figure 5.9. The prob-
lem of state minimization is covered in detail in books such as Hill and Peterson.

Exercises

5.1 Explain the difference between a Mealy machine and a Moore machine.

5.2 Describe the symbols used in an ASM diagram.

5.3 The following code shows part of a VHDL description of a synchronous state
machine. Complete the description by writing down the synchronization process.
How would an asynchronous reset be included?

entity state_machine is
port(x, clock :in BIT;

z :out BIT);
end entity state_machine;

architecture behaviour of state_machine is
type state_type is (S0, S1, S2, S3);
signal state, next_state : state_type;

-- synchronization statements go here!
com: process (state, X) is
begin

case state is
when S0 =>
Z <= '0';
if X = '0' then
next_state <= S0;

else
next_state <= S2;

end if;
when S1 =>
Z <= '1';
if X = '0' then
next_state <= S0;

else
next_state <= S2;

end if;
when S2 =>
Z <= '0';
if X = '0' then
next_state <= S2;

Exercises 113

else
next_state <= S3;

end if;
when S3 =>
Z <= '0';
if X = '0' then
next_state <= S3;

else
next_state <= S1;

end if;
end case;

end process com;
end architecture behaviour;

5.4 Draw the ASM chart that describes the state machine shown in Exercise 5.3.

5.5 Draw an ASM chart to describe a state machine that detects a sequence of three logi-
cal 1s occurring at the input and that asserts a logical 1 at the output during the last
state of the sequence. For example, the sequence 001011101111 would produce an
output 000000100011. Write a two-process VHDL description of the state machine.

5.6 Write a testbench to simulate the state machine of Exercise 5.5 and verify the
VHDL model by simulation.

5.7 Produce next state and output logic for the state machine of Exercise 5.5 and write
a VHDL description of the hardware using simple gates and positive edge-
triggered D flip-flops. Verify this hardware by simulation.

5.8 A state machine has two inputs, A and B, and one output, Z. If the sequence of
input pairs A � 1 B � 1, A � 1 B � 0, A � 0 B � 0 is detected, Z becomes 1 dur-
ing the final cycle of the sequence, otherwise the output remains at 0. Write a two-
process VHDL model of a state machine to implement this system.

5.9 Rewrite the model of Exercise 5.8 to use three processes (or concurrent statements):
one for the registers, one for the next state logic and one for the output logic.

5.10 Rewrite the model of Exercise 5.8 to use only one process.

5.11 Design, using an ASM chart, a traffic signal controller for a crossroads. The
signals change only when a car is detected in the direction with a red signal.
The signals change in the (British) sequence: Red, Red and Amber, Green, Amber,
Red. Note that while the signals in one direction are Green, Amber, or Red and
Amber, the signals in the other direction are Red (i.e. you need more than four
states). Design an implementation that uses a minimal number of D flip-flops.

5.12 A counter is required to count people entering and leaving a room. The room has a
separate entrance and exit. Sensors detect people entering and leaving. Up to seven
people are allowed in the room at one time. Draw an ASM chart of a synchronous
counter that counts the people in the room and that indicates when the room is
empty and full. One person may enter and one person may leave during each clock
cycle. The empty and full indicators should be asserted immediately the condition
is true, i.e. before the next clock edge. Write a VHDL model of the system.

5.13 Construct a state and output table for the state machine represented by Figure
5.27. Show that the number of states can be reduced. Derive the next state and
output logic to implement the reduced state machine using (a) a minimal number
of D flip-flops, and (b) the ‘one-hot’ D flip-flop method. What are the relative
advantages of each method? How has the reduction in the number of states helped
in each case?

114 Synchronous sequential design

A

A

Z

A A

Z

A

0 1

Z

0 1

0 1

0

10 1

Figure 5.27 ASM chart for Exercise 5.13.

115

Chapter 6

VHDL models of
sequential logic blocks

6.1 Latches 115

6.2 Flip-flops 119

6.3 JK and T flip-flops 128

6.4 Registers and shift registers 132

6.5 Counters 135

6.6 Memory 143

6.7 Sequential multiplier 147

6.8 Testbenches for sequential building blocks 150

In Chapter 4 we presented several examples of combinational building blocks, at the same
time introducing various aspects of VHDL. In this chapter we shall repeat the exercise for
sequential blocks.

6.1 Latches

6.1.1 SR latch

There is often confusion between the terms ‘latch’ and ‘flip-flop’. Here, we will use
‘latch’ to mean a level-sensitive memory device and ‘flip-flop’ to specify an edge-
triggered memory element. We will discuss the design of latches and flip-flops in
Chapter 12. We will simply note here that a latch is based on cross-coupled gates, as
shown in Figure 6.1. Table 6.1 gives the truth table of this latch.

When S and R are both at logical 1, the latch holds on to its previous value. When both
are at 0, both outputs are at 1. It is this latter behaviour that makes the SR latch unsuit-
able for designing larger circuits, as a latch or flip-flop would normally be expected to

116 VHDL models of sequential logic blocks

R

S

Q

Q

Figure 6.1 SR latch.

Table 6.1 Truth table of SR latch.

S R Q

0 0 1 1

0 1 0 1

1 0 1 0

1 1 Q Q

Q

have different values at its two outputs, and it is difficult to ensure that both inputs will
never be 0 at the same time.

The SR latch could be modelled in VHDL in a number of ways. Two examples are
shown below.

library IEEE;
use IEEE.std_logic_1164.all;

entity SR_latch1 is
port (S, R : in std_logic;

Q, Qbar : buffer std_logic);
end entity SR_latch1;

architecture dataflow of SR_latch1 is
begin
Q <= '1' when R = '0' else

'0' when S = '0' else
Q;

Qbar <= '1' when S = '0' else
'0' when R = '0' else
Qbar;

end architecture dataflow;

library IEEE;
use IEEE.std_logic_1164.all;

Latches 117

1This restriction has been eased in VHDL2002 – see Appendix A.

entity SR_latch2 is
port (S, R : in std_logic;

Q, Qbar : out std_logic);
end entity SR_latch2;

architecture behavioural of SR_latch2 is
begin
p0: process (R, S) is
begin
case std_logic_vector'(R, S) is
when "00" =>
Q <= '1';
Qbar <= '1';

when "01" =>
Q <= '1';
Qbar <= '0';

when "10" =>
Q <= '0';
Qbar <= '1';

when others =>
null;

end case;
end process p0;

end architecture behavioural;

In the first architecture, Q and Qbar are both written to and read in the final else
clauses. As was suggested in Section 4.2.1, this is not permitted if the ports are declared
with mode out. Therefore, Q and Qbar are declared to have mode buffer. They
could alternatively have been declared to have mode inout. An inout mode port is
a true bidirectional port. A buffer port, on the other hand, is an output port that can
be read but which must have only a single driver. As the name suggests, the signal is
modelled as if the internal signal is connected to the external port through a buffer.
There is, however, a catch. In the 1993 standard, when an entity with a port of mode
buffer is used inside another entity, that port may only be connected to an internal
signal or to another port of mode buffer. Therefore the two models shown may not
be interchangeable.1

In the second model, Q and Qbar are given mode out in the entity declaration,
because they are not read inside the model. Q and Qbar are re-evaluated only if S or R
or both are ‘0’. If both S and R are ‘1’, the outputs retain their value.

Note that in the behavioural architecture, the case statement must, by definition,
cover all possible values of S and R (hence the when others clause), but because we
do not wish this branch to change the outputs, we include a null statement. The
sequential null statement is equivalent to the concurrent unaffected clause or to
omitting the final else in a when statement. Therefore it would have been possible to

118 VHDL models of sequential logic blocks

D

Enable

Q1D

C1

Figure 6.2 Level-sensitive D latch.

declare Q and Qbar to have mode out, as in the second model, but to have the follow-
ing architecture:

architecture dataflow of SR_latch2 is
begin
Q <= '1' when R = '0' else

'0' when S = '0' else
unaffected;

Qbar <= '1' when S = '0' else
'0' when R = '0' else
unaffected;

end architecture dataflow;

6.1.2 D latch

Because an SR latch can have both outputs at the same value, it is seldom if ever used.
More useful is the D latch, as shown in Figure 6.2. The input of a D latch is transferred
to the output if an enable signal is asserted. 1D indicates a dependency of the D input
on control signal 1 (C1). TheQ output is not shown.

A behavioural VHDL model of a D latch is

library IEEE;
use IEEE.std_logic_1164.all;

entity D_latch is
port (D, Enable : in std_logic;

Q : out std_logic);
end entity D_latch;

architecture behavioural of D_latch is
begin
p0: process (D, Enable) is
begin
if (Enable = '1') then
Q <= D;

end if;
end process p0;

end architecture behavioural;

Flip-flops 119

D

Clock

Q1D

C1

Figure 6.3 Positive edge-triggered D flip-flop.

We could use one of a number of styles of modelling, but we will use the behavioural
style for the following reasons:

� Declaring ports to have inout or buffer modes may make a dataflow style
model difficult to use because such ports can be connected only to internal signals
or other ports with the same mode. (As noted, this restriction on buffer ports has
been eased in the 2002 standard of VHDL, but this new standard is unlikely to be
universally adopted for some years.)

� We do not want to specify the structure of the latch – we are interested in modelling
behaviour.

� The behavioural model is the only one that we can be certain will be synthesizable.
The dataflow models of the SR latch, for example, are not supported by the 1076.6
RTL synthesis standard.

Notice that the sensitivity list of the process includes both the D signal and the
Enable signal. The latch model is re-evaluated whenever either signal changes. If
the Enable signal is high and the D input changes, that change will cause an immediate
change in the Q output. This model is suitable for both simulation and synthesis; we will
discuss why it would be synthesized to a level-sensitive D latch in Chapter 9.

6.2 Flip-flops

6.2.1 Edge-triggered D flip-flop

In the previous chapter the principle of synchronous sequential design was described.
The main advantage of this approach to sequential design is that all changes of state
occur at a clock edge. The clock edge is extremely short in comparison to the clock
period and to propagation delays through combinational logic. In effect, a clock edge
can be considered to be instantaneous. In VHDL, there are a number of ways to detect
when a clock edge has occurred and hence to model an edge-triggered flip-flop.

The IEEE symbol for a positive edge-triggered D flip-flop is shown in Figure 6.3.
Again, the number 1 shows the dependency of D on C. The triangle at the clock input
denotes edge-sensitive behaviour. An inversion circle, or its absence, shows sensitivity
to a negative or positive edge, respectively.

The simplest VHDL model of a positive edge-triggered D flip-flop is given below.

library IEEE;
use IEEE.std_logic_1164.all;

120 VHDL models of sequential logic blocks

entity D_FF is
port (D, Clock : in std_logic;

Q : out std_logic);
end entity D_FF;

architecture behavioural of D_FF is
begin
p0: process is
begin
wait until (Clock = '1');
Q <= D;

end process p0;
end architecture behavioural;

This form of the process statement was first introduced in the last chapter. The
process does not have a sensitivity list; instead it contains a wait statement.
A process may have either a sensitivity list or one or more wait statements, but not
both. (A process could have neither a sensitivity list nor wait statements, in which
case it will be continually re-evaluated. This is an error in VHDL.) The wait state-
ment causes the process to suspend (i.e. to become inactive) until the condition speci-
fied in the wait statement becomes true. In this case the condition is that Clock
becomes logical 1. Once the condition becomes true, the next statement is executed,
the process restarts and then waits until the next rising clock edge. There are other
forms of the wait statement that we will meet later.

An alternative model of a positive edge-triggered D flip-flop is as follows:

architecture alternative of D_FF is
begin
p0: process (Clock) is
begin
if (Clock = '1') then
Q <= D;

end if;
end process p0;

end architecture alternative;

The process is re-evaluated whenever Clock changes state. The if statement is
then used to check that Clock has changed to a logical 1. This model is not exactly
equivalent to the previous model. The following model is, however, exactly equivalent
to the second model:

architecture equivalent of D_FF is
begin
p0: process is
begin
if (Clock = '1') then
Q <= D;

end if;

Flip-flops 121

D

Reset

Q1D

C1Clock

R

Set S

Figure 6.4 Positive edge-triggered D flip-flop with asynchronous reset and set.

wait on Clock;
end process p0;

end architecture equivalent;

A process with a sensitivity list is equivalent to a process with a wait on statement
at the end of the process. The wait on form of a wait statement causes execution of
the process to be suspended until there is a change in the signal (or signals) listed. It is
important to understand that the first version of the flip-flop model differs from the
second and third versions. At the beginning of a simulation, at time 0, each process in a
VHDL description is executed as far as the first wait statement. Thus in the first
model, the wait statement occurs at the beginning of the process, with the assignment
statement following it. In the second and third versions, the assignment statement is
before the wait statement, and thus would be executed at the start of a simulation if
the if statement is true. In practice, the first and second models would both be inter-
preted by a synthesis tool as positive edge-triggered flip-flops. The third model would
simulate as a positive edge-triggered flip-flop, but would probably not be correctly
interpreted by a synthesis tool.

Similarly, a negative edge-triggered flip-flop can be modelled by detecting a transi-
tion to logical 0:

architecture neg_edge of D_FF is
begin
p0: process is
begin
wait until (Clock = '0');
Q <= D;

end process p0;
end architecture neg_edge;

6.2.2 Asynchronous set and reset

When power is first applied to a flip-flop its initial state is unpredictable. In many
applications this is unacceptable, so flip-flops are provided with further inputs to set
(or reset) their outputs to 1 or 0, as shown in Figure 6.4. Notice that the absence of
any dependency on the clock implies asynchronous behaviour for R and S.

122 VHDL models of sequential logic blocks

These inputs should be used only to initialize a flip-flop. It is very bad practice to
use these inputs to set the state of a flip-flop during normal system operation. The rea-
son for this is that in synchronous systems, flip-flops change state only when clocked.
The set and reset inputs are asynchronous and hence cannot be guaranteed to change
an output at a particular time. This can lead to all sorts of timing problems. In general,
keep all designs strictly synchronous or follow a structured asynchronous design
methodology.

A VHDL model of a flip-flop with an asynchronous reset must respond to
changes in the clock and in the reset input. Therefore we must use a process with a
sensitivity list that includes both these signals. The wait until and wait on
forms of the flip-flop model cannot be written to include checks on both inputs, so
we use an if statement. The process will be activated whenever Clock or Reset
changes. If we make the reset active low, Q is forced to 0 while the reset is 0,
irrespective of the state of the clock. Therefore the first test in the if statement
must be made on the Reset signal:

if (Reset = '0') then
Q <= '0';

If this signal is not asserted, we then need to check whether we have a rising edge on
the clock. Note, however, that at this point, simply checking to see whether the clock is
at 1 is not sufficient, because the process might have been activated by the Reset sig-
nal changing to 1. Thus we have to check that the clock is at 1 and that it was a transi-
tion on the Clock signal that activated the process. This can be done by checking the
'EVENT attribute of the Clock signal. This attribute is true only if a change has
occurred to that signal at the current time.

elsif (Clock = '1' and Clock'EVENT) then
Q <= D;

Another way to detect an edge is to check the 'STABLE attribute. This is true if the
signal has not changed at the current time.

elsif (Clock = '1' and not Clock'STABLE) then
Q <= D;

The entire flip-flop model is now shown below.

library IEEE;
use IEEE.std_logic_1164.all;

entity D_FF_R is
port (D, Clock, Reset : in std_logic;

Q : out std_logic);
end entity D_FF_R;

architecture behavioural of D_FF_R is
begin
p0: process (Clock, Reset) is

Flip-flops 123

begin
if (Reset = '0') then
Q <= '0';

elsif (Clock = '1' and Clock'EVENT) then
Q <= D;

end if;
end process p0;

end architecture behavioural;

An asynchronous set can be described in a similar way (see Exercises).
It is possible for a flip-flop to have both an asynchronous set and reset. For example:

library IEEE;
use IEEE.std_logic_1164.all;

entity D_FF_RS is
port (D, Clock, Reset, Set : in std_logic;

Q : out std_logic);
end entity D_FF_RS;

architecture behavioural of D_FF_RS is
begin
p0: process (Clock, Reset, Set) is
begin
if (Set = '0') then
Q <= '1';

elsif (Reset = '0') then
Q <= '0';

elsif (Clock = '1' and Clock'EVENT) then
Q <= D;

end if;
end process p0;

end architecture behavioural;

This may not correctly describe the behaviour of a flip-flop with asynchronous
inputs because asserting both the asynchronous set and reset is usually considered
an illegal operation. In this model, Q is forced to 1 if Set is 0, regardless of the
Reset signal. Even if this model synthesizes correctly, we would still wish to
check that this condition did not occur during a simulation. A technique to do this is
described later in this chapter.

6.2.3 Rising_edge and falling_edge

All these flip-flop models detect a transition to a given state. If the clock were declared
to be of type BIT, the only transitions of the clock that would be possible are 0 to 1 and
1 to 0. With the std_logic type, there are nine logic states and hence eight possible
transitions to any given state. The flip-flop models shown will trigger on, for instance,
an H to 1 transition. This is not how a real flip-flop behaves. We can specify a true 0 to 1

124 VHDL models of sequential logic blocks

transition by checking both the current value of the clock and its last value. This is done
using the 'LAST_VALUE attribute:

architecture true_edge of D_FF_R is
begin
p0: process (Clock, Reset) is
begin
if (Reset = '0') then
Q <= '0';

elsif (Clock = '1' and
Clock'LAST_VALUE = '0' and Clock'EVENT) then

Q <= D;
end if;

end process p0;
end architecture true_edge;

This has now defined a true 0 to 1 transition, but this form is not recognized by all syn-
thesis tools. Further, an L to 1 (weak logic 0 to strong logic 1) transition would not be
recognized in a simulation. The standard logic package simplifies all these cases by
providing a rising_edge and a falling_edge function.

architecture r_edge of D_FF_R is
begin
p0: process (Clock, Reset) is
begin
if (Reset = '0') then
Q <= '0';

elsif rising_edge(Clock) then
Q <= D;

end if;
end process p0;

end architecture r_edge;

It is strongly suggested that these functions be used to detect clock edges.

6.2.4 Synchronous set and reset and clock enable

Flip-flops may have synchronous set and reset functions as well as, or instead of, asyn-
chronous set or reset inputs. A synchronous set or reset takes effect only at a clock
edge. Thus a VHDL model of such a function must include a check on the set or reset
input after the clock edge has been checked. It is not necessary to include synchronous
set or reset inputs in the process sensitivity list because the process is activated only at
a clock edge. This is shown in IEEE notation in Figure 6.5. R is now shown to be
dependent on C and is therefore synchronous.

architecture synch_reset of D_FF_R is
begin
p0: process (Clock) is

Flip-flops 125

D

Reset

Q1D

C1Clock

1R

Figure 6.5 Positive edge-triggered D flip-flop with synchronous reset.

D

Enable

Q2D

1C2Clock

G1

Figure 6.6 Positive edge-triggered flip-flop with clock enable.

begin
if rising_edge(Clock) then
if (Reset = '0') then
Q <= '0';

else
Q <= D;

end if;
end if;

end process p0;
end architecture synch_reset;

Similarly, a flip-flop with a clock enable signal may be modelled with that signal
checked after the edge detection. In Figure 6.6, the dependency notation shows that
C is dependent on G, and D is dependent on (the edge-triggered behaviour of) C.

library IEEE;
use IEEE.std_logic_1164.all;

entity D_FF_E is
port (D, Clock, Enable : in std_logic;

Q : out std_logic);
end entity D_FF_E;

architecture behavioural of D_FF_E is
begin
p0: process (Clock) is
begin
if rising_edge(Clock) then
if (Enable = '1') then

126 VHDL models of sequential logic blocks

Q <= D;
end if;

end if;
end process p0;

end architecture behavioural;

A synthesis system is likely to interpret this as a flip-flop with a clock enable. The
following model is likely to be interpreted differently, although it appears to have the
same functionality:

architecture gated_clock of D_FF_E is
signal ce : std_logic;

begin
ce <= Enable and Clock;

p0: process (ce) is
begin
if rising_edge(ce) then
Q <= D;

end if;
end process p0;

end architecture gated_clock;

Again, the D input is latched if Enable is true and there is a clock edge. This time,
however, the clock signal passes through an AND gate and hence is delayed. The
D input is also latched if the clock is true and there is a rising edge on the Enable sig-
nal! This is another example of design that is not truly synchronous and that is therefore
liable to timing problems. This style of design should generally be avoided, although for
low-power applications the ability to turn off the clock inputs to flip-flops can be useful.

6.2.5 Timing and logic checks

In developing digital systems, we assume certain types of behaviour such as discrete
logic levels. A further assumption, discussed in Chapter 12, is that only one input to
a flip-flop can change at one time. For example, the D input to a flip-flop must have
changed and be stable for a short period before the clock changes. Failure to observe
this condition may result in an unpredictable output. In the worst case, the output of
a flip-flop can exist in a metastable state somewhere between logical 1 and logical 0 for
an indeterminate time. This unpredictability is not desirable. If we were verifying our
designs by simulation, it would clearly be helpful if we were alerted to possible timing
problems and to illegal combinations of inputs. VHDL provides the assert statement
to generate warning messages. The assert statement is ignored by synthesis tools.

The form of an assert statement is as follows:

assert condition
report message
severity level;

Flip-flops 127

The condition is a Boolean expression that we normally expect to be true. If the con-
dition is false the message in the report part is printed. The severity level may be
NOTE, WARNING, ERROR or FAILURE. An error or failure will usually cause the sim-
ulation to halt at that point. The report and/or the severity clause may be omitted.
It is also possible to omit the assert part, in which case the message in the report
part will always be printed. Assert statements may be included in sequential code or
in concurrent code. The difference is that a concurrent assert will be activated only
when one of the signals in the condition clause changes, while the sequential assert
will be evaluated whenever it is reached in a process or other sequential block.

In Section 6.2.2 it was noted that an asynchronous set and reset should not both
be at logical 0. This condition could be verified by the following assert statement:

assert (Set = '1' or Reset = '1')
report "Set and Reset are both asserted"
severity WARNING;

Thus if both inputs are at 0, the message is printed. Because we are stating what we
expect to be true, the logic may appear to be counter-intuitive. We could equally state
the condition that we are checking for and invert it:

assert (not(Set = '0' and Reset = '0'))

If we wish to check that the D input has stabilized before the clock input changes, we
can use a form of the 'STABLE attribute:

assert (not(Clk = '1' and Clk'EVENT and not D'STABLE(3 NS)))
report "Setup time violation"
severity WARNING;

Thus, we expect that the condition that there has been a clock edge and D has not been
stable for 3 ns is not normally true.

The hold time of a flip-flop is defined as the time after a clock edge for which a data
input must be stable. This can be similarly defined:

assert (not(Clk = '1' and D'EVENT and not Clk'STABLE(5 NS)))
report "Hold time violation"
severity WARNING;

The assert statement is passive, meaning that there is no signal assignment.
Passive processes and statements may be included in the entity part of a declaration. The
advantage of doing this is that the check applies to all architectures and does not have to
be restated for every architecture. A model of a D flip-flop with an asynchronous reset
and set, a clock enable, setup time and asynchronous input checks and propagation
delays is shown below.

library IEEE;
use IEEE.std_logic_1164.all;

128 VHDL models of sequential logic blocks

entity D_FF is
generic (CQ_Delay, SQ_Delay, RQ_Delay: DELAY_LENGTH :=

5 NS;
Setup: DELAY_LENGTH := 3 NS);

port (D, Clk, Set, Reset, Enable : in std_logic;
Q : out std_logic);

begin
assert (not(rising_edge(Clk) and not D'STABLE(Setup)))
report "Setup time violation"
severity WARNING;

end entity D_FF;

architecture behavioural of D_FF is
begin
p0: process (Clk, Set, Reset) is
begin
assert (not(Set = '0' and Reset = '0'))

report "Set and Reset are both asserted"
severity ERROR;

if Set = '0' then
Q <= '1' after SQ_Delay;

elsif Reset = '0' then
Q <= '0' after RQ_Delay;

elsif rising_edge(Clk) then
if (Enable = '1') then
Q <= D after CQ_Delay;

end if;
end if;

end process p0;
end architecture behavioural;

6.3 JK and T flip-flops

A D flip-flop registers its input at a clock edge, making that value available during
the next clock cycle. JK and T flip-flops change their output states at the clock edge
in response to their inputs and to their present states. Truth tables for D, JK and
T flip-flops are shown below.

D Q� J K Q� T Q�

0 0 1 0 0 Q 0 Q
1 1 0 0 1 0 1 1 Q

1 0 1 0
1 1 Q

Both the Q and outputs are shown. Symbols for D, JK and T flip-flops with both outputs
and with a reset are shown in Figure 6.7.

Q

Q

Q
QQ

Q�Q�Q�

JK and T flip-flops 129

(a)

D

Reset
Q

1D

C1Clock

R

Q

(b)

J

Reset Q
1J

C1Clock

R

QK 1K

(c)

T

Reset
Q

1T

C1Clock

R

Q

Figure 6.7 (a) D flip-flop; (b) JK flip-flop; (c) T flip-flop.

Before writing models for the JK and T flip-flops we will consider how a D flip-flop
with both outputs would be modelled. The entity declaration for a D flip-flop with Q
and outputs is:

library IEEE;
use IEEE.std_logic_1164.all;

entity D_FF is
port (D, Clock, Reset : in std_logic;

Q, Qbar : out std_logic);
end entity D_FF;

We cannot simply write Qbar <= not Q; to generate the Qbar output because
Q is declared to be an output and cannot therefore be read. Q could be declared to
have mode buffer, but that might restrict how the model could be used. Therefore
we will store the state of the flip-flop internally. This can be done with a signal or
with a variable.

architecture sig of D_FF is
signal state : std_logic;

begin
p0: process (Clock, Reset) is
begin
if (Reset = '0') then
state <= '0';

elsif rising_edge(Clock) then
state <= D;

end if;
end process p0;
Q <= state;
Qbar <= not state;

end architecture sig;

Q

130 VHDL models of sequential logic blocks

architecture var of D_FF is
begin
p0: process (Clock, Reset) is

variable state : std_logic;
begin
if (Reset = '0') then
state := '0';

elsif rising_edge(Clock) then
state := D;

end if;
Q <= state;
Qbar <= not state;

end process p0;
end architecture var;

In the first case, state is declared as a signal, outside the process. Two concurrent
assignments to Q and Qbar are made outside (and concurrently with) the process.
These two assignments are made outside the process because signals are updated in a
process after that process suspends. Therefore, if we had the sequence

state <= D;
Q <= state;

inside a process, state would be updated with the new value of D at the same time as Q
is updated with the last value of state. Hence two clock edges would be required to
update the value of Q to a new value of D. A synthesis tool would interpret a sequence of
two signal assignments such as this as implying the existence of two flip-flops in series.

In the second case, state is declared as a variable inside the process. Variables
can be declared only inside a process or a subprogram. (Signals cannot be declared inside
a process or subprogram.) The assignment to the variable, state, uses a different sym-
bol (:=) from a signal assignment (<=). Unlike a signal assignment, a variable assign-
ment takes effect immediately. Thus the new value of a variable is available in subsequent
lines of a process. The assignments to Q and Qbar now take place inside the process and
the new value of D is assigned to Q at a single clock edge. These assignments cannot be
done outside, because the state variable is visible only inside the process.

Both the JK and T flip-flops can use a signal or variable to hold the internal state in
the same way:

library IEEE;
use IEEE.std_logic_1164.all;

entity JK_FF is
port (J, K, Clock, Reset : in std_logic;

Q, Qbar : out std_logic);
end entity JK_FF;

architecture sig of JK_FF is
signal state : std_logic;

JK and T flip-flops 131

begin
p0: process (Clock, Reset) is
begin
if (Reset = '0') then
state <= '0';

elsif rising_edge(Clock) then
case std_logic_vector'(J, K) is
when "11" =>
state <= not state;

when "10" =>
state <= '1';

when "01" =>
state <= '0';

when others =>
null;

end case;
end if;

end process p0;
Q <= state;
Qbar <= not state;

end architecture sig;

library IEEE;
use IEEE.std_logic_1164.all;

entity T_FF is
port (T, Clock, Reset : in std_logic;

Q, Qbar : out std_logic);
end entity T_FF;

architecture var of T_FF is
begin
p0: process (Clock, Reset) is

variable state : std_logic;
begin
if (Reset = '0') then
state := '0';

elsif rising_edge(Clock) then
if T = '1' then
state := not state;

end if;
end if;
Q <= state;
Qbar <= not state;

end process p0;
end architecture var;

132 VHDL models of sequential logic blocks

A case statement determines the internal state of the JK flip-flop. The selector
of the case statement is formed by aggregating the J and K inputs and qualifying
the result as a std_logic_vector. The when others default clause covers
the ‘00’ case and other undefined values (a case statement must cover all possible
values of the selector). The null statement does nothing, so the value of state
is retained.

The internal state of the T flip-flop is held as a variable. Note that the value of a vari-
able is retained between activations of a process.

6.4 Registers and shift registers

6.4.1 Multiple bit register

A D flip-flop is a one-bit register. Thus if we want a register with more than one bit, we
simply need to define a set of D flip-flops using vectors:

library IEEE;
use IEEE.std_logic_1164.all;

entity reg is
generic (n : NATURAL := 4);
port (D : in std_logic_vector(n-1 downto 0);

Clock, Reset : in std_logic;
Q : out std_logic_vector(n-1 downto 0));

end entity reg;

architecture behavioural of reg is
begin
p0: process (Clock, Reset) is
begin
if (Reset = '0') then
Q <= (others => '0');

elsif rising_edge(Clock) then
Q <= D;

end if;
end process p0;

end architecture behavioural;

The IEEE symbol for a 4-bit register is shown in Figure 6.8. Note that the common
signals are contained in a control block.

6.4.2 Shift registers

An extension of the above model of a register includes the ability to shift the bits of the
register to the left or to the right. For example, a sequence of bits can be converted into
a word by shifting the bits into a register, and moving the bits along at each clock edge.

Registers and shift registers 133

C1

1D

R

Figure 6.8 Four-bit register.

After a sufficient number of clock edges, the bits of the word are available as a single
word. This is known as a serial-in, parallel-out (SIPO) register.

library IEEE;
use IEEE.std_logic_1164.all;

entity sipo is
generic(n : NATURAL := 8);
port(a : in std_logic;

q : out std_logic_vector(n-1 downto 0);
clk : in std_logic);

end entity sipo;

architecture rtl of sipo is
begin
p0: process (clk) is

variable reg : std_logic_vector(n-1 downto 0);
begin
if rising_edge(clk) then
reg := reg(n-2 downto 0) & a;
q <= reg;

end if;
end process p0;

end architecture rtl;

At each clock edge, the bits of the register are moved along by one, and the input, a, is
shifted into the 0th bit. The assignment to reg does this by assigning bits n – 2 to 0 to
bits n – 1 to 1, respectively, and concatenating a to the end of the assignment. The old
value for bit n – 1 is lost.

A more general shift register is the universal shift register. This can shift bits to the
left or to the right, and can load an entire new word in parallel. To do this, two control
bits are needed. The IEEE symbol is shown in Figure 6.9.

134 VHDL models of sequential logic blocks

1

R

1,4D

C4

0

1
M 0

3

/2

reset

s(0)

s(1)
clk

SRG4

rin
3,4Da(3)

q(3)

3,4Da(2) q(2)

3,4Da(1) q(1)

3,4Da(0) q(0)
2,4Dlin

Figure 6.9 Universal shift register.

S1S0 Action

00 Hold
01 Shift right
10 Shift left
11 Parallel load

There are four control modes shown by . The clock signal is split into two for
convenience. Control signal 4 is generated and in modes 1 and 2 a shift left or shift
right operation, respectively, is performed. 1,4D means that a D-type operation occurs
in mode 1 when control signal 4 is asserted.

library IEEE;
use IEEE.std_logic_1164.all;

entity usr is
generic(n : NATURAL := 8);
port(a : in std_logic_vector(n-1 downto 0);

lin, rin : in std_logic;
s : in std_logic_vector(1 downto 0);
clk, reset : in std_logic;
q : out std_logic_vector(n-1 downto 0));

end entity usr;

architecture rtl of usr is
begin
p0: process(clk, reset) is

variable reg : std_logic_vector(n-1 downto 0);

M 03

Counters 135

begin
if (reset = '0') then
reg := (others => '0');

elsif rising_edge(clk) then
case s is
when "11" =>
reg := a;

when "10" =>
reg := reg(n-2 downto 0) & lin;

when "01" =>
reg := rin & reg(n-1 downto 1);

when others =>
null;

end case;
end if;
q <= reg;

end process p0;
end architecture rtl;

The shift operations are done by taking the lowest (n – 1) bits and concatenating
the leftmost input (shift left) or by taking the upper (n – 1) bits concatenated to the
rightmost input (shift right). It would be possible to use the shift operators, but in prac-
tice they are not needed.

6.5 Counters

Counters are used for a number of functions in digital design, e.g. counting the number
of occurrences of an event, storing the address of the current instruction in a program, or
generating test data. Although a counter typically starts at zero and increments monoto-
nically to some larger value, it is also possible to use different sequences of values,
which can result in simpler combinational logic.

6.5.1 Binary counter

A binary counter is a counter in the intuitive sense. It consists of a register of a number
of D flip-flops, the content of which is the binary representation of a decimal number. At
each clock edge the content of the counter is increased by one, as shown in Figure 6.10.
We can easily model this in VHDL, using the numeric_std package to provide the
‘+’ operator. The reset operation is shown in Figure 6.10 as setting the contents (CT) to
0. The weight of each stage is shown in brackets.

library IEEE;
use IEEE.std_logic_1164.all, IEEE.numeric_std.all;

entity counter is
generic(n : NATURAL := 4);

136 VHDL models of sequential logic blocks

+

CT = 0

CTRDIV16

[1]

[2]

[4]

[8]

Figure 6.10 Binary counter.

port(clk : in std_logic;
reset : in std_logic;
count : out std_logic_vector(n-1 downto 0));

end entity counter;

architecture rtl of counter is
begin
p0: process (clk, reset) is

variable cnt : unsigned(n-1 downto 0);
begin
if reset = '1' then
cnt := (others => '0');

elsif rising_edge(clk) then
cnt := cnt + 1;

end if;
count <= std_logic_vector(cnt);

end process p0;
end architecture rtl;

Note that the contents of the counter are stored as a variable inside a process. The vari-
able has type unsigned (allowing the + operator to be used). The contents of the
counter are assigned to a signal and converted into a std_logic_vector. Note
that the + operator does not generate a carry out. Thus when the counter has reached
its maximum integer value (all 1s) the next clock edge will cause the counter to ‘wrap
round’ and its next value will be zero (all 0s). We could modify the counter to gener-
ate a carry out, but in general counters are usually designed to detect the all-1s state
and to output a signal when that state is reached. A carry out signal would be gener-
ated one clock cycle later. It is trivial to modify this counter to count down, or to count
by a value other than one (possibly defined by a generic – see the Exercises at the end
of this chapter).

Counters 137

The advantage of describing a counter in VHDL is that the underlying combinational
next state logic is hidden. For a counter with eight or more bits, the combinational logic
can be very complex, but a synthesis system will generate that logic automatically.
A simpler form of binary counter is the ripple counter. An example of a ripple counter
using T flip-flops is described in VHDL below, using the T flip-flop of Section 6.3. The
entity description is the same as above.

architecture ripple of counter is
signal carry : std_logic_vector(n downto 0);

begin
carry(0) <= clk;
g0 : for i in 0 to n-1 generate

ti: entity WORK.T_FF port map('1', carry(i), reset,
count(i), carry(i + 1));

end generate g0;
end architecture ripple;

Note that the T input is held at a constant value in the description. When simulated
using the T flip-flop model, above, this circuit behaves identically to the RTL model.
A more realistic model of a T flip-flop would, however, contain propagation delays:

architecture delayed of T_FF is
begin
p0: process (Clock, Reset) is

variable state : std_logic;
begin
if (Reset = '0') then
state := '0';

elsif rising_edge(Clock) then
if T = '1' then
state := not state;

end if;
end if;
Q <= state after 5 NS;
Qbar <= not state after 5 NS;

end process p0;
end architecture delayed;

Now a simulation of the ripple counter reveals its asynchronous nature. The second
flip-flop is clocked from theQ output of the first flip-flop, as shown in Figure 6.11.
A change in this output is delayed by 5 ns relative to the clock. Hence, the second
flip-flop is clocked by a signal 5 ns behind the true clock. With further counter stages,
the delay is increased. Further, it can be seen that incorrect intermediate values are
generated. Provided the clock speed is sufficiently slow, a ripple counter can be used
instead of a synchronous counter, but in many applications a synchronous counter
is preferred.

138 VHDL models of sequential logic blocks

1D

R

C1/

reset

clk

SRG4

Figure 6.12 Johnson counter.

1

Reset

1T

C1Clock

R

count(0)

1

C1

R

1

C1

R

1T 1T

count(1) count(2)

Figure 6.11 Ripple counter.

6.5.2 Johnson counter

A Johnson counter (also known as a Möbius counter – after a Möbius strip: a strip of
paper formed into a circle with a single twist, resulting in a single surface) is built from
a shift register with the least significant bit inverted and fed back to the most significant
bit, as shown in Figure 6.12.

An n-bit binary counter has 2n states. An n-bit Johnson counter has 2n states. The
advantage of a Johnson counter is that it is simple to build (like a ripple counter), but
is synchronous. The disadvantage is the large number of unused states that form an
autonomous counter in their own right. In other words, we have the intended counter
and a parasitic state machine coexisting in the same hardware. Normally, we should
be unaware of the parasitic state machine, but if the system somehow entered one of
the unused states, the subsequent behaviour might be unexpected. A VHDL descrip-
tion of a Johnson counter is shown below. The entity description is the same as for the
binary counter.

Counters 139

architecture johnson of counter is
begin
p0: process (clk, reset) is

variable reg : std_logic_vector(n-1 downto 0);
begin
if reset = '1' then
reg := (others => '0');

elsif rising_edge(clk) then
reg := not reg(0) & reg(n-1 downto 1);

end if;
count <= reg;

end process p0;
end architecture johnson;

The counting sequence of a 4-bit counter, together with the sequence belonging to
the parasitic state machine, is shown in the table below. Whatever the size of n, the
unused states form a single parasitic counter with 2n – 2n states.

Normal counting sequence Parasitic counting sequence

0000 0010
1000 1001
1100 0100
1110 1010
1111 1101
0111 0110
0011 1011
0001 0101

Both sequences repeat but do not intersect at any point. The parasitic set of states of
a Johnson counter should never occur, but if one of the states did occur somehow,
perhaps because of a power supply glitch or because of some asynchronous input,
the system can never return to its normal sequence. One solution to this is to make the
counter self-correcting. It would be possible to detect every one of the parasitic states
and to force a synchronous reset, but for an n-bit counter that is difficult. An easier
solution is to note that the only legal state with a 0 in both the most significant and
least significant bits is the all-zeros state. On the other hand, three of the parasitic
states have zeros in those positions. Provided that we are happy to accept that if the
system does enter an illegal state it does not have to correct itself immediately, but can
re-enter the normal counting sequence after ‘a few’ clock cycles, we can simply detect
any states that have a 0 at the most and least significant bits and force the next state to
be ‘1000’ or its n-bit equivalent.

architecture self_correcting_johnson of counter is
begin
p0: process (clk, reset) is

variable reg : std_logic_vector(n-1 downto 0);

140 VHDL models of sequential logic blocks

1D

S

C1/

set

clk

SRG4

Figure 6.13 LFSR.

begin
if reset = '1' then
reg := (others => '0');

elsif rising_edge(clk) then
if reg(n-1) = '0' and reg(0) = '0' then
reg := (others => '0');
reg(n-1) := '1';

else
reg := not reg(0) & reg(n-1 downto 1);

end if;
end if;
count <= reg;

end process p0;
end architecture self_correcting_johnson;

6.5.3 Linear feedback shift register

Another counter that is simple in terms of next-state logic is the linear feedback shift
register (LFSR). This has 2n – 1 states in its normal counting sequence. The sequence
of states appears to be random, hence the other name for the register: pseudo-random
sequence generator (PRSG). The next-state logic is formed by exclusive OR gates as
shown in Figure 6.13.

There are a large number of possible feedback connections for each value of n that
give the maximal length (2n – 1) sequence, but it can be shown that no more than four
feedback connections (and hence three exclusive OR gates) are ever needed. The single
state missing from the sequence is the all-0s state. Hence the asynchronous initializa-
tion should be a ‘set’. As with the Johnson counter, the LFSR could be made self-
correcting. A VHDL model of an LFSR valid for certain values of n is shown below.

Counters 141

The main advantage of using an LFSR as a counter is that nearly the full range of
possible states (2n – 1) can be generated using simple next-state logic. Moreover, the
pseudo-random sequence can be exploited for applications such as coding.

In the VHDL model, the feedback connections for LFSRs with 1 to 36 stages are
defined in a table, taps. The table type is declared as a two-dimensional array. It is pos-
sible to define arrays with three or more dimensions in a similar manner. Note that the
generic parameter, n, that defines the size of the LFSR is limited to the range 1 to 36
(with a default value of 8). Any attempt to use this model for a larger LFSR would result
in a compilation error. The table has four entries per row for four feedback connections
or fewer. If fewer than four feedback connections are needed, �1 is put in each of the
spare places. (In all the cases listed, the last valid feedback connection in the correspon-
ding table row is a 0. We could have been ‘clever’ and used this fact in our model. Hence
the table would not have needed a special value of ‘�1’ to indicate unused feedback
connections. This would, however, be very poor software engineering practice. The
algorithm breaks down if one piece of data does not fit the pattern and debugging code
that relies on accidental patterns in data is very difficult.) Thus to construct the feedback
connection for a particular size of LFSR, the stages of the LFSR referenced in the taps
table are XORed together using a loop. Entries in the taps table with a value of �1
are ignored.

library IEEE;
use IEEE.std_logic_1164.all;

entity lfsr is
generic(n : INTEGER range 1 to 36 := 8);
port(reset : in std_logic;

q : out std_logic_vector(n-1 downto 0);
clk : in std_logic);

end entity lfsr;

architecture rtl of lfsr is
type tap_table is array (1 to 36, 1 to 4) of

INTEGER range -1 to 36;
constant taps : tap_table :=(

(0, -1, -1, -1), -- 1
(1, 0, -1, -1), -- 2
(1, 0, -1, -1), -- 3
(1, 0, -1, -1), -- 4
(2, 0, -1, -1), -- 5
(1, 0, -1, -1), -- 6
(1, 0, -1, -1), -- 7
(6, 5, 1, 0), -- 8
(4, 0, -1, -1), -- 9
(3, 0, -1, -1), -- 10
(2, 0, -1, -1), -- 11
(7, 4, 3, 0), -- 12
(4, 3, 1, 0), -- 13

142 VHDL models of sequential logic blocks

(12, 11, 1, 0), -- 14
(1, 0, -1, -1), -- 15
(5, 3, 2, 0), -- 16
(3, 0, -1, -1), -- 17
(7, 0, -1, -1), -- 18
(6, 5, 1, 0), -- 19
(3, 0, -1, -1), -- 20
(2, 0, -1, -1), -- 21
(1, 0, -1, -1), -- 22
(5, 0, -1, -1), -- 23
(4, 3, 1, 0), -- 24
(3, 0, -1, -1), -- 25
(8, 7, 1, 0), -- 26
(8, 7, 1, 0), -- 27
(3, 0, -1, -1), -- 28
(2, 0, -1, -1), -- 29
(16, 15, 1, 0), -- 30
(3, 0, -1, -1), -- 31
(28, 27, 1, 0), -- 32
(13, 0, -1, -1), -- 33
(15, 14, 1, 0), -- 34
(2, 0, -1, -1), -- 35
(11, 0, -1, -1)); -- 36

begin
p0: process (clk, reset) is

variable reg : std_logic_vector(n-1 downto 0);
variable feedback : std_logic;

begin
if reset = '1' then
reg := (others => '1');

elsif rising_edge(clk) then
feedback := reg(taps(n, 1));
for i in 2 to 4 loop
if taps(n, i) >= 0 then
feedback := feedback xor reg(taps(n, i));

end if;
end loop;
reg := feedback & reg(n-1 downto 1);

end if;
q <= reg;

end process p0;
end architecture rtl;

Memory 143

6.6 Memory

Computer memory is often classified as ROM (read-only memory) and RAM (random
access memory). These are to some extent misnomers – ROM is random access and RAM
is better thought of as read and write memory. RAM can further be divided into SRAM
(static RAM) and DRAM (dynamic RAM). Static RAM retains its contents while power is
applied to the system. Dynamic RAM uses capacitors to store bits, which means that the
capacitance charge can leak away with time. Hence DRAM needs refreshing intermittently.

6.6.1 ROM

The contents of a ROM chip are defined once. Hence we can use a constant array to
model a ROM device in VHDL. Below is the seven-segment decoder from Chapter 4
described as a ROM.

library IEEE;
use IEEE.std_logic_1164.all;

entity rom16x7 is
port (address : in INTEGER range 0 to 15;

data : out std_logic_vector (6 downto 0));
end entity rom16x7;

architecture sevenseg of rom16x7 is
type rom_array is array (0 to 15) of
std_logic_vector (6 downto 0);

constant rom : rom_array := ("1110111",
"0010010",
"1011101",
"1011011",
"0111010",
"1101011",
"1101111",
"1010010",
"1111111",
"1111011",
"1101101",
"1101101",
"1101101",
"1101101",
"1101101",
"1101101");

begin
data <= rom(address);

end architecture sevenseg;

144 VHDL models of sequential logic blocks

The value contained in the ROM for a given address is available at the data output
after the address has been set up – if we are interested in the timing characteristics, this
delay could be modelled in the VHDL code:

data <= rom(address) after 5 NS;

Because no values can be written into the ROM, we can think of the device as com-
binational logic. In general, combinational logic functions can be implemented directly in
ROM. Programmable forms of ROM are available (EPROM – electrically programmable
ROM), but such devices require the application of a large negative voltage (�12 V) to
a particular pin of the device. Such functionality is not modelled, as it does not form part
of the normal operating conditions of the device.

6.6.2 Static RAM

A static RAM may be modelled in much the same way as a ROM. Because data may be
stored in the RAM as well as read from it, the data signal is declared to be of mode
inout. In addition, three control signals are provided. The first, CS (Chip Select), is
a general control signal to enable a particular RAM chip. The address range, in this
example, is 0 to 15. If we were to use, say, four identical chips to provide RAM with an
address range of 0 to 63 (6 bits), the upper two address bits would be decoded such that
at any one time exactly one of the RAM chips is enabled by its CS signal. Hence if the
CS signal is not enabled, the data output of the RAM chip should be in the high-
impedance state. The other two signals are OE (Output Enable) and WE (Write Enable).
Only one of these two signals should be asserted at one time. Data is either read from the
RAM chip when the OE signal is asserted, or written to the chip if the WE signal is
asserted. If neither signal is asserted, the output remains in the high-impedance state. All
the control signals are active low.

Like the ROM, the memory array is modelled as an array, this time as a variable in a
process. The default initial value of a signal or variable is the leftmost value of its type.
In this case the leftmost value of std_logic is ‘U’, so the entire memory array is
initialized to ‘U’. Again no timing has been included, but this could be easily done.

library IEEE;
use IEEE.std_logic_1164.all;

entity RAM16x8 is
port (Address: in INTEGER range 0 to 15;

Data: inout std_logic_vector(7 downto 0);
CS, WE, OE: in std_logic);

end entity RAM16x8;

architecture RTL of RAM16x8 is
begin
p0: process (Address, CS, WE, OE, Data) is

type ram_array is array (0 to 15) of
std_logic_vector(7 downto 0);

variable mem: ram_array;

Memory 145

begin
Data <= (others => 'Z');
if CS = '0' then
if OE = '0' then
Data <= mem(Address);

elsif WE = '0' then
mem(Address) := Data;

end if;
end if;

end process p0;
end architecture RTL;

6.6.3 Dynamic RAM

Dynamic RAM is fundamentally different from SRAM. In SRAM, memory cells are
built from standard (CMOS) latches. In DRAM, bits are stored as charge on the capac-
itance of transistor gates. DRAM is therefore much more compact than SRAM. It is, on
the other hand, slower. Therefore, if you look inside a PC, you will find SRAM used for
the cache because it is fast and DRAM used for the main memory because it is compact
and cheap. You will also notice that the SIMM arrays inside a PC commonly have nine
chips. Each DRAM device is an array of, say, 16 Mbits. An eight-bit data word is there-
fore stored across eight DRAM chips, with its parity bit in the ninth chip.

Because the data in a DRAM chip is stored as charge on a capacitor, the data
needs to be refreshed every so often as the capacitor slowly discharges. Additional
circuitry is required to periodically read the entire contents of the DRAM and to
write it back. The DRAM model, below, does not model the refresh circuitry, but it
does model another important feature of many DRAM chips. The address of a data
bit is written in two pieces: its row, followed by its column in the memory array. The
timing of signals to a DRAM chip is therefore critical; a simplified timing diagram
is shown in Figure 6.14.

Note that the DRAM model should be used only for simulation. It is not possible to
fabricate DRAM devices on standard CMOS technology, and in any case a synthesis
system would attempt to implement this model as SRAM!

library IEEE;
use IEEE.std_logic_1164.all;

entity DRAM8MBit is
port(Address: in INTEGER range 0 to 2**10 – 1;

Data: inout std_logic_vector(7 downto 0);
RAS,CAS,WE: in std_logic);

end entity DRAM8MBit;

architecture behaviour of DRAM8Mbit is
begin
p0: process (RAS, CAS, WE) is

146 VHDL models of sequential logic blocks

Address

RAS

CAS

Data outRead:

Write:

WE

Data in

Row Col

Valid

Valid

Figure 6.14 DRAM timing.

type dram_array is array (0 to 2**20 – 1) of
std_logic_vector(7 downto 0);

variable row_address: INTEGER range 0 to 2**10 – 1;
variable mem_address: INTEGER range 0 to 2**20 – 1;
variable mem: dram_array;

begin
Data <= (others => 'Z');
if falling_edge(RAS) then
row_address := Address;

elsif falling_edge(CAS) then
mem_address := row_address*2**10 + Address;
if RAS = '0' and WE = '0' then
mem(mem_address) := Data;

end if;
elsif CAS = '0' and RAS = '0' and WE = '1' then
Data <= mem(mem_address);

end if;
end process p0;

end architecture behaviour;

6.6.4 Synchronous RAM

Both the static and dynamic RAM models are asynchronous and intended for model-
ling separate memory chips. Sometimes we wish to allocate part of an FPGA as RAM.
In order for this to be synthesized correctly and for ease of use, it is best to make this
RAM synchronous. Depending on the technology, there may be a variety of possible
RAM structures, e.g. synchronous read, dual-port. Here, we will simply show how

Sequential multiplier 147

a basic synchronous RAM is modelled. This parameterizable example can be synthe-
sized in most programmable technologies.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity SyncRAM is
generic(M: NATURAL := 4;

N: NATURAL := 8);
port (Address: in std_logic_vector(M-1 downto 0);

Data: in std_logic_vector(N-1 downto 0);
WE, Clk: in std_logic;
Qout: out std_logic_vector(N-1 downto 0));

end entity SyncRAM;

architecture RTL of SyncRAM is
type ram_array is array (0 to 2**M-1) of
std_logic_vector(N-1 downto 0);

signal mem: ram_array;
begin
p0: process (Clk) is
begin
if rising_edge(clk) then
if WE = '0' then
mem(to_integer(unsigned(Address))) <= Data;

end if;
end if;

end process p0;
Qout <= mem(to_integer(unsigned(Address)));

end architecture RTL;

The structure of this code is almost identical to that of a flip-flop with an enable – in
this case, the enable signal is the WE input. As with the SRAM example above, the
Address input is converted into an unsigned integer to reference an array. This example
can be extended to include an output enable and chip select, as above.

6.7 Sequential multiplier

Let us consider a multiplier for two’s complement binary numbers. Multiplication,
whether decimal or binary, can be broken down into a sequence of additions. A VHDL
statement such as

q <= a * b;

where a and b are n-bit representations of (positive) integers, would be interpreted
by a VHDL synthesis tool as a combinational multiplication requiring n2 full adders.

148 VHDL models of sequential logic blocks

If a and b are two’s complement numbers, there also needs to be a sign adjustment.
A combinational multiplier would take up a significant percentage of an FPGA for
n � 8 and would require many FPGAs for n � 16.

The classic trade-off in digital design is between area and speed. In this case, we can
significantly reduce the area required for a multiplier if the multiplication is performed
over several clock cycles. Between additions, one of the operands of a multiplication
operation has to be shifted. Therefore a multiplier can be implemented as a single n-bit
adder and a shift register.

Two’s complement numbers present a particular difficulty. It would be possible, but
undesirable, to recode the operands as unsigned numbers with a sign bit. Booth’s algo-
rithm tackles the problem by treating an operand as a set of sequences of all 1s and all
0s. For example, �30 is represented as 100010. This is equal to . In
other words, as each bit is examined in turn, from left to right, only a change from a 1
to a 0, or from a 0 to a 1, is significant. Hence, in multiplying b by a, each pair of bits
of a is examined, so that if ai � 0 and ai�1 � 1, b shifted by i places is added to the par-
tial product. If ai � 1 and ai�1 � 0, b shifted by i places is subtracted from the partial
product. Otherwise no operation is performed. The VHDL model below implements
this algorithm, but note that instead of shifting the operand to the left, the partial prod-
uct is shifted to the right at each clock edge. A ready flag is asserted when the multi-
plication is complete.

library IEEE;
use IEEE.std_logic_1164.all, IEEE.numeric_std.all;

entity booth is
generic(al : NATURAL := 16;

bl : NATURAL := 16;
ql : NATURAL := 32);

port(ain : in std_logic_vector(al-1 downto 0);
bin : in std_logic_vector(bl-1 downto 0);
qout : out std_logic_vector(ql-1 downto 0);
clk : in std_logic;
load : in std_logic;
ready : out std_logic);

end entity booth;

architecture rtl of booth is
begin
process (clk) is
variable count : INTEGER range 0 to al;
variable pa : signed((al + bl) downto 0);
variable a_1 : std_logic;
alias p : signed(bl downto 0) is

pa((al + bl) downto al);
begin
if (rising_edge(clk)) then
if load = '1' then

�25 � 22 � 21

Sequential multiplier 149

p := (others => '0');
pa(al-1 downto 0) := signed(ain);
a_1 := '0';
count := al;
ready <= '0';

elsif count > 0 then
case std_logic_vector'(pa(0), a_1) is
when "01" =>
p := p + signed(bin);

when "10" =>
p := p – signed(bin);

when others => null;
end case;
a_1 := pa(0);
pa := shift_right(pa, 1);
count := count - 1;

end if;
if count = 0 then
ready <= '1';

end if;
qout <= std_logic_vector(pa(al + bl - 1 downto 0));

end if;
end process;

end architecture rtl;

6.7.1 Aliases

It is sometimes convenient to give an alternative name to an object. In the example
above, using the default vector length, pa is a 32-bit vector that contains the multi-
plier and the partial product. After each bit of the multiplier is used, it is shifted out
of pa. At the same time the partial product grows. The 16 most significant bits of
the partial product are used in the additions and subtractions. We could have written,
for example,

pa((al+bl) downto al) := pa((al+bl) downto al) +
signed(bin);

It is more convenient to give an alias to the top 17 bits of pa:

alias p : signed(bl downto 0) is pa((al + bl) downto al);

Now p can be used directly as shown without having to specify a range each time it is
used.

Similarly, a microprocessor might have 32-bit instructions that can be thought of as
8-bit opcodes and 24-bit operands. Again, the use of aliases can help to make the
VHDL code clearer:

150 VHDL models of sequential logic blocks

signal instruction : std_logic_vector (31 downto 0);
alias opcode : std_logic_vector (7 downto 0) is

instruction (31 downto 24);
alias operand : std_logic_vector (23 downto 0) is

instruction (23 downto 0);

6.8 Testbenches for sequential building blocks

In the last chapter, we considered testbenches for state machines. The function of those
testbenches was to generate clock and reset signals, together with other data inputs. We
considered how signals could be synchronized with the clock and how to monitor the
states of output signals. In this chapter, we have seen how warnings can be generated when
timing constraints of sequential elements are violated. While the testbench structures of
the last chapter can be used to verify sequential building blocks in general, it would clearly
also be desirable to simulate conditions under which timing violations can be checked. In
this section, therefore, we will see how inputs can be generated at random times and how
uncertainty can be added to the times of clock and data input changes. Later we will also
use assert statements in testbenches to monitor outputs. First, however, we will see how
to generate a clock with unequal high and low periods (mark to space ratio).

6.8.1 Asymmetric clock

This clock generation example in the last chapter models a clock with equal high and
low periods. The following example shows a clock generator in which the frequency
and mark/space ratio are parameters. Notice that the clock frequency is specified as a
real number. This must be done for the example given to simulate correctly. If the fre-
quency were specified as an integer, a mark period of, say, 45% would cause a clock to
be generated with a period of 9 ns, and mark and space times of 4 ns and 5 ns, respec-
tively, because of rounding errors. (Of course an integer could be converted to a real
to achieve the same effect.) Note also that to get 4.5 and 5.5 ns, the resolution of the
simulator must be set to 100 ps or less.

library IEEE;
use IEEE.std_logic_1164.all;

entity clock_gen is
generic (Freq : REAL := 1.0E8; -- 100 MHz

Mark: POSITIVE := 45); -- Mark length %
end entity clock_gen;

architecture cg of clock_gen is
-- Mark time in ns
constant ClockHigh :TIME := (REAL(Mark)*1.0E7/Freq)*NS;
-- Space time in ns
constant ClockLow :TIME := (REAL(100-Mark)*1.0E7/Freq)*NS;
signal clock : std_logic := '0';

Testbenches for sequential building blocks 151

begin
process is
begin
wait for ClockLow;
clock <= '1';
wait for ClockHigh;
clock <= '0';

end process;
end architecture cg;

6.8.2 Random pulse generator

The VHDL Math Package (1076.2) contains a pseudo-random number generator,
uniform, in addition to many other functions. A pseudo-random number generator
uses techniques similar to that of the LFSR described above. From a given pair of start-
ing values, or seeds, the same sequence will always be generated. The function
uniform returns a pseudo-random real number in the range 0.0 to 1.0.

We can use this function to generate, for example, a clock that changes on average
every 10 ns, but with a random variation of �1 ns. As with the asymmetric clock, the
resolution of the simulator must be set to 100 ps or better, otherwise the variation will
always round to 0. This clock generator could be written as a process, as in previous
examples. Having written such a generator, however, we might want to put it into a
package for use elsewhere. We cannot put a process into a package, but we can write a
procedure instead and put that into a package. Moreover a procedure can take parame-
ters. For example, a complete package definition could be:

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.math_real.all;

package clocks is
procedure noisy_clk (signal clock : out std_logic;

delay : in DELAY_LENGTH);
end package clocks;

package body clocks is
procedure noisy_clk (signal clock : out std_logic;

delay : in DELAY_LENGTH) is
variable seed1, seed2 : INTEGER := 42;
variable rnd : REAL;

begin
loop
clock <= '0';
uniform (seed1, seed2, rnd);
wait for delay + (rnd - 0.5) * NS;
clock <= '1';

152 VHDL models of sequential logic blocks

uniform (seed1, seed2, rnd);
wait for delay + (rnd - 0.5) * NS;

end loop;
end procedure noisy_clk;

end package body clocks;

Notice that there is a loop in the procedure. A procedure can be called concurrently
or from within a process or another sub-program. If this procedure is called concur-
rently, it will execute once and finish. This is because a concurrent procedure call is
equivalent to putting the procedure call inside a process, with wait statements trig-
gered by the procedure input signals. As there are no input signals, the procedure would
execute once. A suitable concurrent procedure call is:

c0: noisy_clk (clock, 7 NS);

If we want to model the behaviour of a clock and data whose relative timing is
imperfect, it makes no difference if we apply the ‘jitter’ to the clock or to the data. We
may also wish to model totally unsynchronized data. One widely used approximation
to the random events arriving with a mean interval is the negative exponential function.
We can use a random event generator as follows:

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.math_real.all;

entity testrnd is end entity testrnd;
architecture testrnd of testrnd is
signal r : std_logic := '0';
function negexp(rnd: REAL; t : TIME) return TIME is
begin
return INTEGER (-log(rnd)*(REAL(t / NS))) * NS;

end function negexp;
begin
rand_wav: process is

variable seed1, seed2 : INTEGER := 199;
variable rnd : REAL;

begin
uniform (seed1, seed2, rnd);
wait for negexp(rnd, 10 NS);
r <= not r;

end process rand_wav;
end architecture testrnd;

This will generate a signal that toggles with a mean interval of 10 ns, but with a variation
between 0.0 and infinity. This contains another example of a sub-program definition,
in this case a function. Both procedures and functions can be included in packages or in
architecture declarations, as shown.

Summary 153

6.8.3 Checking responses with assert statements

In Section 6.2.5, the assert statement was introduced. In the examples given, the behav-
iour of a model was checked within the model. It is just as valid to use assert statements
to check responses within a testbench. Unlike most other VHDL statements, an assert
statement can be used concurrently (outside a process) or sequentially (within a process).

Suppose two versions of a design are to be compared (for example, a gate level
model and an RTL model). The two versions take the same inputs. To avoid contention,
their outputs must have different signals. The two versions might be instantiated and
their outputs compared as follows:

v0 : entity WORK.design(struct) port map (in_a, in_b,
out_s);

v1 : entity WORK.design(rtl) port map (in_a, in_b, out_b);
assert out_s = out_b
report "Mismatch in behavioural and structural outputs"
severity NOTE;

Although simple to implement, this approach is flawed because any timing differences,
however slight, will generate warning messages. In practice, it is very likely that there
will be some differences between the outputs of two models at different levels of
abstraction, but these differences will probably not be significant.

Therefore, it is preferable to compare responses only at specified strobe times. For exam-
ple, we might wish to check responses 5 ns after a rising clock edge. This could be done as
follows. Again, we will put the check inside a procedure so that it can be reused later.

procedure check(signal clock, out_s, out_b : in
std_logic) is

begin
wait until clock = '1';
wait for 5 NS;
assert out_s = out_b
report "Mismatch in behavioural and structural outputs"
severity NOTE;

end procedure check;

As there are three inputs, note that we do not need a loop in this example – the proce-
dure restarts whenever an input changes. All the inputs must be declared as signals. It is
possible to pass the current value of a signal to a procedure by omitting the signal
object declaration, in which case the value is passed as a constant. If this is done, the
procedure will not restart when that signal changes.

Summary

In this chapter we have discussed a number of common sequential building blocks.
VHDL models of these blocks have been written using processes. Most of these models
are synthesizable using RTL synthesis tools. We have also considered further examples
of testbenches for sequential circuits.

154 VHDL models of sequential logic blocks

Further reading

As with combinational blocks, manufacturers’ data sheets are a good source of infor-
mation about typical SSI devices. In particular, it is worth looking in some detail at the
timing specifications for SRAM and DRAM devices. The multiplier is an example of
how relatively complicated computer arithmetic can be performed. Hennessy and
Patterson have a good description of computer arithmetic units.

Exercises

6.1 Explain how positive edge-triggered behaviour can be described in VHDL, where
the std_logic type is used to represent bits and only a ‘0’ to ‘1’ transition is
considered valid.

6.2 Write a behavioural VHDL model of a negative edge-triggered D flip-flop with set
and clear.

6.3 Include tests for setup and hold time violation in the D flip-flop of Exercise 6.2.

6.4 Write a VHDL model of a negative edge-triggered T-type flip-flop.

6.5 Write a VHDL model of a 10-state synchronous counter that asserts an output
when the count reaches 10.

6.6 Write a VHDL model of an N-bit counter with a control input ‘Up’. When the con-
trol input is ‘1’ the counter counts up; when it is ‘0’ the counter counts down. The
counter should not, however, wrap round. When the all 1s or all 0s states are
reached the counter should stop.

6.7 Write a VHDL model of an n-bit parallel to serial converter.

6.8 Write a VHDL testbench for this parallel to serial converter.

6.9 What are the advantages and disadvantages of ripple counters as opposed to syn-
chronous counters?

6.10 Design a synchronous Johnson counter that visits eight distinct states in sequence.
How would this counter be modified such that any unused states lead eventually to
the normal counting sequence?

6.11 Design an LFSR which cycles through the following states: 001, 010, 101, 011,
111, 110, 100. Verify your design by simulation.

6.12 Explain the function of the device shown in Figure 6.15. Your answer should
include a description of all the symbols.

6.13 Show, with a full circuit diagram, how the device of Figure 6.15 could be used to build
a synchronous counter with 12 states. Show how a synchronous reset can be included.

6.14 What is the difference between static and dynamic RAM and what are the relative
advantages and disadvantages of each type?

6.15 A 64k � 1 bit dynamic RAM has the following pins:

� A0 . . . A7 (Address lines)
� D (Data Line)

Exercises 155

1, 3D

CT=0

C3/2+

CTRDIV16

M1

[1]

[2]

[4]

[8]

M2
2CT=15

Figure 6.15 Device for Exercises 6.12 and 6.13.

� /RAS (Row Address Select)
� /CAS (Column Address Select)
� /WE (Write Enable)

Explain, with reference to these pins, how such RAM could be used in a micro-
processor system requiring 256k � 8 bit memory. What timing considerations
must be observed?

Chapter 7

Complex sequential
systems

7.1 Linked state machines 156

7.2 Datapath/controller partitioning 160

7.3 Instructions 162

7.4 A simple microprocessor 163

7.5 VHDL model of a simple microprocessor 167

In the previous three chapters we have looked at combinational and sequential building
blocks and at the design of state machines. The purpose of this chapter is to see how
these various parts can be combined to build complex digital systems.

7.1 Linked state machines

In principle, any synchronous sequential system could be described by an ASM
chart. In practice, this does not make sense. The states of a system, such as a micro-
processor, include all the possible values of all the data that might be stored in the
system. Therefore it is usual to partition a design in some way. In this chapter,
we will show first how an ASM chart, and hence the VHDL model of the
state machine, can be partitioned, and second how a conceptual split may be
made between the datapath of a system, i.e. the components that store and manipu-
late data, and the state machine that controls the functioning of those datapath
components.

A large body of theory covers the optimal partitioning of state machines. In practice,
it is usually sufficient to identify components that can easily be separated from the
main design and implemented independently. For example, let us consider again
the traffic signal controller.

156

Linked state machines 157

s0

G

CAR

s255

1

0

Figure 7.1 ASM chart of traffic signal controller including the timer.

If a car approaches the traffic signals on the minor road, a sensor is activated that
causes the major road to have a red light and the minor road to have a green light for a
fixed interval. Once that interval has passed, the major road has a green light again and
the minor road has a red light. In Chapter 5, we simply assumed that a signal would be
generated after the given interval had elapsed. Let us now assume that the clock fre-
quency is such that the timed interval is completed in 256 clock cycles. We can draw
an ASM chart for the entire system as shown in Figure 7.1 (states 1 to 254 and the out-
puts are not shown, for clarity). Although this is a simple example, the functionality of
the system is somewhat lost in the profusion of states that implement a simple count-
ing function. It would be clearer to separate the traffic light controller function from
the timer.

One way of doing this is shown in Figure 7.2, in which there are two ASM charts.
The ASM chart on the left is the traffic light controller, in which a signal, START, is
asserted as a conditional output when a car is detected. This signal acts as an input to
the second state machine, allowing that state machine to move from the IDLE state into
the counting sequence. When the second state machine completes the counting
sequence, the signal TIMED is asserted, which acts as an input to the first state
machine, allowing the latter to move from state R to state G. The second state machine
moves back into the IDLE state.

A state machine of the form of the right-hand state machine of Figure 7.2 can be
thought of as a ‘hardware subroutine’. In other words, any state machine may be parti-
tioned in this way. Unlike a software subroutine, however, a piece of hardware must exist
and must be doing something, even when it is not being used. Hence, the IDLE state must
be included to account for the time when the ‘subroutine’ is not doing a useful task.

An alternative way of implementing a subsidiary state machine is shown in Figure 7.3.
This version does not correspond to the ‘hardware subroutine’ model, but represents a
conventional counter. The use of standard components will be discussed further in the
next section.

158 Complex sequential systems

Figure 7.2 Linked ASM charts for traffic signal controller.

G

CAR

1

START

0

R

TIMED1 0

START

1

0

TIMED

s0

s255

IDLE

Figure 7.3 ASM chart of traffic signal controller with counter.

G

CAR

1

ENABLE

0

R

TIMED1 0

ENABLE

1

0

TIMED

s0

s255

1

0
ENABLE

From the ASM chart of Figure 7.1 it is quite clear that the system takes 256 clock
cycles to return to state G after a car has been detected. The sequence of operations may
be harder to follow in Figure 7.3. In state s255, TIMED is asserted as a conditional out-
put. This causes the left-hand state machine to move from state R to state G. In state R,
ENABLE is asserted which allows the right-hand state machine to advance through its
counting sequence. A timing diagram of this is shown in Figure 7.4.

At first glance this timing diagram may appear confusing. The ENABLE signal
causes the TIMED signal to be asserted during the final state of the right-hand diagram.
The TIMED signal causes the left-hand state machine to move from state R to state G.

Linked state machines 159

Figure 7.4 Timing diagram of linked ASM charts.

CLOCK

CAR

ENABLE

TIMED

256 clock cycles

Figure 7.5 Timing diagram showing delays.

CLOCK

CAR

ENABLE

TIMED

256 clock cycles

According to ASM chart convention, both these signals are asserted at the beginning of
a state and deasserted at the end of a state. In fact, of course, the signals are asserted
some time after a clock edge and also deasserted after a clock edge. Therefore, a more
realistic timing diagram is given in Figure 7.5. The changes to TIMED and ENABLE
happen after the clock edges. This, of course, is necessary in order to satisfy the setup
and hold times of the flip-flops in the system. The clock speed is limited by the propa-
gation delays through the combinational logic of both state machines. In that sense, a
system divided into two or more state machines behaves no differently from a system
implemented as a single state machine.

160 Complex sequential systems

Controller

System
inputs

Control signals

Status signals

System
outputsClock, Reset

Datapath

Figure 7.6 Controller/datapath partitioning.

7.2 Datapath/controller partitioning

Although any synchronous sequential system can be designed in terms of one or more
state machines, in practice this is likely to result in the ‘reinvention of the wheel’ on
many occasions. For example, the right-hand state machine of Figure 7.3 is simply an
8-bit counter. Given this, it is obviously more effective to reuse an existing counter,
either as a piece of hardware or as a VHDL model. It is therefore convenient to think of
a sequential system in terms of the datapath, i.e. those components that have been pre-
viously designed (or that can be easily adapted) and that can be reused, and the
controller, which is a design-specific state machine. A model of a system partitioned in
this way is shown in Figure 7.6.

Returning to the example of Figure 7.3, it can be seen that the left-hand state machine
corresponds to a controller, while the right-hand state machine, the counter, corresponds
to the datapath. The TIMED signal is a status signal, as shown in Figure 7.6, while
the ENABLE signal is a control signal. We will look at a more significant example of
datapath/controller partitioning in Section 7.4.

The datapath would normally contain registers. As the functionality of the system is
mainly contained in the datapath, the system can be described in terms of register
transfer operations. These register transfer operations can be described using an exten-
sion of ASM chart notation. In the simplest case a registered output can be indicated as
shown in Figure 7.7(a). This notation means that Z takes the value 1 at the end of
the state indicated, and holds that value until it is reset. If, in this example, Z is reset
to 0, and it is set to 1 only in the state shown, the registered output would be imple-
mented as a flip-flop and multiplexer, as shown in Figure 7.7(b), or simply as an
enabled flip-flop as shown in Figure 7.7(c). In either implementation, the ENABLE
signal is asserted only when the ASM is in the indicated state. Thus the ASM chart
could equally include the ENABLE signal, as shown in Figure 7.7(d).

A more complex example is shown in Figure 7.8. In state 00, three registers, B0, B1

and B2, are loaded with inputs X0, X1 and X2, respectively. Input A then determines
whether a shift left, or multiply by 2, is performed (A � 0) or a shift right, or divide by
2 (A � 1) in the next state. If a divide by 2 is performed, the value of the least

Datapath/controller partitioning 161

Figure 7.7 Extended ASM chart notation.

ENABLE

(d)

Z 1

(a) (b)

(c)

ENABLE

ENABLE

Z
1 2D

C2
G1

1
1

G1

C2

1 2D
Z

Figure 7.8 ASM chart of partitioned design.

B0 X0

B1 X1

B2 X2

00

0 1

1 0

111001

B0 0

B1 B0

B2 B2

B0 B0 B1

B1 B1 B2

B2 B2.B1.B0

B0 B1

B1 B2

B2 0

A

X0

significant bit is tested, so as always to round up. From the ASM chart we can derive
next state equations for the controller, either formally or by inspection:

The datapath part of the design can be implemented using registers for B0, B1 and B2

and multiplexers, controlled by S0 and S1, to select the inputs to the registers, as shown
in Figure 7.9. It is also possible to implement the input logic using standard gates and
thus to simplify the logic slightly.

S1
� � S0.S1.A

S0
� � S0.S1.1A � X0 2

162 Complex sequential systems

Figure 7.9 Implementation of datapath.

S1 S0

MUX0
1
2
3

B2D Q
&

0

X2

S1 S0

MUX0
1
2
3

B1D Q
=1

X1

S1 S0

MUX0
1
2
3

B0D Q
=1

X0

Clock

0

1In fact, most compilers would compile directly to machine code. For the purposes of this discussion, it is
easier to think in terms of assembler instructions.

7.3 Instructions

Before looking at how a very simple microprocessor can be constructed, we will exam-
ine the interface between hardware and software. This is not a book on computer archi-
tecture – many such books exist – so the concepts presented here are deliberately
simplified.

When a computer program written in, say, C is compiled, the complex expressions of
the high-level language can be broken down into a sequence of simple assembler
instructions. These assembler instructions can then be directly translated into machine
code instructions.1 These machine code instructions are sets of, say, 8, 16 or 32 bits. It
is the interpretation of these bits that is of interest here.

Let us compile the expression

a = b + c;

to a sequence of assembly code instructions:

LOAD b
ADD c
STORE a

A simple microprocessor 163

The exact interpretation of these assembler instructions will be explained in the next
section. If the microprocessor has eight bits, the opcode (LOAD, STORE, etc.) might
require three bits, while the operand (a, b, etc.) would take five bits. This allows for
eight opcodes and 32 addresses (this is a very basic microprocessor). Hence, we might
find that the instructions translate as follows:

LOAD b 00000001
ADD c 01000010
STORE a 00100011

i.e. LOAD, ADD and STORE translate to 000, 010 and 001, respectively, while a, b and c
are data at addresses 00011, 00001 and 00010, respectively.

Within the microprocessor there is the datapath/controller partition described in the last
section. The controller (often known as a sequencer in this context) is a state machine. In
the simplest case, the bits of the opcode part of the instruction are inputs to the controller,
in the same way that A and X0 are inputs to the controller of Figure 7.8. Alternatively, the
opcode may be decoded (using a decoder implemented in ROM) to generate a larger set of
inputs to the controller. The decoder pattern stored in the ROM is known as microcode.

The instructions shown above consist of an opcode and an address. The data to
be operated upon must be subsequently obtained from the memory addresses given in
the instruction. This is known as direct addressing. Other addressing modes are possible.
Suppose we wish to compile

a = b + 5;

This translates to:

LOAD b
ADD 5
STORE a

How do we know that the 5 in the ADD instruction means the value ‘5’ and not
the data stored at address 5? In assembler language, we would normally use a special
notation, e.g. ‘ADD #5’, where the ‘#’ indicates to the assembler that the following
value is to be interpreted as a value and not as an address. This form of addressing is
known as immediate mode addressing.

When the microprocessor executes an immediate mode instruction, different parts of
the datapath are used compared with those activated by a direct mode instruction.
Hence the controller goes through a different sequence of states, and thus the opcodes
for an immediate mode ADD and a direct mode ADD must be different. In other words,
from the point of view of the microprocessor, instructions with different addressing
modes are treated as totally distinct instructions and have different opcodes.

7.4 A simple microprocessor

Using the idea of partitioning a design into a controller and datapath, we will now show
how a very basic microprocessor can be designed. We want to be able to execute simple
direct mode instructions such as those described in the previous section. Let us first

164 Complex sequential systems

Figure 7.10 Datapath of CPU.

Sequencer

MDR MAR

RAM

ACC

Flags

ALU

PC IR

Control signals

consider the components of the datapath that we need. In order to simplify the routing of
data around the microprocessor, we will assume the existence of a single bus. More
advanced designs would have two or three buses, but one bus is sufficient for our needs.
For simplicity we shall assume that the bus and all the datapath components are eight bits
wide, although we shall make the VHDL model, in the next section, parameterizable.
Because the single bus may be driven by a number of different components, each of those
components will use three-state buffers to ensure that only one component is attempting
to put valid data on the bus at a time. We will keep the design fully synchronous, with a
single clock driving all sequential blocks. We will also include a single asynchronous
reset to initialize all sequential blocks. A block diagram of the microprocessor is shown
in Figure 7.10.

The program to be executed by the microprocessor will be held in memory together
with any data. Memory such as SRAM is commonly asynchronous, therefore synchronous
registers will be included as buffers between the memory and the bus for both the address
and data signals. These registers are the Memory Address Register (MAR) and Memory
Data Register (MDR).

The Arithmetic and Logic Unit (ALU) performs the arithmetic operations (e.g. ADD).
The ALU is a combinational block. The result of an arithmetic operation is held in a
register, called the Accumulator (ACC). The inputs to the ALU are the bus and the ACC.
The ALU may also have further outputs, or flags, to indicate that the result in the
ACC has a particular characteristic, such as being negative. These flags act as inputs to
the sequencer.

The various instructions of a program are held sequentially in memory. Therefore
the address of the next instruction to be executed needs to be stored. This is
done using the Program Counter (PC), which also includes the necessary logic to
automatically increment the address held in the PC. If a branch is executed, the
program executes out of sequence, so it must also be possible to load a new address
into the PC.

Finally, an instruction taken from the memory needs to be stored and acted upon.
The Instruction Register (IR) holds the current instruction. The bits corresponding

A simple microprocessor 165

Table 7.1 Control signals of microprocessor.

ACC_bus Drive bus with contents of ACC (enable three-state output)

load_ACC Load ACC from bus

PC_bus Drive bus with contents of PC

load_IR Load IR from bus

load_MAR Load MAR from bus

MDR_bus Drive bus with contents of MDR

load_MDR Load MDR from bus

ALU_ACC Load ACC with result from ALU

INC_PC Increment PC and save the result in PC

Addr_bus Drive bus with operand part of instruction held in IR

CS Chip Select. Use contents of MAR to set up memory address

R_NW Read, Not Write. When false, contents of MDR are stored in memory

ALU_add Perform an add operation in the ALU

ALU_sub Perform a subtract operation in the ALU

to the opcode are inputs to the sequencer, which is the state machine controlling the
overall functioning of the microprocessor.

The sequencer generates a number of control signals. These determine which
components can write to the bus, which registers are loaded from the bus and which
ALU operations are performed. The control signals for this microprocessor are listed
in Table 7.1.

Figure 7.11 shows the ASM chart of the microprocessor sequencer. Six clock cycles
are required to complete each instruction. The execution cycle can be divided into two
parts: the fetch phase and the execute phase. In the first state of the fetch phase, s0, the
contents of the PC are loaded, via the bus, into MAR. At the same time the address in
the PC is incremented by 1. In state s1, the CS and R_NW signals are both asserted to
read into MDR the contents of the memory at the address given by MAR. In state s2,
the contents of MDR are transferred to IR via the bus.

In the execute phase, the instruction, now held in IR, is interpreted and executed. In
state s3, the address part of the instruction, the operand, is copied back to MAR, in
anticipation of using it to load or store further data. If the opcode held in IR is STORE,
control passes through s4 and s5, in which the contents of ACC are transferred to MDR,
then to be written into memory (at the address previously stored in MAR) when CS is
asserted. If the opcode is not STORE, CS and R_NW are asserted in state s6, to read
data from memory into MDR. If the opcode is LOAD, the contents of MDR are trans-
ferred to ACC in state s7, otherwise an arithmetic operation is performed by the ALU
using the data in ACC and in MDR in state s8. The results of this operation are stored
in ACC.

The ASM chart of Figure 7.11 shows register transfer operations. In Figure 7.12, the
ASM chart shows instead the control signals that are asserted in each state. Either form
is valid, although that of Figure 7.11 is more abstract.

166 Complex sequential systems

Figure 7.11 ASM chart of microprocessor.

CS
R_NW

IR MDR

MAR PC
PC PC+1

MAR Addr

MDR ACC
CS
R_NW

s4 s6

op=store
1 0

s0

s1

s2

s3

ACC MDR

s8

op=load
1 0

CS

s5

s7

op=add
1 0

ACC MDR
+ACC

ACC MDR
–ACC

E
xe

cu
te

F
et

ch

This processor does not include branching. Hence, it is of little use for running
programs. Let us extend the microprocessor to include a branch if the result of an
arithmetic operation (stored in ACC) is not zero (BNE). The ALU has a zero flag
which is true if the result it calculates is zero and which is an input to the sequencer.
Here, we shall implement this branch instruction in a somewhat unusual manner.
All the instructions in this example are direct mode instructions. To implement
immediate mode instructions would require significant alteration of the ASM chart.
Therefore we will implement a ‘direct mode branch’. The operand of a BNE instruc-
tion is not the address to which the microprocessor will branch (if the zero flag
is true), but the address at which this destination address is stored. Figure 7.13
shows how the lower right corner of the ASM chart can be modified to include this
branch. An additional control signal has to be included: load_PC, to load the PC
from the bus.

VHDL model of a simple microprocessor 167

CS
R_NW

MDR_bus
load_IR

PC_bus
Load_MAR
INC_PC

CS
R_NW

s4 s6

op=store
1 0

s0

s1

s2

s3

s8

op=load
1 0

CS

s5

s7

op=add
1 0

ALU_add

E
xe

cu
te

F
et

ch

Addr_bus
load_MAR

ACC_bus
load_MDR

MDR_bus
load_ACC

MDR_bus
ALU_ACC

ALU_sub

Figure 7.12 Alternative form of microprocessor ASM chart.

7.5 VHDL model of a simple microprocessor

The following VHDL units model the microprocessor described in the previous section.
The entire model, including a basic testbench, runs to around 320 lines of code. The model
is synthesizable (with one minor modification) and so could be implemented on an FPGA.

The first unit is a set of definitions, contained in a package. The definitions in the
package are public and may be used in any unit that references the package. The
opcodes are defined as an enumerated type. Bit patterns corresponding to the opcodes
are defined in the package body, which is private. Therefore the package contains two
conversion functions for translating between the abstract opcodes and the bit patterns:
slv2op and op2slv. The size of the bus and the number of bits in the opcode are
defined by constants. The use of this package means that the size of the CPU and the
actual opcodes can be changed without altering any other part of the model. This is
important in maintaining the modularity of the design.

168 Complex sequential systems

Figure 7.13 Modification of ASM chart to include branching.

s7

op = load

s6

s8

op=bne
1 0

1 0

op=add
1 0

CS
R_NW

ACC MDR

ACC MDR
–ACC

s9 s

z_flag
0

ACC MDR
+ACC

PC MDR

110

library IEEE;
use IEEE.std_logic_1164.all;

package cpu_defs is
type opcode is (load, store, add, sub, bne);
constant word_w : NATURAL := 8;-- no. of bits for bus
constant op_w : NATURAL := 3;-- no. of bits for opcode
constant rfill : std_logic_vector(op_w - 1 downto 0)

:= (others => '0');
-- padding for address

function slv2op (slv : in std_logic_vector) return
opcode;

function op2slv (op : in opcode) return
std_logic_vector;

end package cpu_defs;

package body cpu_defs is
type optable is array (opcode)

of std_logic_vector(op_w – 1 downto 0);
constant trans_table : optable

:= ("000", "001", "010", "011", "100");
function op2slv (op : in opcode) return

std_logic_vector is
begin

return trans_table(op);
end function op2slv;
function slv2op (slv : in std_logic_vector) return

opcode is
variable transop : opcode;

VHDL model of a simple microprocessor 169

begin
-- This is how it should be done, but some synthesis
-- tools may not support this.

for i in opcode loop
if slv = trans_table(i) then
transop := i;

end if;
end loop;

-- This is a less elegant method! If the definitions
-- of opcode and/or trans_table are changed, this
-- code also has to be changed. There is therefore
-- potential for inconsistency.
-- case slv is
-- when "000" => transop := load;
-- when "001" => transop := store;
-- when "010" => transop := add;
-- when "011" => transop := sub;
-- when "100" => transop := bne;
-- when others => null;
-- end case;

return transop;
end function slv2op;

end package body cpu_defs;

The controller or sequencer is described above by an ASM chart. Therefore the
VHDL description also takes the form of a state machine. The inputs to the state
machine are the clock, reset, an opcode and the zero flag from the accumulator.
The outputs are the control signals of Table 7.1. Notice that the two-process model is
used. Notice, too, that all the output signals are given a default value at the start of the
next state and output logic process.

library IEEE;
use IEEE.std_logic_1164.all;
use WORK.cpu_defs.all;

entity sequencer is
port (clock, reset, z_flag : in std_logic;

op : in opcode;
ACC_bus, load_ACC, PC_bus, load_PC,
load_IR, load_MAR, MDR_bus, load_MDR,
ALU_ACC, ALU_add, ALU_sub, INC_PC,
Addr_bus, CS, R_NW : out std_logic);

end entity sequencer;

architecture rtl of sequencer is
type state is (s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10);
signal present_state, next_state : state;

begin
seq : process (clock, reset) is

170 Complex sequential systems

begin
if reset = '1' then
present_state <= s0;

elsif rising_edge(clock) then
present_state <= next_state;

end if;
end process seq;
com : process (present_state, op, z_flag) is
begin
-- reset all the control signals to default
ACC_bus <= '0';
load_ACC <= '0';
PC_bus <= '0';
load_PC <= '0';
load_IR <= '0';
load_MAR <= '0';
MDR_bus <= '0';
load_MDR <= '0';
ALU_ACC <= '0';
ALU_add <= '0';
ALU_sub <= '0';
INC_PC <= '0';
Addr_bus <= '0';
CS <= '0';
R_NW <= '0';
case present_state is

when s0 =>
PC_bus <= '1';
load_MAR <= '1';
INC_PC <= '1';
load_PC <= '1';
next_state <= s1;

when s1 =>
CS <= '1';
R_NW <= '1';
next_state <= s2;

when s2 =>
MDR_bus <= '1';
load_IR <= '1';
next_state <= s3;

when s3 =>
Addr_bus <= '1';
load_MAR <= '1';
if op = store then
next_state <= s4;

else

VHDL model of a simple microprocessor 171

next_state <= s6;
end if;

when s4 =>
ACC_bus <= '1';
load_MDR <= '1';
next_state <= s5;

when s5 =>
CS <= '1';
next_state <= s0;

when s6 =>
CS <= '1';
R_NW <= '1';
if op = load then
next_state <= s7;

elsif op = bne then
if z_flag = '0' then
next_state <= s9;

else
next_state <= s10;

end if;
else
next_state <= s8;
end if;

when s7 =>
MDR_bus <= '1';
load_ACC <= '1';
next_state <= s0;

when s8 =>
MDR_bus <= '1';
ALU_ACC <= '1';
load_ACC <= '1';
if op = add then
ALU_add <= '1';

elsif op = sub then
ALU_sub <= '1';

end if;
next_state <= s0;

when s9 =>
MDR_bus <= '1';
load_PC <= '1';
next_state <= s0;

when s10 =>
next_state <= s0;

end case;
end process com;

end architecture rtl;

172 Complex sequential systems

The datapath side of the design, as shown in Figure 7.10, has been described in four
parts. Each of these parts is similar to the type of sequential building block described in
the last chapter. The system bus is described as a bidirectional port in each of the
following four modules. A concurrent assignment sets a high impedance state onto the
bus unless the appropriate output enable signal is set. In the port declarations,
sysbus has inout mode. The first module models the ALU and Accumulator.

library IEEE;
use IEEE.std_logic_1164.all, IEEE.numeric_std.all;
use WORK.cpu_defs.all;

entity ALU is
port (clock, reset : in std_logic;

ACC_bus, load_ACC, ALU_ACC, ALU_add,
ALU_sub : in std_logic;
sysbus : inout std_logic_vector

(word_w – 1 downto 0);
z_flag : out std_logic);

end entity ALU;

architecture rtl of ALU is
signal acc : unsigned(word_w – 1 downto 0);
constant zero : unsigned(word_w – 1 downto 0) :=

(others => '0');
begin
sysbus <= std_logic_vector(acc) when ACC_bus = '1'

else (others => 'Z');
z_flag <= '1' when acc = zero else '0';
process (clock, reset) is
begin

if reset = '1' then
acc <= (others => '0');

elsif rising_edge(clock) then
if load_ACC = '1' then
if ALU_ACC = '1' then
if ALU_add = '1' then
acc <= acc + unsigned(sysbus);

elsif ALU_sub = '1' then
acc <= acc – unsigned(sysbus);

end if;
else
acc <= unsigned(sysbus);

end if;
end if;

end if;
end process;

end architecture rtl;

VHDL model of a simple microprocessor 173

The program counter is similar in structure to the ALU and Accumulator.

library IEEE;
use IEEE.std_logic_1164.all, IEEE.numeric_std.all;
use WORK.cpu_defs.all;

entity PC is
port (clock, reset : in std_logic;

PC_bus, load_PC, INC_PC : in std_logic;
sysbus : inout std_logic_vector

(word_w – 1 downto 0));
end entity PC;

architecture rtl of PC is
signal count : unsigned(word_w – op_w – 1 downto 0);

begin
sysbus <= rfill & std_logic_vector(count)

when PC_bus = '1' else (others => 'Z');
process (clock, reset) is
begin

if reset = '1' then
count <= (others => '0');

elsif rising_edge(clock) then
if load_PC = '1' then
if INC_PC = '1' then
count <= count + 1;

else
count <= unsigned(

sysbus(word_w – op_w – 1 downto 0));
end if;

end if;
end if;

end process;
end architecture rtl;

The instruction register is basically an enabled register. The opcode is decoded for
input to the sequencer.

library IEEE;
use IEEE.std_logic_1164.all;
use WORK.cpu_defs.all;

entity IR is
port (clock, reset : in std_logic;

Addr_bus, load_IR : in std_logic;
op : out opcode;
sysbus : inout std_logic_vector

(word_w – 1 downto 0));
end entity IR;

174 Complex sequential systems

architecture rtl of IR is
signal instr_reg: std_logic_vector(word_w – 1 downto 0);

begin
sysbus <= rfill & instr_reg(word_w – op_w – 1 downto 0)

when Addr_bus = '1' else (others => 'Z');
op <= slv2op(instr_reg(word_w – 1 downto word_w – op_w));
process (clock, reset) is
begin

if reset = '1' then
instr_reg <= (others => '0');

elsif rising_edge(clock) then
if load_IR = '1' then
instr_reg <= sysbus;

end if;
end if;

end process;
end architecture rtl;

The memory module is, again, very similar to the static RAM of the last chapter.
A short program has been loaded in the RAM, using constant declarations.

library IEEE;
use IEEE.std_logic_1164.all, IEEE.numeric_std.all;
use WORK.cpu_defs.all;

entity RAM is
port (clock, reset : in std_logic;

MDR_bus, load_MDR, load_MAR, CS,
R_NW : in std_logic;
sysbus : inout std_logic_vector

(word_w – 1 downto 0));
end entity RAM;

architecture rtl of RAM is
signal mdr : std_logic_vector(word_w – 1 downto 0);
signal mar : unsigned(word_w – op_w – 1 downto 0);

begin
sysbus <= mdr when MDR_bus = '1' else (others => 'Z');
process (clock, reset) is
type mem_array is array (0 to 2**(word_w – op_w) – 1)

of std_logic_vector(word_w – 1 downto 0);
variable mem : mem_array;
constant prog : mem_array := (
0 => op2slv(load) &
std_logic_vector(to_unsigned(4, word_w – op_w)),

1 => op2slv(add) &
std_logic_vector(to_unsigned(5, word_w – op_w)),

VHDL model of a simple microprocessor 175

2 => op2slv(store) &
std_logic_vector(to_unsigned(6, word_w – op_w)),

3 => op2slv(bne) &
std_logic_vector(to_unsigned(7, word_w – op_w)),

4 => std_logic_vector(to_unsigned(2, word_w)),
5 => std_logic_vector(to_unsigned(2, word_w)),
others => (others => '0'));

begin
if reset = '1' then
mdr <= (others => '0');
mar <= (others => '0');
mem := prog;

elsif rising_edge(clock) then
if load_MAR = '1' then
mar <= unsigned(sysbus(word_w – op_w – 1 downto 0));

elsif load_MDR = '1' then
mdr <= sysbus;

elsif CS = '1' then
if R_NW = '1' then
mdr <= mem(to_integer(mar));

else
mem(to_integer(mar)) := mdr;

end if;
end if;

end if;
end process;

end architecture rtl;

The various parts of the microprocessor can now be pulled together by instantiating
them as components.

library IEEE;
use IEEE.std_logic_1164.all;
use WORK.cpu_defs.all;

entity CPU is
port (clock, reset : in std_logic;

sysbus : inout std_logic_vector
(word_w – 1 downto 0));

end entity CPU;

architecture top of CPU is
signal ACC_bus, load_ACC, PC_bus, load_PC,

load_IR, load_MAR, MDR_bus, load_MDR,
ALU_ACC, ALU_add, ALU_sub, INC_PC,
Addr_bus, CS, R_NW, z_flag : std_logic;

signal op : opcode;

176 Complex sequential systems

begin
s1: entity WORK.sequencer port map (clock, reset,

z_flag, op, ACC_bus, load_ACC,
PC_bus, load_PC, load_IR,
load_MAR, MDR_bus, load_MDR,
ALU_ACC, ALU_add, ALU_sub,
INC_PC, Addr_bus, CS, R_NW);

i1: entity WORK.IR port map (clock, reset, Addr_bus,
load_IR, op, sysbus);

p1: entity WORK.PC port map (clock, reset, PC_bus,
load_PC, INC_PC, sysbus);

a1: entity WORK.ALU port map (clock, reset, ACC_bus,
load_ACC, ALU_ACC, ALU_add,
ALU_sub, sysbus, z_flag);

r1: entity WORK.RAM port map (clock, reset, MDR_bus,
load_MDR, load_MAR, CS, R_NW,
sysbus);

end architecture top;

The following piece of VHDL generates a clock and reset signal to allow the
program defined in the RAM module to be executed. Obviously, this testbench would
not be synthesized.

library IEEE;
use IEEE.std_logic_1164.all;
use WORK.cpu_defs.all;

entity testcpu is
end entity testcpu;

architecture tb of testcpu is
signal clock, reset : std_logic := '0';
signal sysbus : std_logic_vector(word_w – 1 downto 0);

begin
c1 : entity WORK.CPU port map (clock, reset, sysbus);
reset <= '1' after 1 ns, '0' after 2 ns;
clock <= not clock after 10 ns;

end architecture tb;

Summary

In this chapter we have looked at linked ASM charts and at splitting a design
between a controller, which is designed using formal sequential design methods,
and a datapath that consists of standard building blocks. The example of a simple
CPU has been used to illustrate this partitioning. The VHDL model can be both
simulated and synthesized.

Exercises 177

Further reading

Formal techniques exist for partitioning state machines. These are described in Unger.
The controller/datapath model is used in a number of high-level synthesis tools; see, for
example, de Micheli. The CPU model is based on an example in Maccabe.

Exercises

7.1 Any synchronous sequential system can be described by a single ASM chart. Why
then might it be desirable to partition a design? Describe a general partitioning
scheme.

7.2 A counter is to be used as a delay for a simple controller, to generate a ready signal,
10 clock cycles after a start signal has been asserted. Show how the interaction
between the controller and the counter can be represented in ASM chart notation.

7.3 A microprocessor has a number of addressing modes. Describe the immediate and
direct addressing modes.

7.4 What structures are needed in a microprocessor to implement a ‘branch if negative’
instruction? Describe the register transfer operations that would occur in the execu-
tion of such an instruction and show the sequence of events on a timing diagram.

7.5 The ASM chart of Figures 7.11 and 7.13 implements a branch instruction with a
direct mode operand. Modify the ASM chart to show how the microprocessor
could branch to an address given by an immediate mode operand.

7.6 Modify the VHDL model of the microprocessor to implement an immediate mode
‘branch if not equal to zero’.

Chapter 8

VHDL simulation

8.1 Event-driven simulation 178

8.2 Simulation of VHDL models 182

8.3 Simulation modelling issues 185

8.4 File operations 186

VHDL is a language for describing digital systems. To verify that a model is correct,
a simulator may be used to animate the model. In the first section of this chapter,
the principles of digital simulation are described. The specifics of VHDL simulation and
techniques to improve simulation efficiency are then discussed. Finally, file handling
is described.

8.1 Event-driven simulation

VHDL is a language for describing digital systems; therefore it should be no surprise
that standard event-driven logic simulation algorithms are used. Such algorithms are
most easily described in terms of the simulation of structural models. Behavioural
models are evaluated in much the same way, where a process can be thought of as
an element.

The objective of event-driven simulation is to minimize the work done by the
simulator. Therefore the state of the circuit is evaluated only when a change occurs
in the circuit. It is possible to predict when the output of an element might change
because we know that such a change can occur only after an input changes. If we
monitor only the inputs to elements, we can know only that an output might change;
the logic function of the element determines whether or not a change actually
occurs. As we also know the delays through the element, we know when the output
might change. Thus an element needs to be evaluated only when it is known that its
output might change but not otherwise. Nevertheless, even by predicting a possible
change, it is necessary to re-evaluate elements only when the possible changes

178

Event-driven simulation 179

Current time tn

Events

tn+1

tn+2

tn+3

Figure 8.1 Event list.

occur. By following the possible events through the circuit we can minimize the
computation done by the simulator. Only elements that change need to be evaluated;
anything that is not changing is ignored.

The delays through elements are defined in terms of integer times. The units of time
might be nanoseconds or picoseconds. As the time is incremented in discrete intervals, it
is likely that, for any reasonably large circuit, more than one element will be evaluated at
any one time. Equally, there may be times at which no elements are due for evaluation.
This implies a form of time step control. As each element is evaluated, any change in its
output will cause inputs to further elements to change, and hence the outputs of those
elements may subsequently change. Clearly it is necessary to maintain a list of which
signals change and when. An event is therefore a new value of a signal, together with the
time at which the signal changes. If the event list is ordered in time, it should be easy to
add new events at the correct place in the future.

A suitable data structure for the event list is shown in Figure 8.1. When an event is
predicted, it is added to the list of events at the predicted time. When an event
is processed it is removed from the list. When all the events at a particular time have
been processed, that time can be removed.

This list manipulation is relatively easy to do in a block-structured programming
language, such as C, although adding new times to the middle of a list can be awkward.

An element can be scheduled for processing when its inputs are known to change.
For example, consider an AND gate with a 4 ns delay. When the signal at one input
changes it can be predicted whether the signal at the output changes depending on
the state of the other inputs of the gate. If the output does change, the output event
can be scheduled 4 ns later. The algorithm can be written as shown in pseudo-C
in Figure 8.2.

An event is scheduled only if the new value is different from the value that has pre-
viously been scheduled for that signal. If two or more events occur on input signals to

180 VHDL simulation

Figure 8.2 Single-pass event scheduler.

an element, more than one event may be scheduled for an output signal. It is thus
important to know that the new value is different not merely from the present value but
also from a value that might already be scheduled to be set in the future. This algorithm
therefore has a disadvantage as it stands, because an element is evaluated whenever an
event occurs at an input. It is quite possible that two events might be scheduled for the
same gate at the same time. This could lead to a zero-width spike being scheduled one
delay later. Even worse, if the delays for rising and falling output differ, the presence
or absence of an output pulse would depend on the order in which the input events
were processed.

In VHDL terminology, an input change that might lead to an output change is known
as a transaction. Only if an output changes is this transaction scheduled as an event.

If zero-width pulses are to be suppressed, they can be considered as a special case of
the inertial delay model. The previous algorithm can be extended to include pulse can-
cellation if a pulse is less than the permitted minimum width, as shown in Figure 8.3.
This model assumes two-state logic. If an event is predicted at a time less than the
inertial delay after the previous event for that node, this new event is not set and the
previous event is also removed. If more than two-state logic is used, the meaning of an
inertial delay and hence of a cancelled event must be thought about carefully. In order
to cancel an event, it is necessary to search through the event lists. Event cancellation is
therefore best avoided, if possible.

One further problem exists with the selective trace algorithm. A gate with a zero delay
would cause an event to be scheduled at the current simulation time if an input changes.
Thus, while events are being processed at the current time, new events are being added
to the end of the event list. There is clearly the potential here for an infinite loop to be
generated, where the simulation never advances beyond the current simulation time. In
practice, the only way to avoid this problem is to count the number of events at a time
point, and if they exceed some arbitrary limit to terminate the simulation.

We have already noted that the presence or absence of zero-width pulses can be
dependent upon the order of evaluation of events at a time point. Consider the circuit of
Figure 8.4. If both gates have a zero delay and the input changes from 0 to 1 as shown,
a zero-width pulse may be generated.

for (i = each event at current_time)
{
update_node(i);
for (j = each gate on the fanout list of i)
{
update input values of j;
evaluate(j);
if (new_value(j) ≠ last_scheduled_value(j)) {
schedule new_value(j) at
(current_time + delay(j));

last_scheduled_value(j) = new_value(j);
}

}
}

Event-driven simulation 181

0 1

1 0

0 1 0

Figure 8.4 Circuit with zero delays.

Figure 8.3 Single-pass event scheduler with inertial delay cancellation.

If the AND gate is evaluated first, both inputs will appear to be at logic 1, so the out-
put will become 1. The inverter is evaluated next, causing the other AND input to
change. The AND gate is evaluated again and the output changes back to 0. On the
other hand, if the inverter is evaluated first, both inputs to the AND gate will appear to
change simultaneously when it is evaluated, and no pulse is generated. Although it is
obvious here that the inverter should be evaluated first, this is not always the case and
we must assume that the order of evaluation of gates is effectively arbitrary.

This arbitrariness can be avoided by using delta delays. A delta delay can be thought
of an infinitesimal unit of time, as shown in Figure 8.5. Zero delays are modelled as
delta delays, so that any events generated at the current time with zero delays are
scheduled to occur one delta delay later. In the above example, both gates would be
evaluated at the current time, and their outputs would be scheduled one delta delay
later. The AND gate would then be evaluated again at the current time plus one delta.
Thus a circuit is always evaluated in exactly the same way; in this case we always get

for (i = each event at current_time)
{
update_node(i);
for (j = each gate on the fanout list of i)
{
update input values of j;
evaluate(j);
if (new_value(j) ≠ last_scheduled_value(j))
{
schedule_time = current_time + delay(j);
if (schedule_time ≤ last_scheduled_time(j) + inertial_delay(j))

{
cancel_event at last_scheduled_time(j);
}

else {
schedule new_value(j) at schedule_time;
}

last_scheduled_value(j) = new_value(j);
last_scheduled_time(j) = schedule_time;
}

}
}

182 VHDL simulation

Current time tn

Events

tn+δ

tn+2δ

tn+1

Delta times

Next time

Figure 8.5 Event list with delta delays.

a zero-width pulse generated. Moreover, any simulator that implements delta delays
will evaluate the same circuit in the same way, so we can directly compare simulators.
It should be noted, of course, that the use of delta delays causes new delta times to be
inserted into the event list, but it is not possible for a series of delta times to add up to
a real simulation time step.

8.2 Simulation of VHDL models

8.2.1 Simulation time

We have already seen how transport and inertial delays may be modelled in VHDL.
The concept of delta delays is used in VHDL simulators to ensure that concurrent state-
ments are always executed consistently. Several VHDL functions and attributes exist to
allow interaction with a simulator, either for model writing, or perhaps more usefully,
for testbench modelling.

A function now returns the current simulated time. TIME is a predefined VHDL
physical type:

type TIME is range <implementation defined>
units
FS; -- femtosecond
PS = 1000 FS; -- picosecond
NS = 1000 PS; -- nanosecond
US = 1000 NS; -- microsecond
MS = 1000 US; -- millisecond
SEC = 1000 MS; -- second

Simulation of VHDL models 183

MIN = 60 SEC; -- minute
HR = 60 MIN; -- hour

end units TIME;

(Note that any physical type can be defined with units in this way.)
A signal, s, has several attributes that may be considered as relevant to simula-

tion models:

s'EVENT – TRUE if an event occurred on that signal during the current simula-
tion delta cycle
s'ACTIVE – TRUE if a transaction occurred during the current simulation delta

cycle
s'LAST_EVENT – returns the time since the last event
s'LAST_VALUE – returns the value of the signal at its last event
s'LAST_ACTIVE – returns the time since the last transaction
s'TRANSACTION – creates a signal of type BIT that toggles its value whenever

a transaction (or event) occurs on the signal
s'DELAYED[(<TIME>)] – creates a signal of the same type as s, delayed by the

specified time
s'STABLE[(<TIME>)] – creates a signal of type Boolean that is true when the

signal has had no events for the specified time
s'QUIET[(<TIME>)] – creates a signal of type Boolean that is true when the signal

has had no transactions or events for the specified time.

Attributes 'TRANSACTION, 'DELAYED, 'STABLE and 'QUIET create implicit
signals. All other signals are explicit. Signals have a driving value and an effective value.
The driving value of a signal is one of the following: the default value of the signal type if
the signal has no source; the value of the driver source or port (if the signal has a single
driver); or the resolved signal value (if the signal has multiple drivers). The effective
value of a signal is normally the same as the driving value, but may be changed when
the signal is propagated through conversion functions or type conversions.

8.2.2 Compilation and elaboration

Before simulation, or indeed synthesis, a VHDL description has to be compiled. In
order for the compilation of a unit to succeed, all the definitions used in that unit
must have been compiled first. For example, an entity description must be compiled
before any of its associated architectures. Similarly, a package header must be com-
piled before a package body. If an entity uses a package, the package header must be
compiled before the entity, although the package body, containing hidden defini-
tions, may be compiled later. For a project such as the CPU of the previous chapter,
the order of compilation is therefore important. The cpu_defs package must be
compiled first.

In general, configuration units can be compiled last, as they define the binding, in
other words which architecture to use for a given entity. It should, however, be noted
that some compilers are ‘over-enthusiastic’ in that they try to resolve the binding as the

184 VHDL simulation

compilation proceeds. In the absence of any configuration units or configuration state-
ments, a default binding will be used. On meeting a component declaration, the
compiler may look to see whether the corresponding entity has been declared. This can
lead to confusing warning messages.

Elaboration is the process of building a complete and consistent simulation model
from the various compiled units of a design. The rules for elaboration are described
over about 11 pages of the VHDL LRM and it would therefore be inappropriate to
attempt to summarize them here. The basic principle, however, is that all parts of the
design must be fully specified before simulation or synthesis can proceed. Thus, for
example, types must be fully defined, architectures must exist for all components, and
array and iteration bounds must be defined.

8.2.3 VHDL simulation cycle

Once compilation and elaboration are complete, the simulation can begin. The simula-
tor itself can be thought of as a kernel process containing the event list and that updates
signals. The VHDL model has a number of other processes – those explicitly defined
as processes and concurrent statements, each of which can be thought of as a process.
A process is said to be passive if it does not contain any signal assignments. Processes
(including concurrent statements) can be declared to be postponed. Postponed
processes are executed at the end of each simulation cycle (see below) and must there-
fore not give rise to further events at the current simulation time.

In Chapter 4, we introduced the concept of a driver. If a signal is assigned a value in
a process, that signal is said to have a driver in that process. A driver is represented by
a projected output waveform, which consists of a sequence of transactions. As the sim-
ulation time advances, each transaction in turn becomes the value of the driver. At the
time that a driver takes a new value, the driver is active. If one or more drivers of a sig-
nal is active, that signal is active.

VHDL simulation consists of two parts: an initialization phase, followed by
repeated executions of the simulation cycle. The simulation starts at time 0 ns. The
current simulation time is Tc. The next simulation time is Tn. The maximum possible
simulation time is implementation dependent, but is denoted by TIME'HIGH. The
value of Tn is calculated as the earliest occurring of:

1. TIME'HIGH

2. The next time at which any driver becomes active

3. The next time at which any process resumes.

The initialization phase therefore consists of the following steps.

1. Compute the driving and effective values of all explicit signals. Signals are assumed
to have held their effective values for an infinite amount of time before the start
of the simulation.

2. Set the values of the 'QUIET and 'STABLE implicit signals to TRUE and the
values of 'DELAYED signals to the initial values of the signals that are delayed.
The initial value of 'TRANSACTION implicit signals is not defined.

Simulation modelling issues 185

3. Each non-postponed process is executed until it suspends. A process suspends at the
first wait statement or at the end of the process if there are no wait statements.
Note that the order of execution of process is not determinate.

4. Each postponed process is executed until it suspends.

5. The time, Tn, of the first simulation cycle is determined as shown above.

Each simulation cycle executes as follows:

1. Tc is set equal to Tn. The simulation completes when Tc is equal to TIME'HIGH, and
there are no further active drivers or processes to be resumed.

2. Each active explicit signal is updated. Each implicit signal is updated. Both these
steps may cause new events to occur, which are scheduled either at a future time, or
one delta cycle ahead.

3. If an event occurs on a signal in this simulation cycle and a process is sensitive to
that signal, the process resumes.

4. Each non-postponed process that resumes in this simulation cycle is executed until
it suspends.

5. The time of the next simulation cycle, Tn, is determined, as above. If Tn is equal to
Tc, the next cycle is a delta cycle.

6. If the next cycle is not a delta cycle (i.e. Tn is greater than Tc), each postponed
process that resumes in this simulation cycle is executed until it suspends. Tn is
determined again, as above. The postponed processes must not cause another
delta cycle to occur.

8.3 Simulation modelling issues

Clearly, a VHDL model should be correct, in the sense that it accurately reflects the inten-
tions of the user. There are several aspects, specific to simulation, which should be noted.

� A process should have a complete list of relevant signals in its sensitivity list.
A process is activated only when one of these signals has an event on it, so an
incomplete list will result in the process not being evaluated correctly. Equally, do
not include irrelevant signals as the process will be activated unnecessarily.

� Minimize the number of processes.

� There is a significant difference between variable and signal assignments in processes.
A variable assignment takes effect immediately. Signal assignments (without delays)
take effect only at the end of the process, or at the next wait statement. Thus the
result of a signal assignment is available only in the next delta cycle.

� Use variables if possible, rather than signals. Signals have histories and are there-
fore large, complicated data structures.

� Use 'EVENT rather than 'STABLE. The latter creates a signal. Use rising_edge
and falling_edge functions so that only true transitions are modelled.

186 VHDL simulation

� Processes, signal assignments, procedure calls and assertions can be declared to be
postponed. This means that they are executed after the last delta cycle at a time
point. Therefore they must not cause a further delta cycle.

� Normal programming efficiency comments apply – e.g. take invariant assignments
out of loops.

� It is possible to do conditional compilation in VHDL (cf. #ifdef in C). An if . . .
generate statement will create the components or processes inside it only if the
condition is true.

� Data types such as integers are likely to simulate faster than bit vectors, because
they map directly onto standard data types in C or whatever language the simulator
was written in.

8.4 File operations

VHDL models may read and write data from and to files. These files can be used to
contain test data or to store results for further analysis. File handling is one of the main
causes of portability problems in programs and HDL models. For this reason, it is
strongly recommended that only text files are used and further that characters in files
are limited to printing characters only.

Here is an example of a non-portable file declaration, using the 1987 standard:

type CharFile is file of character;
file DataFile : CharFile is in "data.dat";

This is a better way of doing the same thing, using the 1993 and 2002 standards:

use STD.textio.all;
file DataFile : text open READ_MODE is "data.dat";

The package STD.textio defines the text type as

type text is file of STRING;

The declaration of a file type implicitly defines the procedures file_open,
file_close, read and write and the function endfile. Text is best read and
written via a line buffer, so two further procedures, readline and writeline, are
defined in STD.textio.

The following is a testbench for the NBitAdder of Section 4.5.2 that uses all these
subroutines. Note the conversions between bits and standard logic values. Notice, too,
the use of a wait for statement to allow time to elapse between applying new
signal values.

library IEEE;
use IEEE.std_logic_1164.all, STD.textio.all;

entity tb is
end entity tb;

File operations 187

architecture fileio of tb is
file vectors : text;
file results : text;
constant N : NATURAL := 4;
signal X, Y, Z : std_logic_vector((N-1) downto 0)

:= (others => '0');
signal ci, co: std_logic := '0';

begin
a1: entity WORK.NBitAdder port map (X, Y, ci, Z, co);
p1: process is

variable ILine, OLine : Line;
variable X_in, Y_in, Z_out : BIT_VECTOR((N-1) downto 0);
variable ci_in, co_out : BIT;
variable ch : CHARACTER;

begin
file_open(vectors, "vectors.txt", READ_MODE);
file_open(results, "results.txt", WRITE_MODE);
while not endfile(vectors) loop
readline(vectors, ILine);
read(ILine, X_in);
read(ILine, ch);
read(ILine, Y_in);
read(ILine, ch);
read(ILine, ci_in);
X <= to_stdlogicvector(X_in);
Y <= to_stdlogicvector(Y_in);
ci <= to_stdulogic(ci_in);
wait for 60 NS;
Z_out := to_bitvector(Z);
co_out := to_bit(co);
write(OLine, Z_out, right, 5);
write(OLine, co_out, right, 2);
writeline(results, OLine);

end loop;
file_close(vectors);
file_close(results);

end process p1;
end architecture fileio;

The testbench reads a file called vectors.txt:

0000 0000 0
0000 0001 0
1111 1111 0
1111 1111 1

188 VHDL simulation

and generates a file called results.txt:

0000 0
0001 0
1110 1
1111 1

Summary

Event-driven simulation minimizes the work of a logic simulator by evaluating only
changes. Delta delays ensure that all VHDL simulators produce the same simulation
results. The VHDL simulation cycle is specified as part of the LRM. VHDL models
can be written to improve simulation speed. Files provide a way of importing data
into testbenches.

Further reading

Logic simulation is described in the books by Miczo and by Abramovici, Breuer and
Friedman. The VHDL simulation cycle, together with detailed requirements for the
elaboration process, is described in the VHDL LRM.

Exercises

8.1 Explain the mechanism used within a VHDL simulator to ensure that the follow-
ing fragment of VHDL always gives the same simulation results:

b <= not a;
c <= a and b;

8.2 Explain what is meant by ‘inertial’ and ‘transport’ delays. Give an example of how
each would be described in a VHDL model.

8.3 VHDL has three forms of wait statement. Explain the operation of each. Which
form of wait statement is equivalent to a process sensitivity list?

8.4 When the following VHDL model of a multiplexer is simulated, it is found that the
wrong input may be selected. Explain why, and show how the correct behaviour
can be modelled, using (a) wait statements and (b) a variable.

library ieee;
use ieee.std_logic_1164.all;

entity mux is
port (a, b, c : in std_logic;

z : out std_logic);
end entity mux;

Exercises 189

architecture behave of mux is
signal sel : integer range 0 to 1;

begin
m1: process (a, b, c) is
begin
sel <= 0;
if (c = '1') then
sel <= sel + 1;

end if;
case sel is
when 0 =>
z <= a;

when 1 =>
z <= b;

end case;
end process m1;

end architecture behave;

190

Chapter 9

VHDL synthesis

9.1 RTL synthesis 191

9.2 Constraints 203

9.3 Synthesis for FPGAs 206

9.4 Behavioural synthesis 209

9.5 Verifying synthesis results 216

VHDL was originally designed as a hardware description language. In other words, the
language was designed to model the behaviour of existing hardware, not to specify the
functionality of proposed hardware. Moreover, when the VHDL standard was originally
written in 1987, there were no automatic synthesis tools in widespread use. Therefore
the meaning of different VHDL constructs in hardware terms was derived some years
after the language was standardized. The consequence of this is that parts of VHDL are
not suitable for synthesis.

We should define, at this point, what we mean by the term synthesis. The long-standing
objective of design automation tool development has been to compile high-level descrip-
tions into hardware in much the same way that a computer software program is compiled
into machine code.

Figure 9.1 shows a simplified view of the design process. After a specification has
been agreed, a design can be partitioned into functional units (architectural design).
Each of these functional units is then designed as a synchronous system. The design of
these parts can be done by hand, as described in Chapter 5. Thus a state machine is
designed by formulating an ASM chart, deriving next state and output equations and
implementing these in combinational logic. At this point, the gates and registers of the
design can be laid out and wired up on an integrated circuit or programmable logic
device.

Figure 9.1 shows how synthesis tools can automate parts of this process. RTL
(Register Transfer Level) Synthesis tools take a VHDL description of a design in terms of
registers, state machines and combinational logic functions and generate a netlist of
gates and library cells. As we will see, the VHDL models described in Chapters 4, 5, 6

RTL synthesis 191

RTL
synthesis

Behavioural
synthesis

Place
and route

Combinational
logic design

State machine/
RTL design

Architectural
design

Specification

Figure 9.1 High-level design flow.

and 7 are mostly suitable for RTL synthesis. Behavioural synthesis tools, on the other
hand, take algorithmic VHDL models and transform them to gates and cells. The user of
a behavioural synthesis system would not have to specify clock inputs, for instance, but
simply that a particular operation has to be completed within a certain time interval.
RTL synthesis tools are gaining widespread acceptance; behavioural synthesis tools are
still relatively rare. Although this chapter (and this book) is primarily about RTL synthe-
sis, it is likely that in a few years behavioural synthesis tools will be widely accepted, in a
manner analogous to the way that high-level software programming languages such as
Java are coming to replace lower-level languages such as C.

The last stage of the synthesis process, place and route, is carried out by separate spe-
cialized tools. In the case of programmable logic, the manufacturers of the program-
mable logic devices often supply these tools.

9.1 RTL synthesis

The functions carried out by an RTL synthesis tool are essentially the same as those
described in Chapter 5. The starting point of the synthesis process is a model (in
VHDL) of the system we wish to build, described in terms of combinational and
sequential building blocks and state machines. Thus we have to know all the inputs and
outputs of the system, including the clock and resets. We also have to know the number
of states in state machines – in general, RTL synthesis tools do not perform state mini-
mization. From this we can write VHDL models of the parts of our system. In addition,
we may wish to define various constraints. For instance, we might prefer that a state
machine be implemented using a particular form of state encoding. We almost certainly
have physical constraints such as the maximum chip size and hence the maximum
number of gates in the circuit and the minimum clock frequency at which the system

192 VHDL synthesis

should operate. These constraints are not part of VHDL, in the sense that they do not
form part of the simulation model, and are often unique to particular tools, but may be
included in the VHDL description.

As has already been noted, there are three styles of VHDL: structural, dataflow and
behavioural. Structural VHDL takes the form of netlists of components and would not
therefore be synthesized any further. Dataflow VHDL – concurrent assignment state-
ments – was originally intended to be used for RTL modelling. Therefore many dataflow
constructs are synthesizable. Behavioural (i.e. sequential) VHDL was intended for high-
level, algorithmic modelling. As RTL synthesis tools have evolved, it has become clear
that certain forms of behavioural VHDL are very suitable for RTL modelling and
synthesis. This should be apparent from the VHDL models in earlier chapters. Therefore
in this chapter we will highlight ways to describe combinational and sequential hard-
ware for RTL synthesis using behavioural VHDL.

The IEEE standard 1076.6-1999 defines a subset of VHDL for RTL synthesis. The
purpose of this standard is to define the minimum subset that can be accepted by any
synthesis tool. Throughout this book, we have advocated the use of and adherence to
various standards. Because IEEE 1076.6 is a minimum subset, it does not, for example,
support the 1993 enhancements to VHDL. 1076.6 synthesis tools will almost certainly
ignore the syntactic enhancements, but warning messages may be generated.

9.1.1 Non-synthesizable VHDL

Despite the comments above about the distinctions between RTL and behavioural syn-
thesis, in principle most features of VHDL could be translated into hardware. In gen-
eral, those parts of VHDL that are not synthesizable are constructs in which exact
timing is specified and structures whose size is not completely defined. Poorly written
VHDL may result in the synthesis of unexpected hardware structures. These will be
described later.

The following VHDL constructs are either ignored or rejected by RTL synthesis
tools.

� The after reserved word and the associated transport and inertial
reserved words and the delay values in such statements are all ignored. Delays in
assignments are simulation models. A model can be synthesized to meet various
constraints, but cannot be synthesized to meet some exact timing model. For
instance, it is not possible to specify that a gate will have a delay of exactly 5 ns. It
is reasonable, on the other hand, to require a synthesis tool to generate a block of
combinational logic such that its total delay is less than, say, 20 ns.

� The wait for construct is also ignored for the same reason. It suggests that a
piece of logic with an exact delay can be built.

� File operations suggest the existence of an operating system. Hence file opera-
tions cannot be synthesized and would be rejected by a synthesis tool.

� As with the elaboration of VHDL for simulation, the sizes of arrays and other struc-
tures must be defined at compile time. Array dimensions may be undefined if they
are specified using generic parameters. For example, an n-bit adder must have

RTL synthesis 193

the value of n defined before it can be synthesized. Hence generic parameters used
to define structure sizes at the topmost level of a hierarchy must have default values.

� In simulation, data structures such as linked lists and trees are elaborated dynami-
cally. Such structures cannot be synthesized because their size is not defined at com-
pile time. Hence pointers, specified by the access keyword, are not recognized by
synthesis tools.

� Floating-point data types are not inherently unsynthesizable, but will be rejected by
synthesis tools because they require at least 32 bits, and the hardware required for
many operations is too large for most ASICs or FPGAs.

� Initial values of signals and variables will be ignored. Instead, synchronous or asyn-
chronous set and reset signals must be used to initialize flip-flops.

9.1.2 Inferred flip-flops and latches

It is important to appreciate that synthesis tools (like most computer software) are basi-
cally stupid. There are no reserved words in VHDL to specify whether a model is com-
binational or sequential and whether any sequential logic is synchronous or
asynchronous. Therefore the fundamental problem with synthesizing VHDL models is
to ensure that the hardware produced by the synthesis system is what you really want.
One of the most likely ‘errors’ is the creation of additional flip-flops or latches.
Therefore, in this section, we will describe how the existence of flip-flops and latches is
inferred.

A flip-flop or latch is synthesized if a signal or variable holds its value over a period
of time. In VHDL a signal holds its value until it is given a new value. If a process con-
tains a wait statement, any signals (or variables) that have values assigned in that
process must hold their values until the wait statement completes. Therefore all sig-
nals and variables to which assignments are made in a process containing a wait must
be held in registers. Similarly, a flip-flop or latch is created implicitly if some paths
through a process have assignments to a signal or variable while others do not. This
typically happens if a case statement or an if statement is incomplete in the sense
that one or more branches do not contain an assignment to a signal while other
branches do contain such an assignment, or if the if statement does not contain a final
else.

The term ‘flip-flop’ refers here to a memory element triggered by an edge of the
clock. ‘Latch’ refers to a level-sensitive device, controlled by some signal other than
the clock. Thus a flip-flop would be created if the edge of a signal is used in a wait,
if or case statement, while a latch would be created if the level value of a signal were
used instead.

In principle, therefore, processes containing various edge-triggered and level-sensitive
statements could be synthesized. In practice, synthesis tools recognize a small number of
fairly simple patterns, as shown in the rest of this section. These examples can act as tem-
plates for larger examples. It should be noted that in all these examples, the signal names
are not significant to the synthesis tool. Thus a clock signal might be called ‘Clock’ or
‘Clk1’ or, with equal validity, ‘Data’. Note, however, that good software engineering

194 VHDL synthesis

practice should be applied and meaningful identifiers should be used for the benefit of
human readers.

Level-sensitive latch

The following example shows the VHDL that would be interpreted to specify a level-
sensitive latch by an RTL synthesis tool:

p0: process (Ctrl, A) is
begin

if (Ctrl = '1') then
Z <= A;

end if;
end process p0;

The process has a sensitivity list containing the signal Ctrl and the signal, A, which is
assigned to the output. Therefore the process is executed when either Ctrl or A
changes. Z is assigned the value of A if Ctrl has just changed to a 1. While Ctrl is 1,
any change in A is transmitted to the output. Otherwise, no assignment to Z is specified.
Therefore it may be inferred that Z holds its value, and hence it is inferred that Z is a
registered signal. This inference can be avoided if the else clause is included:

p0: process (Ctrl, A) is
begin

if (Ctrl = '1') then
Z <= A;

else
Z <= '0';

end if;
end process p0;

The value of Z is therefore Ctrl and A. Case statements are interpreted in a simi-
lar manner.

p0: process (Sel, A, B) is
begin

case Sel is
when "00" => Y <= A;
when "10" => Y <= B;
when others => null;

end case;
end process p0;

The when others clause covers the patterns ‘01’ and ‘11’. If it were omitted, the
case statement would be incorrect and hence would cause a compilation error. When
Sel is one of these two patterns, Y is assumed to hold its value. Hence the circuit of
Figure 9.2 is synthesized. (If all the values of Sel were listed in when clauses, the
others statement would not be needed. Some books suggest that if an enumerated

RTL synthesis 195

Y
G Q

D Q

Sel(0)

Sel(1)

A

B

Figure 9.2 Circuit synthesized from incomplete case statement.

Y

D

E

Figure 9.3 Asynchronous circuit synthesized from when . . . else.

type has, say, three values, the others clause is needed to cover the unused state(s).
This is not required according to the VHDL standard, but if you really want to protect
yourself against poor synthesis tools, include the others clause!) A similar argument
applies to with . . . select statements in concurrent VHDL.

Note that the latch used in these examples would be taken from a library. The design
of asynchronous elements such as latches and flip-flops is covered in Chapter 12. Such
elements cannot be synthesized from first principles by a synthesis tool. The concurrent
statement

y <= D when E = '1' else y;

in which a signal appears on both the left- and right-hand sides of the signal assign-
ment, would be synthesized to the circuit of Figure 9.3. This is apparently functionally
correct, but it contains a potential hazard and is therefore a poor latch design. Such con-
structs should be avoided. Conditional concurrent statements without a final else, or
that include unaffected as one of the choices, should be avoided for the same rea-
son. None of these forms is supported by the 1076.6 standard.

Edge-sensitive flip-flop

As described in Chapter 6, edge-sensitive behaviour may be modelled by putting a
wait until statement at the top of a process:

p0: process is
begin

wait until (Clock = '1');
Q <= D;

end process p0;

The process suspends until Clock changes to a logic 1. Therefore any signals that
have assignments made to them after the wait statement must hold on to their values

196 VHDL synthesis

until the wait statement has completed. Thus signal assignments following a wait
until statement will be interpreted as inputs to edge-triggered flip-flops. In general, a
process written using a wait until statement that is to be interpreted by an RTL
synthesis system should have exactly one wait until statement. This wait until
statement must be the first executable line of the process and must depend on only one
transition of one signal. Some synthesis systems may allow more complex structures,
but these restrictions are specified in IEEE 1076.6.

In Chapter 6, an alternative way of modelling flip-flops was described:

p0: process (Clock) is
begin

if rising_edge(Clock) then
Q <= D;

end if;
end process p0;

The rising_edge and falling_edge functions, together with expressions such
as (Clock = 1 and Clock'EVENT), are interpreted by a synthesis system to
model edge-sensitive behaviour. Hence signal assignments that can be reached only by
fulfilling an edge-sensitive condition will be interpreted as assignments to registered
signals. It should be remembered that the signal name itself is not meaningful to the
synthesis tool.

Asynchronous sets and resets are modelled using level-sensitive if clauses:

p0: process (Clock, Reset) is
begin

if (Reset = '0') then
Q <= '0';

elsif rising_edge(Clock) then
Q <= D;

end if;
end process p0;

This structure would be interpreted, correctly, as a positive-edge triggered flip-flop
with an active low asynchronous reset. The reset is tested before the clock and therefore
has an effect irrespective of the clock. The clock signal to which the flip-flop is edge-
sensitive should be tested in the last branch of the if statement. Similarly, synchronous
sets and resets and clock enable inputs as described in Chapter 6 will be correctly inter-
preted by an RTL synthesis tool.

We saw in the previous chapter that the VHDL simulation model means that signal
assignments in a process do not take effect until the subsequent time point or delta
cycle. Variable assignments, on the other hand, take immediate effect. The synthesized
forms of signal and variable assignments should therefore be different. The following
fragment of VHDL synthesizes to the structure shown in Figure 9.4.

process (clock) is
begin

if rising_edge(Clock) then

RTL synthesis 197

A

B

Z
D Q

Q
C

Clock

D Q

Q

P

Figure 9.4 Circuit synthesized by sequential signal assignments.

A

B

Z
D Q

Q
C

Clock

P

Figure 9.5 Circuit synthesized using variable assignment.

P <= A and B;
Z <= P or C;

end if;
end process;

In the first assignment, P, a signal, is given a value. When P is referenced in the
second assignment, the new value of P has not yet taken effect. Therefore the pre-
vious value of P is used. The value of P (and of Z) is not updated until the process
resumes, at the next clock edge. Therefore P behaves exactly as if its value were
stored in a flip-flop.

By contrast, a variable assignment takes effect immediately. Therefore the following
piece of code in which P is a variable is synthesized to the structure of Figure 9.5.

process (clock) is
variable P : std_logic;

begin
if rising_edge(Clock) then
P := A and B;
Z <= P or C;

end if;
end process;

According to the IEEE 1076.6 standard, there should be no statements before the if
statement or after the corresponding end if line in the process. The sensitivity list
should consist of the clock signal followed by any other signals sensed in the asyn-
chronous parts of the if statement (i.e. the asynchronous control signals and any sig-
nals assigned to other signals in the asynchronous parts). Several of the sequential

198 VHDL synthesis

examples of Chapter 6 do not conform to this requirement, but are nevertheless accept-
able to some synthesis tools.

9.1.3 Combinational logic

In general, if a piece of hardware is not a level-sensitive or edge-sensitive sequential
unit, it must be a combinational unit. Therefore, a VHDL description that does not ful-
fil the conditions for synthesis to level-sensitive or edge-sensitive sequential elements
must by default synthesize to combinational elements. Hence the problem of describ-
ing combinational hardware in VHDL is to ensure that we do not accidentally cause the
synthesis tool to infer the existence of registers.

To ensure that combinational logic is synthesized from a VHDL process, we must
observe three conditions. First, we must not have any edge-triggered statements in that
process. Secondly, if a signal or variable has a value assigned in one branch of an if
statement or a case statement, that signal or variable must have a value assigned in
every branch of the statement (or it must have a value assigned before the branching
statement – see below). Finally, all the signals sensed either as branching conditions or
in signal or variable assignments must be included in the sensitivity list of the process.

For example, the following is a model of a state machine with two states, two inputs
and two outputs.

library IEEE;
use IEEE.std_logic_1164.all;

entity Fsm is
port (Clock, InA, InB : in std_logic;

OutA, OutB : out std_logic);
end entity Fsm;

architecture Try1 of Fsm is
begin
p0: process is

type State is (S0, S1, S2);
variable PresentState: State;

begin
wait until rising_edge(Clock);
case PresentState is
when S0 =>
OutA <= '1';
if InA = '1' then
PresentState := S1;

end if;
when S1 =>
OutA <= InB;
OutB <= '1';
if (InA = '1') then

RTL synthesis 199

PresentState := S2;
end if;

when S2 =>
OutB <= InA;
PresentState := S0;

end case;
end process p0;

end architecture Try1;

Although this is an acceptable simulation model, if it were synthesized, OutA and
OutB would be registered in addition to PresentState, because they have values
assigned to them after the edge-triggered wait until statement. Thus we can divide
the model into two processes, one combinational and one sequential.

architecture Try2 of Fsm is
type State is (S0, S1, S2);
signal PresentState, NextState: State;

begin
s0: process is
begin

wait until rising_edge(Clock);
PresentState <= NextState;

end process s0;
c0: process (PresentState) is
begin

case PresentState is
when S0 =>
OutA <= '1';
if InA = '1' then
NextState <= S1;

else
NextState <= S0;

end if;
when S1 =>
OutA <= InB;
OutB <= '1';
if (InA = '1') then
NextState <= S2;

else
NextState <= S1;

end if;
when S2 =>
OutB <= InA;
NextState <= S0;

end case;
end process c0;

end architecture Try2;

200 VHDL synthesis

This will, again, simulate as a state machine giving apparently correct behaviour. When
synthesized, however, OutA and OutB will be registered through asynchronous
latches, because in state S0 no value is assigned to OutB and hence OutB holds on to
its value. Similarly in state S2, no value is assigned to OutA.

This error can be resolved by explicitly including an assignment to both OutA and
OutB in every branch of the case statement. Alternatively, both signals can be given
default values at the start of the process:

c0: process (PresentState) is
begin
OutA <= '0';
OutB <= '0';
case PresentState is
when S0 =>
OutA <= '1';
if InA = '1' then
NextState <= S1;

else
NextState <= S0;

end if;
when S1 =>
OutA <= InB;
OutB <= '1';
if (InA = '1') then
NextState <= S2;

else
NextState <= S1;

end if;
when S2 =>
OutB <= InA;
NextState <= S0;

end case;
end process c0;

This process now synthesizes to purely combinational logic, while process S0 synthe-
sizes to edge-triggered sequential logic. Most synthesis tools will (or should) give a warn-
ing, however. A piece of combinational logic will be synthesized with three inputs
(PresentState, InA and InB) and three outputs (NextState, OutA and OutB).
Hence a change at any of the inputs could cause a change at an output. The VHDL model
above has only one signal in its sensitivity list (PresentState). Therefore this model
and the synthesized circuit may behave differently when simulated. To avoid this, all the
signals to which the combinational logic is sensitive should be included in the sensitivity
list. The ‘correct’ interpretation of a model with an incomplete sensitivity list such as

p0: process (a) is
begin
q <= a and b;

end process p0;

RTL synthesis 201

q

D Q
b

a

(a)

D Q

(b)

D Qb

a

q

Figure 9.6 (a) Circuit synthesized from incomplete sensitivity list; (b) optimized circuit.

is the circuit shown in Figure 9.6(a). The lower flip-flop of this circuit will always have
a 0 output, so in theory this circuit can be optimized to that of Figure 9.6(b).

The complete, correct model of the example state machine is shown below.

architecture Try3 of Fsm is
type State is (S0, S1, S2);
signal PresentState, NextState: State;

begin
s0: process is
begin

wait until rising_edge(Clock);
PresentState <= NextState;

end process s0;
c0: process (PresentState, InA, InB) is
begin
OutA <= '0';
OutB <= '0';
case PresentState is
when S0 =>
OutA <= '1';
if InA = '1' then
NextState <= S1;

202 VHDL synthesis

Table 9.1 Summary of RTL synthesis rules.

Sensitivity list Branches

Combinational logic All inputs in sensitivity list (signals on Complete (or default values)
RHS of assignments and used in if
and case statements)

Latches All inputs in sensitivity list (signals on Not complete
RHS of assignments and used in if
and case statements)

Flip-flops Clock and asynchronous set and Not complete
reset only (process usually contains
wait on statement or
rising_edge or
falling_edge function)

else
NextState <= S0;

end if;
when S1 =>
OutA <= InB;
OutB <= '1';
if (InA = '1') then
NextState <= S2;

else
NextState <= S1;

end if;
when S2 =>
OutB <= InA;
NextState <= S0;

end case;
end process c0;

end architecture Try3;

The style of coding will also influence the final hardware. For example, nested if
. . . then . . . else blocks, such as the priority encoder of Section 4.4.2, will
tend to result in priority encoding and hence long chains of gates and large delays. On
the other hand, case statements, such as the state machine above, will tend to be syn-
thesized to parallel multiplexer-type structures with smaller delays. Similarly, shift
operations will result in simpler structures than multiplication and division operators.

9.1.4 Summary of RTL synthesis rules

It is easy to make mistakes and to accidentally create latches when combinational
logic is intended (or worse, to deliberately create latches, when you really want a
flip-flop – see Section 5.5.4). Table 9.1 summarizes the rules for creating combina-
tional and sequential logic from processes.

Constraints 203

(a)

A

B
C

D
E

(b)

D
C

A
B

E

D

Figure 9.7 Two versions of a combinational circuit: (a) smaller, slower; (b) larger, faster.

There is one further rule that applies to all synthesizable logic: do not assign a
value to a signal in two or more processes. The only exception to this rule is the case
of three-state logic, as in the bus in the microprocessor example of Chapter 7. You
should be able to draw a block diagram of your design, with each process repre-
sented by a box. If two boxes appear to be driving the same wire, you have done
something wrong. (Indeed, if you can’t draw the block diagram, you have made a
really serious mistake!)

9.2 Constraints

For any non-trivial digital function, there exist a number of alternative implementa-
tions. Ideally, a digital system should be infinitely fast, infinitesimally small, consume
no power and be totally testable. In reality, of course, this ideal is impossible.
Therefore, the designer has to decide what his or her objectives are. These objectives
are expressed to the synthesis tool as constraints. Typically, a design has to fit on a par-
ticular FPGA and has to operate at a particular clock frequency. Thus two constraints of
area and speed have to be specified. It is possible that these constraints will be in con-
flict. For example, a design may fit on a particular FPGA, but not work at the desired
speed – to reach the desired speed may require more logic and hence more area, as
illustrated in Figure 9.7. Assuming that CMOS logic is used and that the gate delays are
identical, the circuit of Figure 9.7(a) would need 16 transistors and have a maximum
delay of 4 units, while the circuit of Figure 9.7(b) requires 18 transistors and has a max-
imum delay of 3 units.

9.2.1 User-defined attributes

Synthesis constraints can be expressed in two ways: as VHDL attributes in the
model description or as some other format in a separate file. There is no standard
between tools for either the type of constraints or the format in which they may be
expressed. In general, user-defined attributes are used to pass information to synthesis
tools, but are ignored by simulators.

An attribute definition has two parts. In the first part, the name of the attribute and its
type are declared. In the second part, the attribute is associated with a VHDL entity and
given a value. In this context ‘entity’ can refer to an entity, architecture,

204 VHDL synthesis

configuration, procedure, function, package, type, subtype,
constant, signal, variable, component, label, literal, units,
group or file.

For example, IEEE 1076.6 defines one attribute for specifying the state encoding,
e.g.

attribute enum_encoding : STRING;
type state is (s0, s1, s2, s3);
attribute enum_encoding of state: type is "00 01 11 10";

This might instead be expressed in a separate constraints file using a format like:

enum_encoding : state = '00 01 11 10'

Other example attribute definitions could be as follows:

attribute pin_no : NATURAL;
attribute pin_no of q : signal is 42;

attribute technology : STRING;
attribute technology of all : component is "CMOS";

Given that the type and format of constraints are unique to particular synthesis tools,
in the following sections we will discuss only the general types of constraints that can
be specified.

9.2.2 Area and structural constraints

State encoding

As discussed in Chapter 5, a state machine with s states can be implemented using m
state variables, where

2m�1 � s �2m

There are

possible state assignments. There is no method for determining which of these assign-
ments will result in minimal combinational next state logic. In addition, other non-
minimal state encoding schemes, such as one-hot, exist. No RTL synthesis tools
attempt to tackle the general state assignment problem. Heuristic methods may be able
to choose either a binary counting sequence or one-hot encoding. Therefore one design
constraint that can be specified is the state encoding method, either using the IEEE
1076.6 style or by specifying the code with a keyword, as shown above.

12m 2 !

12m�s 2 !

Constraints 205

Resource constraints

The use of a particular technology may constrain the type of structures that can be cre-
ated. Features of different FPGA technologies will be discussed later in this chapter.
Having selected a particular technology, a range of different-sized devices may exist,
and very often it is desirable to select the smallest possible. Thus the specification of a
particular device is a constraint on the synthesis process.

As a single ASIC or FPGA has to be connected via a printed circuit board to other
devices, the functionality of each pin may have to be determined in advance of the syn-
thesis. Therefore another constraint is the association of a signal with a particular pin.

Under some circumstances, complex logic blocks may be reused. For example, the
following piece of code can be implemented with two adders or with one adder and two
multiplexers:

if Select = '1' then
q <= a + b;

else
q <= c + d;

end if;

A synthesis constraint can choose whether resources are shared, either at a local
level or globally. Such choices have implications for both the area and speed of the final
design.

Finally, it may be desirable to describe a function in VHDL in order to verify the cor-
rect operation of the rest of the system, but when the system is synthesized we would
rather use a predefined library component to implement that function instead of syn-
thesizing the function from first principles. Therefore we can designate that a particular
unit is a ‘black box’ that we will incorporate from a library, e.g.

attribute black_box : BOOLEAN;
attribute black_box of b0 : component is TRUE;

Timing constraints

If we want a circuit to operate synchronously with a clock at a particular frequency, say
20 MHz, we know that the maximum delay through the state registers and the next state
logic is the reciprocal of the clock frequency, in this case 50 ns. Therefore a constraint
on the synthesis tool can be expressed as the clock frequency or as the maximum delay
through the combinational logic, as shown in Figure 9.8.

The difficulty, from the synthesis point of view, with this approach is that the delay
through the combinational logic can only be estimated. The exact delay depends on
how the combinational logic is laid out, and hence the delay depends on the delay
through the interconnect. Therefore the synthesis is performed using an estimate of the
likely delays. Having generated a netlist, the low-level place and route tool attempts to
fit the design onto the ASIC or FPGA. The place and route tool can take into account
the design constraint – the maximum allowed delay – and the delays through the logic
that has been generated. At this stage, it may become apparent that the design objective

206 VHDL synthesis

D Q

Q

D Q

Q

Delay 1 ns
Combinational
logic Setup 1 ns

Clock frequency is 20 MHz
Clock period is 50 ns
Maximum delay through combinational logic is 48 ns

Figure 9.8 Basic timing constraint.

D Q

Q

D Q

Q
Input logic
Delay = 24 ns

Output logic
Delay = 20 ns

Figure 9.9 Input and output timing constraints.

cannot be achieved, so the design would have to be synthesized again with a tighter
timing constraint to allow for the extra time in the routing. This can mean that the final
goal is never reached. To speed up hardware more operations are performed concur-
rently, which means that the design is larger. Hence the design is harder to place and
route, and hence the routing delays increase, ad infinitum.

More specific timing constraints can be applied to selected paths. If a design is split
between two or more designers, the signal path between registers in two parts of the
design may include combinational logic belonging to both parts of the design. If both
parts of combinational logic were each synthesized without allowing for the existence
of the other, the total delay between registers could be greater than one clock period.
Therefore timing constraints can be placed upon paths through the input and output
combinational logic in a design, as shown in Figure 9.9.

9.3 Synthesis for FPGAs

In principle, an RTL model of a piece of hardware coded in VHDL can be synthesized
to any target technology. In practice, the different technologies and structures of ASICs
and FPGAs mean that certain constructs will be more efficiently synthesized than
others and that some rewriting of VHDL may be needed to attain the optimal use of a
particular technology.

Synthesis for FPGAs 207

In this section we will compare two FPGA technologies and show how the VHDL
coding of a design can affect its implementation in a technology. The descriptions of
the technologies are deliberately simplified.

Xilinx FPGAs are based on static RAM technology. Each FPGA consists of an array
of the configurable logic blocks (CLBs) shown in Figure 1.15. Each logic block has
two flip-flops and a combinational block with eight inputs. Each flip-flop has an asyn-
chronous set and reset, but only one of these may be used at one time. Each flip-flop
also has a clock input that can be positive or negative edge-sensitive, and each flip-flop
has a clock enable input. In addition to the CLB shown, a number of three-state buffers
exist in the array.

Actel FPGAs are based on antifuse technology. Two types of logic block exist in
more or less equal numbers – a combinational block and a sequential block as shown in
Figure 1.14. Each flip-flop in a sequential block has an asynchronous reset.

Both types of FPGA therefore have a relatively high ratio of flip-flops to combina-
tional logic. Conventional logic design methods tend to assume that flip-flops are rela-
tively expensive and combinational logic is relatively cheap, and that therefore
sequential systems such as state machines should be designed with a minimal number
of flip-flops. The large number of flip-flops in an FPGA and the fact that the flip-flops
in a Xilinx FPGA or in an Actel sequential block cannot be used without the combina-
tional logic reverses that philosophy and suggests that one-hot encoding is a more effi-
cient state encoding method, particularly for small state machines.

Similarly, a single global asynchronous set or reset is the most efficient way of ini-
tializing both types of FPGA. If both set and reset are required it is necessary to use
additional combinational logic, hence it is better to have, for example, an asynchronous
reset and a synchronous set.

In both technologies, the flip-flops are edge-sensitive; therefore level-sensitive
latches have to be synthesized from combinational logic. Again, this can waste flip-
flops, so level-sensitive designs are best avoided. It is, however, reasonable to assume
that any level-sensitive latches will exist as library elements and therefore that they will
be hazard-free.

In both technologies, it may be desirable to instantiate predefined library components
for certain functions. Not only is the logic defined, but the configuration of logic blocks is
already known, potentially simplifying both the RTL synthesis and place and route tasks.

All the foregoing comments distinguish synthesis to FPGAs from synthesis to
ASICs in general. The FPGA technologies themselves favour certain VHDL coding
styles. For example, the following piece of VHDL shows two ways of describing a
5-to-1 multiplexer.

library IEEE;
use IEEE.std_logic_1164.all;

entity Mux is
port (a, b, c, d, e: in std_logic;

s: in std_logic_vector(4 downto 0);
y: out std_logic);

end entity Mux;

208 VHDL synthesis

architecture Version1 of Mux is
begin
p0: process (s, a, b, c, d, e) is
begin

case s is
when "00001" => y <= a;
when "00010" => y <= b;
when "00100" => y <= c;
when "01000" => y <= d;
when others => y <= e;

end case;
end process p0;

end architecture Version1;

architecture Version2 of Mux is
begin
y <= a when s(0) = '1' else 'Z';
y <= b when s(1) = '1' else 'Z';
y <= c when s(2) = '1' else 'Z';
y <= d when s(3) = '1' else 'Z';
y <= e when s(4) = '1' else 'Z';

end architecture Version2;

These two models have the same functionality when simulated. If version 1 were syn-
thesized to a Xilinx FPGA, two CLBs would be needed. Version 2, on the other hand,
can be implemented using the three-state buffers that exist outside the CLBs. Version 2,
however, cannot be synthesized to an Actel FPGA as the technology does not support
three-state logic, except at the periphery of the FPGA. Clearly, therefore the choice of
architecture depends upon which technology is being used.

The two technologies have different limitations with respect to fan-outs. Antifuse
technology has a fan-out limit of about 16 (one output can drive up to 16 inputs without
degradation of the signal). CMOS SRAM technology has a higher fan-out limit. In
practice, this means that a design that can easily be synthesized to a Xilinx FPGA can-
not be synthesized to an Actel FPGA without rewriting. For example, an apparently
simple structure such as the following fragment cannot be synthesized as it stands
because the Enable signal is controlling 32 multiplexers:

signal a, b : std_logic_vector(31 downto 0);
begin
p0 : process (Enable, b) is
begin

if Enable = '1' then
a <= b;

else
a <= (others => '0');

end if;
end process p0;

end;

Behavioural synthesis 209

Instead, the Enable signal must be split into two using buffers, and each buffered sig-
nal then controls half the bus:

signal a, b : std_logic_vector(31 downto 0);
signal En0, En1 : std_logic;
begin
b0 : buf port map (Enable, En0);
b1 : buf port map (Enable, En1);
p0 : process (En0, En1, b) is
begin

if En0 = '1' then
a(15 downto 0) <= b(15 downto 0);

else
a(15 downto 0) <= (others => '0');

end if;
if En1 = '1' then
a(31 downto 16) <= b(31 downto 16);

else
a(31 downto 16) <= (others => '0');

end if;
end process p0;

end;

A good synthesis tool should recognize the fan-out limits and automatically
insert buffers.

9.4 Behavioural synthesis

In RTL synthesis, the design is specified in terms of register operations and trans-
formed automatically into gates and flip-flops. Behavioural synthesis takes the
process one stage further. The hardware to be synthesized is described in terms of an
algorithm, from which the registers and logic are derived. In principle, it is not nec-
essary to use a hardware description language for behavioural synthesis; indeed,
subsets of conventional programming languages such as C have been used. The
major obstacle to the widespread acceptance of behavioural synthesis appears to be
the difficulty that a hardware designer has in interpreting the output of a synthesis
tool. The output of RTL synthesis, particularly when expressed in terms of FPGA
netlists, can be very difficult to interpret. This is even truer of behavioural synthesis,
where the detailed structure is entirely generated by the synthesis tool. With the
decreasing cost of silicon, however, it seems safe to predict that behavioural synthe-
sis will become an accepted design tool, in the same way that compilers for high-
level programming languages are now accepted, even though the machine code
generated is largely unintelligible.

This section will show, by example, how a behavioural synthesis tool might
generate a structural representation of a circuit from a high-level algorithmic
description.

210 VHDL synthesis

The following is a behavioural model of an infinite impulse response (IIR) filter.

package iir_defs is
constant precision: POSITIVE := 16;
subtype int is INTEGER range – 2**(precision – 1) to

2**(precision – 1) – 1;
type integer_array is array (NATURAL range <>) of int;
constant order: POSITIVE := 5;

end package iir_defs;

use work.iir_defs.all;
entity iir is
generic (coeffa: integer_array (0 to order);

coeffb: integer_array (0 to order - 1));
port(input: in int; strobe: in BIT; output: out int);

end entity iir;

architecture behaviour of iir is
begin
process is

variable input_sum: int;
variable output_sum: int;
variable delay: integer_array (0 to order) :=

(others => 0);
begin
input_sum := input;
for j in 0 to order - 1 loop
input_sum := input_sum + (delay(j)*coeffb(j))/1024;

end loop;
output_sum := (input_sum*coeffa(order))/1024;
for k in 0 to order loop
output_sum := output_sum +

(delay(k)*coeffa(k))/1024;
end loop;
for l in 0 to order - 1 loop
delay(l) := delay (l + 1);

end loop;
delay(order) := input_sum;
output <= output_sum;
wait on strobe;

end process;
end architecture behaviour;

This is a behavioural description in the sense that the filter is described purely as
an algorithm. A C version of the algorithm would look very similar. A C version
might not include the strobe signal, but conversely this is not RTL VHDL, as
there is neither a clock nor a reset. If this description were used for RTL synthesis

Behavioural synthesis 211

(assuming the synthesis tool accepted the VHDL) , the resulting hardware would
have 12 16-bit combinational multipliers and 11 16-bit adders. This translates
to 442 544 full adders, requiring several tens of FPGAs! The division by 1024 is
simply a scaling operation and can be achieved by throwing away the 10 least
significant bits from each multiplication product. This operation is therefore
effectively free.

The essential fact about behavioural synthesis is that it is possible to make design
decisions and to achieve a compromise between speed and size. In the IIR example
above, it would be equally possible to implement the algorithm using 442 544 full
adders and complete the operation in one clock cycle, or to use one full adder and take
442 544 clock cycles to achieve the result. More sensibly, some implementation
between these two extremes might be sufficiently fast and sufficiently small to satisfy
the requirements of the final application.

It is not practical to demonstrate the principles of behavioural synthesis with the
fifth-order IIR filter. Instead, let us consider how a first-order filter might be built.
In order to know which operations can be done concurrently and which require succes-
sive clock cycles, we need to know the dependency of each piece of data on each other
piece of data. To do this, the loops in the behavioural description will first be expanded.
We will ignore the division operations for the reason stated above.

input_sum := input + delay(0)*coeffb(0);
output_sum := input_sum*coeffa(1);
output_sum := output_sum + delay(0)*coeffa(0);
output := output_sum + delay(1)*coeffa(1);

Assignments are made to output_sum on the second and third lines. To distinguish
between successive values of output_sum, the two values will be separated, such
that there is only one assignment to each variable in the algorithm. This is known as
single assignment form.

input_sum := input + delay(0)*coeffb(0);
output_sum0 := input_sum*coeffa(1);
output_sum1 := output_sum0 + delay(0)*coeffa(0);
output := output_sum1 + delay(1)*coeffa(1);

From this a data dependency graph can be constructed (Figure 9.10).
If the operations shown in Figure 9.10 were all performed in one clock cycle, three

adders and four multipliers would be needed. If it were decided, however, that each
multiplication and each addition takes one clock cycle, the data dependency graph can
be used to construct a schedule that shows when each operation can be performed
(Figure 9.11).

It can be seen that five clock cycles are required to perform the arithmetic opera-
tions – the system is said to have a latency of five. This schedule is known as an as
soon as possible (ASAP) schedule, because each operation is done as early as pos-
sible. Note that the sequence of operations is not the same as given by the original
VHDL description. Equally, it is possible to schedule operations as late as possible

212 VHDL synthesis

*

+

* *

+ *

+

input_sum

output_sum0

output_sum1

output

input delay(0) coeffb(0) coeffa(1) coeffa(0) delay(1)

Figure 9.10 Data dependency graph.

*

+

*

+

+

output

input delay(0) coeffb(0) coeffa(1) coeffa(0) delay(1)

* *
1

Cycle

2

3

4

5

Figure 9.11 ASAP schedule.

(ALAP) (Figure 9.12). This schedule also takes five clock cycles. If, however, the
resources were constrained to a single arithmetic unit, again using an ALAP schedule,
the number of cycles required increases (Figure 9.13).

Given the assumption that the basic resources available are arithmetic units, there are
relatively few possible schedules for this example. With larger problems, the number of
possible schedules clearly increases. By limiting the available resources, and hence the
total area of the design, the latency, i.e. the time taken to complete an operation, is

Behavioural synthesis 213

Figure 9.12 Unconstrained ALAP schedule.

Figure 9.13 Resource constrained schedule.

*

+

*

+

+

output

input delay(0) coeffb(0) coeffa(1) coeffa(0) delay(1)

1

Cycle

2

3

4

5

*

*

*

+

*

+

+

output

input delay(0) coeffb(0) coeffa(1) coeffa(0) delay(1)

1

Cycle

2

3

4

5

*

*

6

7

214 VHDL synthesis

*

+

+

+

output

input delay(0) coeffb(0) coeffa(1) coeffa(0) delay(1)

1

Cycle

2

3

4

5

*

*

*

R1 R2 R3

R6R5

R8 R9

R4

R7

R11R10

Figure 9.15 Schedule showing registers.

*

+

*

+

+

output

input delay(0) coeffb(0) coeffa(1) coeffa(0) delay(1)

1

Cycle

2

3

4

5

*

*

Figure 9.14 Mapping of operations onto resources.

increased. Therefore the synthesis tool can trade speed against area by changing the
schedule.

Figure 9.14 shows how the operations can be mapped onto particular resources. The
three shaded groups each represent a resource used in different clock cycles, namely
two multipliers and an adder.

Behavioural synthesis 215

The result of an operation is used in a subsequent clock cycle. Therefore every time
a data arc crosses a clock boundary a register must be inserted, as shown in Figure 9.15.

Just as the arithmetic resources can be shared, so too can the registers be shared. The
sharing is achieved using multiplexers, which are assumed to be cheap (i.e. small) com-
pared with the other resources. Hence a possible hardware implementation of the
schedule of Figure 9.15 is shown in Figure 9.16.

In Figures 9.15 and 9.16, three registers are shown following one of the multiplier
units. This assumes that every register is loaded at each clock edge. It would be
equally valid to use enabled registers, which would reduce the number of registers.
Whatever technique is used, the multiplexers and registers have to be controlled. We
have so far discussed the derivation of the datapath part of Figure 7.6 from a behav-
ioural description. The controller part also needs to be synthesized. In the example
shown this is relatively simple. There are five clock cycles, hence five states as
shown in Figure 9.17.

Figure 9.16 Hardware implementation of first-order filter.

output

input

delay(0) coeffb(0)

coeffa(1) coeffa(0)

delay(1)

delay(0)

coeffa(1)

* *

R2/R7 R3/R6

R5/R9

R8/R11
R1

+

R4/R10

216 VHDL synthesis

R1 ← input
R2 ← delay(0) * coeffb(0)
R3 ← delay(0) * coeffa(0)

R4 ← R1 + R2
R5 ← R3
R3 ← delay(1) * coeffa(1)

R2 ← R4 * coeffa(1)
R8 ← R5
R5 ← R3

R4 ← R2 + R8
R8 ← R5

output ← R4 + R8

Figure 9.17 ASM chart of controller.

9.5 Verifying synthesis results

Synthesis should, by definition, produce a correct low-level implementation of a
design from a more abstract description. In principle, therefore, functional verification
of a design after synthesis should not be needed. For peace of mind, we might wish to
check that the synthesized design really does perform the same function as the RTL
description. Synthesis does, however, introduce an important extra factor to a design –
timing. An RTL design is effectively cycle-based. A task takes a certain number of
clock cycles to complete, but we do not really know how long each cycle takes. After
synthesis, the design is realized in terms of gates or other functional blocks, and these
can be modelled with delays. After placement and routing, we have further timing
information in the form of wiring delays, which can be significant and which can
affect the speed at which a design can operate.

It is possible, in principle, to verify a synthesized design by comparing it with the
original RTL design, using techniques such as model-checking. In practice, such tools
are limited to checking interfaces. Static timing analysis can give us information about

Verifying synthesis results 217

delays between two points in a circuit, but cannot distinguish between realizable signal
paths and false paths that are never enabled in reality. Similarly, a synthesis tool aims to
meet timing constraints, but cannot distinguish between true and false paths. Therefore
the only way to verify the timed behaviour of a synthesized system is to simulate it.

One approach to checking a design at two levels of abstraction is to simulate both
versions at the same time and to compare the results. This is usually a bad idea for two
reasons. First, the size of the system to be simulated is at least twice as large as one ver-
sion in isolation, and therefore slower to execute. Second, there will, as noted, be tim-
ing differences. Therefore comparing responses may lead to false warnings.

The testbench design examples described in Chapters 3, 4, 5 and 6 are well suited to
simulating post-synthesis designs. In particular, the idea of checking a response by syn-
chronizing to the clock and then waiting for the signal to stabilize is very appropriate
for checking timing responses.

9.5.1 VITAL and SDF

VITAL (VHDL Initiative Towards ASIC Libraries, 1076.4-2000) is a set of low-level
VHDL primitives for accurate timing simulations of gate-level models and wires.
These primitives can be used to construct models of FPGA or ASIC cells. There are
two advantages to using cell libraries built from VITAL components. First, the standard
models can be accelerated in a simulator. In other words, instead of compiling and sim-
ulating VHDL models, these models can be built into the simulator, giving much better
simulation speed than arbitrary VHDL models. Second, the simulator can associate
Standard Delay Format (SDF) files with the VITAL models. SDF is a standard (IEEE
1497-2001) for describing delays in netlist files. It is not part of VHDL – SDF may be
used with any type of netlist file.

After both RTL synthesis and place and route, the VITAL-compliant gate and wire
models and the SDF file for a design can be extracted. An SDF file typically has mini-
mum, typical and maximum delays for each piece of logic. When the VITAL netlist file
is compiled and loaded into the simulator, one set of values can also be loaded. Thus,
timing simulations can be performed that accurately reflect the behaviour of the real
circuit can be performed.

We will not describe the format of VITAL files here. (There is a brief example of
a VITAL file in Chapter 12.) In general, it is extremely difficult to interpret an auto-
matically generated netlist file. Cell and wire names are usually obscure and all but
the simplest designs are too complex to understand. Moreover, it is very unlikely
that you would ever need to write a VITAL netlist or to build VITAL-compliant
models. It is sufficient to know that the extracted netlist will have an entity descrip-
tion similar to the RTL model that was originally synthesized. Be warned, however,
that the extracted entity description could have signal ports declared in a different
order from your original RTL design, that there are unlikely to be any generics,
and that types such as integer or signed will have been converted to
std_logic_vector. Therefore, your original testbench may need some modifi-
cation. You would normally treat the architecture part of the netlist as a black box
and simply observe output signals.

218 VHDL synthesis

Summary

VHDL was conceived as a description language, but has been widely adopted as a
specification language for automatic hardware synthesis. A number of tools exist for
RTL synthesis, but behavioural synthesis tools are appearing. Because of its origins,
VHDL has some features that are not synthesizable to hardware. The rules for the infer-
ence of latches and flip-flops are well defined. Synthesis constraints may be stated in
terms of VHDL attributes or as separate inputs to the synthesis tool. To get the most out
of an FPGA may require careful writing of the VHDL code. The important concepts
behind behavioural synthesis are scheduling and binding.

Further reading

Despite the definition of a synthesizable subset of VHDL, each synthesis tool accepts a
slightly different subset of VHDL and interprets poorly written VHDL in different
ways. It therefore pays to read the user manuals of tools with some care. The websites
of FPGA manufacturers include VHDL style guides showing what can and cannot be
implemented.

De Micheli covers both high-level behavioural synthesis and low-level optimization
in his book.

Exercises

9.1 Explain, with examples, what is meant by a constraint in RTL synthesis.

9.2 Write a model of an eight-state counter as a VHDL state machine, with a clock
and reset inputs, which outputs a ready flag when the counter is in the initial state.
Use the enum_encoding attribute to specify that the state machine should be
implemented as a Johnson counter.

9.3 The listing below shows a description of a simple state machine in VHDL. If this
state machine were synthesized using an RTL synthesis tool, the resulting hard-
ware would give different simulated behaviour from the original RTL description.
Explain why this should be so.

library ieee;
use ieee.std_logic_1164.all;

entity fsm is
port (clk, a: in std_logic;

y: out std_logic);
end entity fsm;

architecture try1 of fsm is
type statetype is (s0, s1, s2);

Exercises 219

signal currentstate, nextstate : statetype := s0;
begin
seq: process (clock) is
begin

if rising_edge(clock) then
currentstate <= nextstate;

end if;
end process seq;
com: process (currentstate) is
begin

case currentstate is
when s0 =>

if a = '1' then
nextstate <= s1;

else
nextstate <= s2;

end if;
when s1 =>
y <= '1';
nextstate <= s0;

when s2 =>
if a = '1' then
nextstate <= s2;

else
nextstate <= s0;

end if;
end case;

end process com;
end architecture try1;

9.4 Rewrite the VHDL model of Exercise 9.3 such that, when synthesized, the result-
ing hardware consists only of D flip-flops, with asynchronous resets and combina-
tional next state and output logic.

9.5 The listing below shows three VHDL processes. Describe the hardware that
should be generated from each of these process models by a synthesis tool.

architecture abc of abc is
begin
a: process (x, y) is
begin

if y = '1' then
qa <= x;

else
qa <= '0';

end if;
end process a;

220 VHDL synthesis

b: process (x, y) is
begin

if y = '1' then
qb <= x;

end if;
end process b;
c: process (y) is
begin

if y = '1' then
qc <= x;

end if;
end process c;

end architecture abc;

9.6 Explain the terms scheduling and binding in the context of behavioural synthesis.

9.7 The following sequence of operations is part of a cube root solution routine:

a <= x * x;
a <= 3 * a;
b <= y / a;
a <= 2 * x;
a <= a / 3;
c <= a – b;

Convert this sequence to single assignment form and hence construct a data
dependency graph. Assuming that each arithmetic operation takes exactly one
clock cycle, derive an unconstrained as late as possible (ALAP) schedule.

9.8 Derive a constrained schedule for the routine of Exercise 9.7 and hence design a
datapath implementation of this part of the system, assuming that one multiplier,
one divider and one subtracter are available.

Chapter 10

Testing digital systems

10.1 The need for testing 221

10.2 Fault models 222

10.3 Fault-oriented test pattern generation 224

10.4 Fault simulation 231

10.5 Fault simulation in VHDL 235

In the course of manufacture, defects may be introduced into electronic systems.
Systems may also break during use. Defects may not be easy to detect. In this chapter
we will discuss the importance of testing, the types of defect that can occur and how
defects can be detected. We describe procedures for generating tests and how the
effectiveness of tests can be assessed. We conclude with a technique for performing
fault simulation in VHDL.

10.1 The need for testing

No manufacturing process can ever be perfect. Thus, real electronic systems may have
manufacturing defects such as short circuits, missing components or damaged compon-
ents. A manufacturer needs to know whether a system (whether at the level of a board,
an IC or a whole system) has a defect and therefore does not work in some way. While
a manufacturer does not want to sell bad systems, equally he or she would not want to
reject good systems. Therefore the need for testing is economic.

We also need to distinguish between the ideas of verification, in which the design of
a piece of hardware or software is checked, and of testing, in which it is assumed that
the design is correct but that there may be manufacturing faults. This chapter is about
the latter concept, but the inclusion of design for test structures may help in verifying
and debugging a design.

There are, in general, two approaches to testing. We can ask whether the system
works correctly (functional testing) or we can ask whether the system contains a fault

221

222 Testing digital systems

Intermittent faults 1%

Dynamic faults 49%

Static faults 50%

Figure 10.1 Fault probabilities.

(structural testing). These two approaches might at first appear to be equivalent, but in
fact the tactic we adopt can make a profound difference to how we develop tests and
how long those tests take to apply. Functional testing can imply a long and difficult
task because all possible states of a system have to be checked. Structural testing is
often easier, but is dependent upon the exact implementation of a system.

10.2 Fault models

An electronic system might contain a large number of possible defects as a result of the
manufacturing process. For example, the printed circuit board could have breaks in
connections because of bad etching, stress or bad solder joints. Equally there may be
short circuits resulting from the flow of solder. The components on a PCB may be at
fault – so-called ‘population defects’ – caused by having the wrong components,
wrongly inserted components or omitted components. The components themselves
may fail because the operating conditions exceed the component specifications or
because of electromagnetic interference (EMI) or heat.

Similar defects can occur in integrated circuits. Open circuits may arise from elec-
tromigration (movement of metal atoms in electromagnetic fields), current overstress
or corrosion. Silicon or oxide defects, mask misalignment, impurities and gamma radi-
ation can cause short circuits and incorrect transistor operation. ‘Latch-up’, caused by
transient currents, forces the output of a CMOS gate to be stuck at a logic value. In
memory circuits there may be data corruption because of alpha-particles or EMI.

Clearly, to enumerate and check for every possible defect in an electronic system
would be an enormous task. Therefore a distinction is made between physical defects
and electrical faults. The principle of fault modelling is to reduce the number of
effects to be tested by considering how defects manifest themselves. A physical defect
will manifest itself as a logical fault. This fault may be static (e.g. shorts, breaks),
dynamic (components out of specification, timing failures) or intermittent (environ-
mental factors).

The relative probabilities of faults that appear during tests in manufacturing are
shown in Figure 10.1. Dynamic faults may be further divided into timing faults (28%)

Fault models 223

A B C Z

P

Q

R

S

F1 F2 F3 F4

Figure 10.2 PLA fault models.

and driver faults (21%). Timing faults and intermittent faults may be due to poor
design. It is difficult to design test strategies for such faults.

10.2.1 Single-stuck fault model

Static faults are usually modelled by the stuck fault model. Many physical defects can be
modelled as a circuit node being either stuck at 1 (s-a-1) or stuck at 0 (s-a-0). Other fault
models include stuck open and stuck short faults. Programmable logic and memory have
other fault models.

The single-stuck fault model (SSFM) assumes that a fault directly affects only one
node and that the node is stuck at either 0 or 1. These assumptions make test pattern
generation easier, but the validity of the model is questionable. Multiple faults do occur
and multiple faults can theoretically mask each other. On the other hand, the model
appears to be valid most of the time. Hence, almost all test pattern generation relies on
this model. Multiple faults are generally found with test patterns for single faults.

10.2.2 PLA faults

PLAs consist not of gates, but of AND and OR logic planes, connected by fuses
(or antifuses). Thus faults are likely to consist of added or missing fuses, not stuck
faults. For example, Figure 10.2 shows part of a PLA where the output Z is the logical
OR of three intermediate terms, P, Q and R. Each of the intermediate terms is the AND
of the three inputs, A, B and C, or its inverse:

 Q � A.C
 P � B.C
 Z � P � Q � R

224 Testing digital systems

Fault F1 is an additional connection causing Q to change from A.C to A.B.C. On
a Karnaugh map this represents a decrease in the number of 1s circled; therefore this
can be thought of as a shrinkage fault.

Fault F2 is a missing connection, causing R to grow from to .

Fault F3 causes the appearance of term S in Z.

Fault F4 causes the disappearance of term P from Z.

10.3 Fault-oriented test pattern generation

Having decided that defects in a system can be modelled as electrical faults, we then
need to determine whether or not any of these faults exist in a particular instance of
a manufactured circuit. If the circuit were built from discrete transistors or gates,
this task could, in theory, be achieved by monitoring the state of every node of the
circuit. If the system is implemented as a packaged integrated circuit, this approach
is not practical. We can observe only the outputs of the system and we can control
only the inputs of the system. Therefore the task of test pattern generation is that of
determining a set of inputs to indicate unambiguously whether an internal node is
faulty. If we consider only combinational circuits for the moment, the number of
possible input combinations for an n-input circuit is 2n. We could apply all 2n inputs
(in other words, perform an exhaustive functional test), but in general we want to
find the minimum necessary number of input patterns. It is possible that, because of
the circuit structure, certain faults cannot be detected. Therefore it is common to
talk about the testability of a circuit.

Testability can be a somewhat abstract concept. One useful definition of testability
breaks the problem into two parts:

� Controllability – can we control all the nodes to establish whether there is a fault?

� Observability – can we observe and distinguish between the behaviour of a faulty
node and that of a fault-free node?

In order to generate a minimum number of test patterns, a fault-oriented test generation
strategy is adopted. In the pseudocode below, a test is one set of inputs to a (combinational)
circuit. The overall strategy is as follows.

� Prepare a fault list (e.g. all nodes stuck-at-0 and stuck-at-1).

� Repeat:
– write a test
– check fault cover (one test may cover more than one fault)
– (delete covered faults from list)

� until fault cover target is reached.

A.BA.B.C

 S � A.C
 R � A.B.C

Fault-oriented test pattern generation 225

A

B

C

D

E

F

Z

Figure 10.3 Example circuit for test generation.

Test pattern generation (writing a test) may be random or optimized. This will be
discussed in more detail below. One test may cover more than one fault; often faults
are indistinguishable. Again this is discussed later.

If we simply want a pass/fail test, once we have found a test for a fault, we can
remove faults from further consideration. If we want to diagnose a fault (for subsequent
repair) we probably want to find all tests for a fault to deduce where the fault occurs.
The fault cover target may be less than 100%. For large circuits, the time taken to
find all possible tests may be excessive. Moreover, the higher the cover, the greater the
number of tests and hence the cost of applying the test.

10.3.1 Sensitive path algorithm

The circuit of Figure 10.3 has seven nodes, therefore there are 14 stuck faults:

where A/0 means ‘A stuck-at-0’, etc.
To test for A/0, we need to set A to 1 (the fault-free condition – if A were at 0, we

would not be able to distinguish the faulty condition from the fault-free state). The
presence or otherwise of this fault can be detected only by observing node Z. We now
have to determine the states of the other nodes of the circuit that allow the state of A to
be deduced from the state of Z. Thus we must establish a sensitive path from A to Z. If
node B is 0, E is 1 irrespective of the state of A. Therefore, B must be set to a logical 1.
Similarly if F is 1, Z is 1, irrespective of E; hence F must be 0. To force F to 0, either
C or D or both must be 0.

Thus, if the fault A/0 exists, E is 1 and Z is 1. If it does not exist, E is 0 and Z is 0.
We can conclude from this that a test for A/0 is A � 1, B � 1, C � 0, D � 1, for

which the fault-free output is Z � 0. This can be expressed as 1101/0. Other tests for
A/0 are 1110/0 and 1100/0. Therefore, there is more than one test for the fault A/0.

Let us now consider a test for another fault. To test for E/1 requires that F � 0 to
make E visible at Z. Therefore C or D or both must be 0. To make E � 0 requires that
A � B � 1. So a test for E/1 is 1101/0. This is the same test as for A/0. So one test can
cover more than one fault.

A>0, A>1, B>0, B>1, C>0, C>1, D>0, D>1, E>0, E>1, F>0, F>1, Z>0, Z>1

226 Testing digital systems

A

B

C

D

E

F

Z

Figure 10.4 Circuit with redundancy.

The sensitive path algorithm therefore consists of the following steps:

1. Select a fault.

2. Set up the inputs to force the node to a fixed value.

3. Set up the inputs to transmit the node value to an output.

4. Check that the input node values for steps 2 and 3 are consistent.

5. Check for coverage of other faults.

The aim is to find the minimum number of tests that cover all the possible faults,
although 100% fault cover may not be possible.

Fan-out and reconvergence can cause difficulties for this algorithm. Improved algo-
rithms (D-algorithm, PODEM) use similar techniques, but overcome these drawbacks.

10.3.2 Undetectable faults

Consider the function

To avoid hazards, the redundant term may be included, as shown in Figure 10.4:

We will now try to find a test for F/0. This requires that F be set to 1. Hence, A � B
� 1. To transmit the value of F to Z means that D � E � 0 (otherwise Z would be 1,
irrespective of F). For E to be 0, B must be 0 and/or C must be 1. Similarly, for D to be
0, A must be 0 and/or C must be 0. These three conditions are inconsistent, so no test
can be derived for the fault F/0.

Z � A.C � B.C � A.B

Z � A.C � B.C

Fault-oriented test pattern generation 227

A

B

C

E

Z

F

Figure 10.5 Example circuit for D-algorithm.

There are three possible responses to this. Either it must be accepted that the circuit
is not 100% testable; or the redundant gate must be removed, risking a hazard; or the
circuit must be modified to provide a control input for testing purposes, to force D to 0
when A � C � 1.

In general, untestable faults are due to redundancy. Conversely, redundancy in
combinational circuits will mean that those circuits are not fully testable.

10.3.3 The D-algorithm

The simple sensitized path procedure does not handle reconvergent paths adequately.
For example, consider the circuit of Figure 10.5. To find a test for B/1 requires that B be
set to 0. To propagate the state of B to E requires that A is 1, and to propagate E to Z
requires that F is 0. The only way that F can be at 0 is if B and C are both 1, but this is
not the case when B � 0. Apparently, therefore, the sensitive path algorithm cannot find
a test for B/1. In fact, 101/1 is a suitable test, because under fault-free conditions E, F
and Z are all at logical 1; when B/1, all three nodes are at logical 0.

The D-algorithm overcomes this problem by introducing a five-valued algebra:
. D represents a node that is logical 1 under fault-free (normal) condi-

tions and logical 0 under faulty conditions. represents a normal 0, and a faulty 1. X is
an unknown value. The values of D and are used to represent the state of a node
where there is a fault and also the state of any other nodes affected by the fault.

The D-algorithm works in the same way as the sensitive path algorithm, above.
If step 4 fails, the algorithm backtracks. In both steps 2 and 3 it is possible that more
than one combination of inputs generates the required node values. If necessary, all
possible combinations of inputs are examined.

Table 10.1 shows the inputs required to establish a fault at an internal node, to trans-
mit that fault to an output, and to generate a fixed value (to establish or propagate
a fault). Finally, it shows how fault conditions can reconverge. In all cases, the inputs
A and B are interchangeable. The table can be extended to gates with three or more
inputs. The symbol ‘–’ represents a ‘don’t care’ input.

To see how the D-notation can be used, consider the circuit of Figure 10.6. To test for
A/0, node A is first given a value D, which can be propagated via node H or via node G.
To propagate the D to node H, node B must be 1. Node H then has the value .D

D
D

50, 1, D, D, X6

228 Testing digital systems

Ta
b

le
 1

0.
1

Tr
ut

h
ta

bl
es

 fo
r

th
e

D
-a

lg
or

ith
m

. [A
N

D
]

[O
R]

[N
A

N
D

]
[N

O
R]

[N
O

T]

A
B

Z
A

B
Z

A
B

Z
A

B
Z

A
Z

Es
ta

bl
is

h
fa

ul
t-

se
ns

iti
ve

 c
on

di
tio

n
1

1
D

0
0

1
1

0
0

D
1

0
–

1
–

D
0

–
D

1
–

0
D

Tr
an

sm
it

fa
ul

t
D

1
D

D
0

D
D

1
D

0
D

1
0

1
D

0
D

D

G
en

er
at

e
fix

ed
 v

al
ue

1
1

1
1

–
1

1
1

0
1

–
0

1
0

0
–

0
0

0
0

0
–

1
0

0
1

0
1

Re
co

nv
er

ge
nc

e
D

D
D

D
D

D
D

D
D

D

D
D

D
0

D
1

D
1

D
0

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

D

D
D

D

D
D

D
D

D

Fault-oriented test pattern generation 229

A

B

C

E G

F

H

I

J

Z

Figure 10.6 Example circuit for D-algorithm.

Table 10.2 Intersection rules for the D-algorithm.

∩ 0 1 X D

0 0 φ 0 ψ ψ
1 φ 1 1 ψ ψ

X 0 1 X D

D ψ ψ D µ �

ψ ψ � µ

φ inconsistent logic values

ψ inconsistency between logic values and fault values

µ allowed intersection between fault values

� inconsistent fault value

DD

D

D

To propagate this to I requires F to be 0, and to propagate the value to Z means
J must be 1. If F is 0 and J is 1, G must be 1; therefore nodes A and E must both be 1.
At this point we hit an inconsistency as node A has the value D. We have to return to the
last decision made, which in this case was the decision to propagate the value of
A through to H.

The alternative is to propagate the D at A to G. Thus, E must be 1; to propagate
the value to J, F must be 0, and to propagate to Z, I must be 1. Hence H must be 1.
As A is already assigned, B must be 0. This is consistent with F being 0 and C may
be either 1 or 0.

The D-algorithm as presented here requires further refinement before it can be
implemented as an EDA program. In particular the rules for detecting inconsistencies
require more detail. Table 10.2 shows what happens when two fault-free or faulty
values are propagated by different routes to the same node.

The D-algorithm is an algorithm in the true sense of the word – if a solution
exists, the D-algorithm will find it. The search for a solution can, however, be very

D

230 Testing digital systems

time-consuming. If necessary, every possible combination of node values will be
examined. Subsequent test pattern generation algorithms have attempted to speed
up the D-algorithm by improving the decision-making within the algorithm.
Examples include 9-V, which uses a nine-valued algebra, and PODEM.

10.3.4 PODEM

The PODEM algorithm attempts to limit the amount of decision-making, and hence
the time needed for a decision. Initially all the inputs are set to X (unknown).
Arbitrary values are then assigned to the inputs and the implications of these assign-
ments are propagated forwards. If either of the following propositions is true the
assignment is rejected:

1. The node value of the fault under consideration has identical faulty and fault-free
values.

2. There is no signal path from a net with a D or value to a primary output.

We will use PODEM on the circuit of Figure 10.6 to develop a test for H/1. Initially,
all nodes have an X value.

1. Set A � 0. Fails – proposition 1 (H would be 1).

2. Set A � 1. OK.

3. Set B � 0. Fails – proposition 1.

4. Set B � 1. OK. H � .

5. Set C � 0. OK. F � 0, I � .

6. Set E � 0. Fails – proposition 2 (G � 0, J � 0, Z � 0).

7. Set E � 1. OK. G � 1, J � 1, Z � .

Therefore a test for H/1 is 1101/0.

10.3.5 Fault collapsing

In the example of Figure 10.3, the test for A/0 (the input to a NAND gate) was the same
as the test for E/1 (the output of that NAND gate). The same test can be used to detect
B/0. These three faults {A/0, B/0, E/0} are indistinguishable. Similarly, a test for an input
of a NAND gate being stuck at 1 will also detect whether the output is stuck at 0. Two
different tests are needed, however, for A/1 and B/1. Hence these faults are not indistin-
guishable, but an input stuck at 1 is said to dominate the output stuck at 0 (written A/1
E/0). The set of rules for fault indistinguishability and dominance for two-input (A, B)
and single-output (Z) gates and the inverter are shown in Table 10.3.

These rules can be used to reduce a fault list. However, they do not apply to fan-out
nodes, which must be omitted from any simplification procedure. If we apply these rules
to the 14 faults of the circuit of Figure 10.3 we can see that we have two sets of equiva-
lent faults: {A/0, B/0, E/1, F/1, Z/1} and {C/0, D/0, F/0}, and the following fault domi-
nances: A/1 E/0, B/1 E/0, E/0 Z/0, F/0 Z/0, C/1 F/1 and D/1 F/1.SSSSSS

S

D

D

D

D

Fault simulation 231

Table 10.3 Fault collapsing rules.

Type of gate Indistinguishable faults Fault dominance

AND {A/0, B/0, Z/0} A/1, B/1 Z/1

OR {A/1, B/1, Z/1} A/0, B/0 Z/0

NAND {A/0, B/0, Z/1} A/1, B/1 Z/0

NOR {A/1, B/1, Z/0} A/0, B/0 Z/1

NOT {A/0, Z/1}

{A/1, Z/0}

S

S

S

S

A

B

C

D

E

F

G

Figure 10.7 Example circuit for fault simulation.

As we need to test only for one fault in each equivalent set and for the dominant faults,
we need to derive tests for only the following faults: A/1, B/1, C/1, D/1 and C/0. The
fault list is cut from 14 to five faults, simplifying the fault generation task. Note that we
have not lost any information by doing this – we cannot tell by observing node Z
whether a fault in the circuit is one of the five listed or a fault equivalent to or dominated
by one of those faults.

10.4 Fault simulation

One test pattern can be used to find more than one potential fault. For example, suppose
we wish to detect whether node E is stuck at 0 in the circuit of Figure 10.7. E/0 domin-
ates G/0 and is equivalent to A/0 and B/0. In all these cases, G will be 1 normally and 0
in the presence of one of these faults. Hence, the input pattern A � 1, B � 1, C � 0,
D � 0 can be used to detect four possible faults. As there are seven nodes in the circuit,
there are 14 possible stuck-at faults. This pattern covers four faults, and it can be shown
that of the 16 possible input patterns, six are sufficient to detect all the possible stuck-
at faults in the circuit.

It is also generally true that a fault may be covered by more than one pattern. For
instance, E/1 can be found by attempting to force E to 0. This can be achieved by setting
(a) A � 1, B � 0, (b) A � 0, B � 1, or (c) A � 0, B � 0; in all cases, C � 0, D � 0. Thus
there are three possible patterns for detecting E/1. Note too that pattern (a) also covers

232 Testing digital systems

B/1 and G/1, (b) covers A/1 and G/1, while (c) covers G/1. To detect all the faults in the
circuit we need to use both A � 1, B � 0, C � 0, D � 0 and A � 0, B � 1, C � 0, D � 0
as these are the only patterns that detect B/1 and A/1, respectively. We are, however,
applying two patterns that can detect E/1 and G/1. Having found one pattern that detects
these two faults, we can drop the faults from further consideration. In other words, in
applying the second test A � 0, B � 1, C � 0, D � 0, we forget about E/1 and G/1 as we
already have a pattern that detects them. We could equally decide not to drop a fault
when a suitable test pattern is found, in order to try to distinguish between apparently
equivalent faults.

The object of fault simulation is, therefore, to assess the fault coverage of test pat-
terns by determining whether the presence of a fault would cause the outputs of the
circuit to differ from the fault-free outputs, given a particular input pattern.

The simplest approach to fault simulation is simply to modify the circuit to include
each fault, one at a time, and to resimulate the entire circuit. As the single-stuck fault
model assumes that only one fault can occur at a time and that each node of the cir-
cuit can be stuck at 1 and at 0, this approach, known as serial fault simulation, will
require twice as many simulation runs as there are nodes, together with one simula-
tion for the fault-free circuit. This technique is clearly expensive in terms of com-
puter power and time, and three main alternatives have been suggested to make fault
simulation more efficient. We will first show how these three approaches can be
implemented in a simulator. In Section 10.5 we will show how a standard VHDL
simulator can be used to perform fault simulation.

10.4.1 Parallel fault simulation

If we use two-state logic, one bit is sufficient to represent the state of a node.
Therefore one computer word can represent the state of several nodes or the state of
one node under several faulty conditions. For instance, a computer with a 32-bit word
length can use one word to represent the state of a node in the fault-free circuit
together with the state of the node when 31 different faults are simulated. Each bit
corresponds to the circuit with one fault present. The same bit is used in each word to
represent the same version of the circuit. The fault-free circuit must always be simu-
lated, as it is important to know whether a faulty circuit can be distinguished from the
fault-free circuit. If more faults are to be simulated than the number of bits in a word,
the fault simulation must be completed in several passes, each of which includes the
fault-free circuit.

Instead of simulating the circuit by passing Boolean values, words are used, so the
state of each gate is evaluated for each fault modelled by a bit of the input signal words.
Hence the name parallel fault simulation. Because words are passed instead of
Boolean values, the event-scheduling algorithm treats any change in a word value as an
event. Thus gates may be evaluated for certain versions of the circuit even if the input
values for that version remain unchanged.

The circuit of Figure 10.7 has seven nodes, hence 14 possible stuck-at faults
(Table 10.4). Thus 15 bits are needed for a parallel fault simulation. The word values of
each node for the input pattern A � 1, B � 1, C � 0, D � 0 are shown below. As can

Fault simulation 233

Table 10.4 Parallel fault simulation of circuit of Figure 10.7.

Bit A B C D E F G

0 – 1 1 0 0 1 0 1

1 A/0 0 1 0 0 0 0 0

2 A/1 1 1 0 0 1 0 1

3 B/0 1 0 0 0 0 0 0

4 B/1 1 1 0 0 1 0 1

5 C/0 1 1 0 0 1 0 1

6 C/1 1 1 1 0 1 1 1

7 D/0 1 1 0 0 1 0 1

8 D/1 1 1 0 1 1 1 1

9 E/0 1 1 0 0 0 0 0

10 E/1 1 1 0 0 1 0 1

11 F/0 1 1 0 0 1 0 1

12 F/1 1 1 0 0 1 1 1

13 G/0 1 1 0 0 1 0 0

14 G/1 1 1 0 0 1 0 1

be seen, this pattern, as noted earlier, normally sets G to 1, but for faults A/0, B/0, E/0
and G/0, the output is 0, and therefore these faults are detected by that pattern.

There are several obvious disadvantages to parallel fault simulation. First, the
number of faults that can be simulated in parallel is limited to the number of bits in
a word. If more than two states are used (in other words if a state is encoded using
two or more bits), the possible number of parallel faults is further reduced. As has
been noted, every version of a gate is scheduled and re-evaluated whenever one of
the versions of an input changes. This can be very inefficient, as a significant num-
ber of null events are likely to be processed. Moreover, if the purpose of the fault
simulation is simply to detect whether any of the given test patterns will detect any
of the faults, it is desirable to drop a fault from further consideration once it has
proved possible to distinguish the behaviour caused by that fault from the normal,
fault-free behaviour. Faults cannot be dropped in parallel fault simulation, or
perhaps more accurately, the dropping of a fault is unlikely to improve the effi-
ciency of the simulation, as the bits corresponding to that fault cannot be used for
any other purpose.

10.4.2 Concurrent fault simulation

If only the differences between the fault-free simulation and the faulty simulations are
maintained, constraints such as word size need not apply. On the other hand, the evalua-
tion of gates would be made more complex because these lists of differences must be
manipulated. Concurrent fault simulation maintains fault lists in the form of those gates
that have different inputs and outputs in the faulty circuit from the equivalent gates in the

234 Testing digital systems

G10 1
1

F2

G9 1
1

F1

G8 0
E4

0

G7 0
E3

0

G6 G /1
1
0

G5 1
1

F/1

G4 1
E/1

0

G3 G /0
1
0

G2 1
1

F /0

G1 0
E /0

0

G0 G=1

F=0

E=1

F4 0
0

D/0

F3 0
C/0

0

F2 1
0

D/1

F1 1
C/1

0

F0
C=0
D=0

01
B /0 E4

0A/0
1 E3

11
B /1 E2

1A/1
1 E1

A=1
B=1 E0

Figure 10.8 Concurrent fault simulation of the circuit of Figure 10.7.

fault-free circuit. The manipulation of fault lists thus consists of evaluating input signals,
in exactly the same way as is done for the fault-free circuit, and checking to see whether
the output differs from the fault-free circuit.

Figure 10.8 shows the circuit with the fault lists included for the input A � 1, B � 1,
C � 0, D � 0. All the stuck faults for all four inputs are listed, together with the stuck
faults for the internal nodes, E and F, and the output node, G. The stuck faults for E and
F are listed only once. To distinguish the faulty versions of the circuit from the fault-
free version, the gates are labelled according to their output nodes, together with a
number. Gate 0 is always the fault-free version. A gate in the fault list is passed to a gate
connected to the output only if the faulty value is different from the fault-free value.
Thus E3, E4, F1 and F2 appear as inputs to gates in the fault list for G, causing faults
G7, G8, G9 and G10, respectively. As with parallel fault simulation, it can be seen that
for this example, G1, G3, G7 and G8, representing E/0, G/0, A/0 and B/0, respectively,
have different outputs from G0 and are therefore detected faults.

To see why concurrent fault simulation is more efficient than parallel fault simu-
lation, suppose that A now changes from 1 to 0. This would cause E0, E2 and E4 to

Fault simulation in VHDL 235

be evaluated. E1 and E3 would not be evaluated because they both model stuck
faults on A. Now, E0 is at 0, as are E2, E3 and E4; E1 is at 1. The OR gate, F, and its
fault list would not be re-evaluated as neither C nor D changes. As faults E3 and E4
are now the same as E0, the corresponding faults in G (G7 and G8) are removed
from the fault list and a fault corresponding to E1, say G11, is now inserted. Now
gate G is evaluated, as E has changed, and faults G2, G3, G5, G6, G9, G10 and G11
are evaluated.

It can be seen from Figure 10.8 that, even with this small number of gates, the fault
list for G has 10 elements. In practice, the fault lists can be significantly simplified with
a little pre-processing of the circuit. It has already been noted that one test can cover a
number of faults, and it is possible, in many cases, to deduce that some faults are indis-
tinguishable and that tests for certain faults will always cover certain other faults. The
circuit of Figure 10.8 has seven nodes and 14 stuck faults, but it can be shown that tests
for only five faults (A/0, C/0, D/0, A/1 and B/1) are needed and that any other faults are
covered by those tests. If this pre-processing is applied, faults E4, F1, F2, G1, G2, G3,
G4, G5 and G6 can be eliminated and G8, G9 and G10 are in turn removed, reducing
the fault list for G to one element, G7.

Concurrent fault simulation allows efficient selective trace and event scheduling to
be used, together with the full range of state and delay models. The major disadvantage
is that a significant amount of list processing must be done to propagate faults through
the circuit.

10.5 Fault simulation in VHDL

Fault modelling and simulation require the perturbation of a fault-free model of a
circuit. If a simulator has models of gates built into it, this perturbation can be done
internally. Verilog (see Appendix B) has basic gates defined as part of the language, so
a Verilog-based fault simulator can be efficiently implemented. VHDL, on the other
hand, does not have gate models built in as fundamental elements. Simulators based
upon VITAL (Chapter 12) can assume the existence of elementary gates. This has
led to the situation where digital systems may be specified in VHDL, but faults simu-
lated after synthesis using Verilog netlists!

Several techniques have been suggested for performing fault simulations in
VHDL, by perturbing a circuit model explicitly and repeating the simulation. This
can be done by including extra control wires or by including generic parameters to
affect the behaviour of gates. While such perturbed netlists can be generated auto-
matically, by writing a suitable testbench or by writing a shell program, such a tech-
nique has three major drawbacks: the netlist generated for fault simulation is not the
same as that generated for fault-free simulation; the faults have to be activated by
including signals or variables within the netlist; and there is no certainty that every
fault will be modelled.

An alternative approach to fault simulation considered the injection of faults on
wires connecting design units by changing the resolution functions of signals. This
again requires the explicit listing of particular faults.

236 Testing digital systems

10.5.1 Fault injection

A two-input NAND gate has six possible stuck faults, but only three distinct faults need
to be simulated (A/1, B/1, Z/1). Together with the fault-free behaviour, we therefore
have four modes of behaviour. Thus a two-input NAND gate, including faulty behav-
iour, might be modelled as shown below, where the control signals, C0, C1 and C2,
determine the mode of behaviour.

entity nand2 is
port (Z : out BIT; A, B : in BIT; C0, C1, C2 : in BIT);

end entity nand2;

architecture fault_model of nand2 is
begin
n2: process (A, B, C0, C1, C2)
begin

if (C0 = '1') then -- Z/1
Z <= '1';

elsif (C1 = '1') then -- A/1
Z <= not B;

elsif (C2 = '1') then -- B/1
Z <= not A;

else -- fault-free
Z <= A nand B;

end if;
end process n2;

end architecture fault_model;

The control signals must be either additional input ports, as shown, or generic
parameters. Thus these control signals appear in any netlist description that uses this
gate model. Every control signal for every gate in a netlist must be explicitly and
uniquely declared in that netlist, as below.

entity netlist is
port (z : out BIT; x, y : in BIT;

c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10,
c11 : in BIT);

end entity netlist;

architecture example of netlist is
signal i0, i1, i2 : BIT;

begin
g1 : entity WORK.nand2 port map (z, i0, i1, c0, c1, c2);
g2 : entity WORK.nand2 port map (i0, y, i2, c3, c4, c5);
g3 : entity WORK.nand2 port map (i1, x, i2, c6, c7, c8);
g4 : entity WORK.nand2 port map (i2, x, y, c9, c10, c11);

end architecture example;

Fault simulation in VHDL 237

The testbench for this circuit would be complex because the control signals would have
to be switched while a set of input vectors is applied.

The 1993 and 2002 VHDL standards provide an additional means of passing
values to models, other than generics and ports, namely shared variables.
Thus C0 and C1 in the NAND2 model could be shared variables whose values would
be defined globally. Hence the control signals could be omitted, resulting in a netlist
suitable for fault-free and fault simulation. C0 and C1 would, however, have to be
unique identifiers, thus requiring every instance of a gate to be unique. This is obvi-
ously impractical.

10.5.2 Transparent fault injection

The solution shown here is to use a linked list in which each element of the list corres-
ponds to one fault in a gate. The 2002 VHDL standard revised the way in which shared
variables can be used. At the time of writing, however, there are no commercial tools
available that support this standard. Here, we include a package definition that declares
the necessary functions for fault simulation, compliant with the 2002 standard.
Appendix C has the full package body. In addition, an equivalent package that complies
with the 1993 standard is also included in Appendix C.

package fault_inject is
type fault_list is protected
impure function new_fault(name : STRING)
return NATURAL;

procedure first_fault;
impure function end_fault_list return BOOLEAN;
procedure inc_fault_list;
impure function simulating(fault_no : NATURAL)
return BOOLEAN;

impure function detected return BOOLEAN;
impure function fault_name return STRING;
procedure set_simulate;
procedure clr_simulate;
procedure set_detected;
end protected fault_list;

shared variable fault_sim : fault_list;
end package fault_inject;

library IEEE;
use IEEE.std_logic_1164.all;
use WORK.fault_inject.all;

entity nand2 is
port (z : out std_logic; a, b : in std_logic);

end entity nand2;

238 Testing digital systems

architecture inject_fault of nand2 is
begin
nn : process (a, b) is

variable z_sa1, a_sa1, b_sa1 : NATURAL := 0;
begin

if z_sa1 = 0 then
z_sa1 := fault_sim.new_fault(

inject_fault'INSTANCE_NAME & "z_sa1");
a_sa1 := fault_sim.new_fault(

inject_fault'INSTANCE_NAME & "a_sa1");
b_sa1 := fault_sim.new_fault(

inject_fault'INSTANCE_NAME & "b_sa1");
end if;
if fault_sim.simulating(z_sa1) then -- z/1
z <= '1';

elsif fault_sim.simulating(a_sa1) then -- a/1
z <= not b;

elsif fault_sim.simulating(b_sa1) then -- b/1
z <= not a;

else -- fault-free
z <= a nand b;

end if;
end process nn;

end architecture inject_fault;

Package fault_inject contains the definition of a protected type. In this pro-
tected type, a number of functions are declared for manipulating the data structure.

The package body contains the body of the protected type. A record of type
fault_model is created for each fault, containing the name of the fault, a
Boolean flag indicating whether that fault is being simulated, a second Boolean flag
to indicate whether any test has detected that potential fault, and a pointer to the
next fault. Each fault has an index. The first fault in the list is indexed by the
shared variable.

The code for a two-input NAND gate is shown above. Within each gate model, its
fault records are created at the beginning of a simulation run. From Chapter 8, it should
be recalled that at initialization, every process is executed once until it suspends.
A local variable indexes each fault (z_sa1, a_sa1, b_sa1), so that it can be identified
during a simulation. If any of these local variables is 0, the model has not yet been exe-
cuted, so the data structure is created. Note that the order of evaluation of gate models
is indeterminate, as the order of execution of processes is indeterminate, but this does
not matter here.

The method fault_sim.new_fault creates the data structure for each fault.
The name of the fault is generated using the INSTANCE_NAME attribute, appending a
string to represent the fault. The INSTANCE_NAME attribute gives the entire path
name through the hierarchy of an architecture or entity, allowing each fault to be
uniquely identified. It should be noted that the entity declaration of this gate model

Fault simulation in VHDL 239

A Z/1Sim

A/1Sim

B/1Sim
B

A Z/1Sim

A/1Sim

B/1Sim
B

A Z/1Sim

A/1Sim

B/1Sim
B

Z

Z

Z

First_fault

Figure 10.9 Fault list constructed in VHDL model.

contains no reference to the fault models contained in the gate, thus such a gate model
can be used in any netlist with no modification to that netlist, as shown in the following
model of a full adder. Figure 10.9 shows how the fault list might be constructed around
a structural description.

The gate models with fault injection can be used in a standard netlist. The full adder,
below, uses inverters and two-, three- and four-input NAND gates. The models of the
inverter and the three- and four-input NAND gates are written in exactly the same way
as that of the two-input NAND gate above. Note that there is no reference to the fault
injection package, nor to the particular gate models in the full adder model.

library IEEE;
use IEEE.std_logic_1164.all;

entity FullAdder is
port (x, y, Cin : in std_logic;

Sum, Cout: out std_logic);
end entity FullAdder;

architecture FA of FullAdder is
signal c0, c1, c2, i0, i1, i2, s0, s1, s2, s3 : std_logic;

begin
g1 : entity WORK.nand3 port map (Cout, c0, c1, c2);
g2 : entity WORK.nand2 port map (c0, x, y);
g3 : entity WORK.nand2 port map (c1, x, Cin);
g4 : entity WORK.nand2 port map (c2, y, Cin);
g5 : entity WORK.nand4 port map (Sum, s0, s1, s2, s3);
g6 : entity WORK.inv port map (i0, x);
g7 : entity WORK.inv port map (i1, y);
g8 : entity WORK.inv port map (i2, Cin);
g9 : entity WORK.nand3 port map (s0, x, i1, i2);
g10 : entity WORK.nand3 port map (s1, i0, y, i2);

240 Testing digital systems

g11 : entity WORK.nand3 port map (s2, i0, i1, Cin);
g12 : entity WORK.nand3 port map (s3, x, y, Cin);

end architecture FA;

10.5.3 VHDL fault simulation

The other part of the procedure is the fault simulation. In this example, we will set
up a fault simulation for a four-bit ripple adder, as shown in Section 4.5.2. The code
below shows the structure of part of a testbench. The fault-free simulation is per-
formed first and the fault-free responses obtained. The fault simulations are then
performed in sequence. A pointer is moved along the list of faults. As it points to
each fault record, a flag in each record is set true to activate that fault and the test
stimuli are applied. The responses can then be compared with the fault-free
responses. Although the simulations are performed sequentially and hence the
absolute time increases, it is easy to calculate the relative time at which each vector
is applied.

sim : process is
begin
-- FAULT-FREE SIMULATION
-- apply test vectors
-- apply Xs
-- SEQUENTIAL FAULT SIMULATION
fault_sim.first_fault;
while not fault_sim.end_fault_list loop
fault_sim.set_simulate;
-- apply test vectors
-- compare with fault free case and print differences
fault_sim.clr_simulate;
-- apply Xs
-- move to next fault:
fault_sim.inc_fault_list;

end loop;
end process sim;

The testbench, below, takes the test vectors from a file (vectors.txt) and gener-
ates a file of correct responses, and a summary file, showing which vectors detect
which faults. The vectors file is of the form:

0000 0000 0
0000 0001 0
0101 0101 0
1111 1111 0
1111 1111 1

Note that after the final vector is applied, all the inputs are set to the unknown value
(‘X’) in order to force a re-evaluation of all gates when the next fault is activated. If this

Fault simulation in VHDL 241

were not done, certain faults might be missed, because the state of nodes could be
unchanged between the last vector for one fault and the first vector for the next fault.
Hence signals in the sensitivity lists would be unaffected, even though the flag in the
fault list had been moved. Therefore the gates would otherwise not be re-evaluated.

library IEEE;
use IEEE.std_logic_1164.all, STD.textio.all,

WORK.fault_inject.all;

entity tb is
end entity tb;

architecture fileio of tb is
file vectors : text;
file results : text;
file faults : text;
constant N : NATURAL := 4;
signal X, Y, Z: std_logic_vector(N�1 downto 0)

:= (others => '0');
signal ci, co: std_logic := '0';

begin
a1: entity WORK.NBitAdder(StructIterative)

port map (X, Y, ci, Z, co);
p1: process is

variable ILine, OLine, fname : Line;
variable ch : CHARACTER;
variable fc, fd : NATURAL := 0;
variable rel_time, abs_time : TIME;
variable X_in, Y_in, Z_in: BIT_VECTOR(N�1 downto 0);
variable ci_in, co_in: BIT;

begin
file_open(vectors, "vectors.txt", READ_MODE);
file_open(results, "results.txt", WRITE_MODE);
while not endfile(vectors) loop
readline(vectors, ILine);
read(ILine, X_in);
read(ILine, ch);
read(ILine, Y_in);
read(ILine, ch);
read(ILine, ci_in);
X <= to_stdlogicvector(X_in);
Y <= to_stdlogicvector(Y_in);
ci <= to_stdulogic(ci_in);
wait for 100 NS;
write(OLine, X_in, right, 5);
write(OLine, Y_in, right, 5);

242 Testing digital systems

write(OLine, ci_in, right, 2);
write(OLine, to_bitvector(Z), right, 5);
write(OLine, to_bit(co), right, 2);
writeline(results, OLine);

end loop;
file_close(vectors);
file_close(results);

-- Force circuit into unknown state
X <= (others => 'X');
Y <= (others => 'X');
ci <= 'X';
wait for 100 NS;
abs_time := NOW;
fault_sim.first_fault;
file_open(faults, "faults.txt", WRITE_MODE);
while not fault_sim.end_fault_list loop
fc := fc � 1;
fault_sim.set_simulate;
file_open(results, "results.txt", READ_MODE);
while not endfile(results) loop

readline(results, ILine);
read(ILine, X_in);
read(ILine, ch);
read(ILine, Y_in);
read(ILine, ch);
read(ILine, ci_in);
read(Iline, ch);
read(Iline, Z_in);
read(Iline, ch);
read(Iline, co_in);
X <= to_stdlogicvector(X_in);
Y <= to_stdlogicvector(Y_in);
ci <= to_stdulogic(ci_in);
wait for 100 NS;
if (to_stdlogicvector(Z_in) /= Z or

to_stdulogic(co_in) /= co) then -- fault detected
fault_sim.set_detected;
fname := new STRING'(fault_sim.fault_name);
writeline(faults, fname);
write(OLine, STRING'("Fault #"), left, 0);
write(OLine, fc, left, 5);
write(OLine, STRING'("Detected by input:"),left,0);
write(OLine, X_in, right, 5);
write(OLine, Y_in, right, 5);
write(OLine, ci_in, right, 2);

Fault simulation in VHDL 243

write(OLine, STRING'(" output: "), left, 0);
write(OLine, to_bitvector(Z), right, 5);
write(OLine, to_bit(co), right, 2);
write(OLine, STRING(" expected: "), left, 0);
write(OLine, Z_in, right, 5);
write(OLine, co_in, right, 2);
write(OLine, STRING'(" at "), left, 0);
rel_time := NOW � fc*abs_time;
write(OLine, rel_time, right, 9);
write(OLine, NOW, right, 9);
writeline(faults, OLine);

end if;
end loop;
fault_sim.clr_simulate;

-- Force circuit into unknown state
X <= (others => 'X');
Y <= (others => 'X');
ci <= 'X';
wait for 100 NS;
fault_sim.inc_fault_list;
file_close(results);

end loop;
-- summarize results

fault_sim.first_fault;
while not fault_sim.end_fault_list loop
if fault_sim.detected then
fd := fd � 1;

end if;
fault_sim.inc_fault_list;

end loop;
write(OLine, STRING'(" Fault Cover:"), left, 0);
writeline(faults, OLine);
write(OLine, fc, right, 8);
write(OLine, STRING'(" faults, "), left, 0);
write(OLine, fd, right, 8);
write(OLine, STRING'(" detected "), left, 0);
writeline(faults, OLine);
wait; -- halt

end process p1;
end architecture fileio;

244 Testing digital systems

This generates an output file of the form:

:tb(fileio):a1@nbitadder(structiterative):g1(0):lt:f0@
fulladder(fa):g1@nand_n(inject_fault):z_sa1
Fault #4 Detected by input: 0000 0000 0 output: 0010 0
expected: 0000 0 at 100 ns 2100 ns
:tb(fileio):a1@nbitadder(structiterative):g1(0):lt:f0@
fulladder(fa):g1@nand_n(inject_fault):z_sa1
Fault #4 Detected by input: 0000 0001 0 output: 0011 0
expected: 0001 0 at 200 ns 2200 ns
:tb(fileio):a1@nbitadder(structiterative):g1(0):lt:f0@
fulladder(fa):g2@nand_n(inject_fault):a(1)_sa1
Fault #6 Detected by input: 0000 0001 0 output: 0011 0
expected: 0001 0 at 200 ns 3200 ns
:tb(fileio):a1@nbitadder(structiterative):g1(0):lt:f0@
fulladder(fa):g2@nand_n(inject_fault):z_sa1
Fault #7 Detected by input: 0101 0101 0 output: 1000 0
expected: 1010 0 at 300 ns 3800 ns
Fault Cover:
160 faults, 60 detected

In the testbench, notice that all the file-handling functions are used. The vectors are
read as bit_vectors and converted to std_logic_vectors. A package,
std_logic_textio, can be found on the Internet for reading and writing
std_logic types. It does not offer any particular advantage here. Read must have a
variable as its output parameter, so a signal assignment must be performed.

When results are written out to the file faults.txt, each line is first written to the
line buffer OLine. The writeline procedure then writes out the line buffer and
deallocates the buffer. The line

fname := new STRING'(fault_sim.fault_name);

copies the name of each fault to a new string. This copy is then written out and deallo-
cated. If this is not done, i.e. if we wrote

writeline(faults, fault_sim.fault_name);

the name in the data structure would be deallocated.
Finally, the forms of the loop statement should be noted. The number of vectors in the

input file and the number of faults can be varied without modifying the testbench code.

Summary

The principles of digital testing have been introduced. Defects are characterized as
logical faults. Test pattern generation algorithms have been described. Parallel and
concurrent fault simulation algorithms have also been discussed.

A VHDL implementation of a sequential fault simulator has been described. This
includes a number of advanced VHDL features: pointers, string handling, and file input
and output.

Exercises 245

&A

B &

E

H

&C

D

&

&

I

G

≥1

J

F

Figure 10.10 Circuit for Exercises 10.3 and 10.4.

Further reading

Abramovici, Breuer and Friedman is a very good introduction to fault modelling, test
generation and fault simulation. Also recommended are the books by Wilkins and
Miczo. New fault models and algorithms are still being developed, with particular
emphasis on delay effects and on sequential systems. IEEE Design and Test of
Computers provides a quarterly update on developments.

Exercises

10.1 Explain the difference between structural and functional testing.

10.2 What assumptions are made by the single-stuck fault model?

10.3 Write down the stuck-at-fault list for the circuit shown in Figure 10.10. Derive
tests for A/1 and A/0 and determine which other faults these tests cover. Show
that it is not possible to derive a test for G/0.

10.4 Suggest a test pattern to determine whether nodes H and I in Figure 10.10 are
bridged together. You should assume that a bridging fault may be modelled as a
wired-OR; i.e. that if either wire is at logic 1, the other wire is also pulled to a
logic 1.

10.5 A positive edge-triggered D-type flip-flop is provided with an active-low
asynchronous clear input, and has only its Q output available. By considering
the functional behaviour of the flip-flop, develop a test sequence for this
device for all single-stuck faults on inputs and outputs.

10.6 Describe the four types of crosspoint fault that can occur in a PLA consisting of
an AND plane and an OR plane.

246 Testing digital systems

&

&

&

&

1

≥1

≥1
&

A

P

Q

Q

P

Node X

P+

Q+

Z

Figure 10.12 Circuit for Exercise 10.9.

X

CLOCK

Q D
Q

Z

Q D

Figure 10.11 Circuit for Exercise 10.8.

10.7 The AND and OR planes of a PLA can be thought of as two NAND planes.
What is the minimal set of test patterns required to test an n-input NAND gate?

10.8 Write down a stuck-fault list for the circuit in Figure 10.11. How, in principle,
would a test sequence for this circuit be constructed?

10.9 The circuit shown in Figure 10.12 is an implementation of a state machine with
one input and one output. Derive the next state and output equations and hence
show that a parasitic state machine exists, in addition to the intended state
machine. Assuming that the initial state of the flip-flops is P � Q � 0, suggest

Exercises 247

A

B

C

D

E

F

G

Figure 10.13 Circuit for Exercise 10.11.

a sequence of input values at A that will cause the output, Z, to have the values
0, 1, 1, 0 on successive clock cycles. Hence, show that this sequence of input
values can be used to test whether node X is stuck at 0.

10.10 Explain the difference between parallel and concurrent fault simulation.

10.11 In the circuit of Figure 10.13, A � 1, B � 1, C � 1 and D � 0. Derive the
fault lists as they would be included in a concurrent fault simulator, assuming
that each of the nodes can be stuck at 1 or stuck at 0. Show that the fault lists
may be significantly simplified if redundant and dominated faults are
removed in a pre-processing step.

248

Chapter 11

Design for testability

11.1 Ad hoc testability improvements 249

11.2 Structured design for test 249

11.3 Built-in self-test 252

11.4 Boundary scan (IEEE 1149.1) 260

As noted in the previous chapter, testability for a circuit such as that shown in Figure
11.1 can be expressed in terms of:

� Controllability – the ability to control the logic value of an internal node from a
primary input.

� Observability – the ability to observe the logic value of an internal node at a primary
output.

The previous chapter discussed methods for finding test patterns for combinational
circuits. The testing of sequential circuits is much more difficult because the current
state of the circuit as well as its inputs and outputs must be taken into account.
Although in many cases it is possible, at least in theory, to derive tests for large, com-
plex, sequential circuits, in practice it is often easier to modify the design to increase its
testability. In other words, extra inputs and outputs are included to increase the con-
trollability and observability of internal nodes.

Testability can be enhanced by ad hoc design guidelines or by a structured design
methodology. In this chapter we shall discuss general ad hoc principles for increasing
testability, then look at a structured design technique – the scan path. In the third
section, we will see how some of the test equipment itself can be included on an inte-
grated circuit to provide self-test capabilities. Finally, the scan path principle can be used
for internal testing, but it can also be used to test the interconnect between integrated
circuits – boundary scan.

Structured design for test 249

Node of interest

PI PO

Figure 11.1 Testability of a node.

11.1 Ad hoc testability improvements

If one of the objectives of a design is to enhance the testability of that design, there are
a number of styles of design that should be avoided, including:

� Redundant logic. As seen in the previous chapter, redundant combinational logic
will result in potentially undetectable faults. This means that the design is not fully
testable and also that time may be spent attempting to generate tests for these
undetectable faults.

� Asynchronous sequential systems (and in particular unstructured asynchronous sys-
tems) are difficult to synchronize with a tester. The operation of a synchronous
system can be halted with the clock. An asynchronous system is, generally, uncon-
trollable. If asynchronous design is absolutely necessary, confine it to independent
blocks.

� Monostables are sometimes used for generating delays. They are extremely difficult
to control, and again should be avoided.

On the other hand, there are a number of modifications that could be made to circuits
to enhance testability. The single most important of these is the inclusion of some form
of initialization. A test sequence for a sequential circuit must start from a known state.
Therefore initialization must be provided for all sequential elements, as shown in
Figure 11.2. Any defined state will do – not necessarily all zeros. Multiple initial states
can be useful.

The cost of enhancing testability includes that of extra I/O pins (including interfaces,
etc.), extra components (MUXs), extra wiring, and the degradation of performance
because of extra gates in signal paths; in general, there are more things to go wrong.
Against this must be set the benefit that the circuit will be easier to test and hence the
manufacturer and consumer can be much more confident that working devices are
being sold.

11.2 Structured design for test

The techniques described in the previous section are all enhancements that can be made
to a circuit after it has been designed. A structured design for test method should
consider the testability problem from the beginning. Let us restate the problem to see
how it can be tackled in a structured manner.

250 Design for testability

Master reset

Normal system input

Synchronous – reset at next clock

Clock

1D

C1

Asynchronous – using set/clear pins

1D

R

Master reset

Figure 11.2 Resets add testability.

Testing combinational circuits is relatively easy provided there is no redundancy in
the circuit. The number of test vectors is (much) less than . Testing sequen-
tial circuits is difficult because such circuits have states. A test may require a long
sequence of inputs to reach a particular state. Some faults may be untestable, because
certain states cannot be reached. Synchronous sequential systems, however, can be
thought of as combinational logic (next state and output logic) and sequential logic
(registers). Therefore the key to structured design for test is to separate these two
elements.

A synchronous sequential system does not, however, provide direct control of all inputs
to the combinational logic, does not allow direct observation of all outputs from the com-
binational logic, and does not allow direct control or observation of the state variables.

The scan-in, scan-out (SISO) principle overcomes these problems by making the
state variables directly accessible by connecting all the state registers as a shift register,
for test purposes, as shown in Figure 11.3. This shift register has a mode control
input, M. In normal, operational mode, M is set to 0. In scan mode, M is set to 1 and the
flip-flops form a shift register, the input to the shift register being the scan data in (SDI)
pin and the output being the scan data out (SDO) pin.

If the combinational logic has no redundancies, a set of test patterns can be gener-
ated for it, as if it were isolated from the state registers. The test patterns and the
expected responses then have to be sorted because this test data is applied through
the primary inputs and through the state registers using the scan path. Similarly, the
outputs of the combinational logic are observed through the primary outputs and
using the scan path.

The scan path is used to test a sequential circuit using the following procedure.

1. Set M � 1 and test the flip-flops as a shift register. If a sequence of 1s and 0s is fed into
SDI, we would expect the same sequence to emerge from SDO delayed by the num-
ber of clock cycles equal to the length of the shift register (n). A useful test sequence
would be 00110 . . . which tests all transitions and whether the flip-flops are stable.

21no. of inputs2

Structured design for test 251

Primary inputs
Combinational

logic

Primary outputs

SDO

MUX
0

1

MUX
0

1

MUX
0

1

M
SDI

Figure 11.3 SISO principle.

2. Test the combinational logic.

(a) Set M � 1 to set the state of the flip-flops after n clock cycles by shifting a pattern
in through SDI.

(b) Set M � 0. Set up the primary inputs. Collect the values of the primary outputs.
Apply one clock cycle to load the state outputs into the flip-flops.

(c) Set M � 1 to shift the flip-flop contents to SDO after n � 1 clock cycles.

Note that step 2(a) for the next test can be done simultaneously with step 2(c) for the
present test. In other words, while the contents of the shift register are being shifted out,
new data can be shifted in behind it.

The benefit of using a scan path is that it provides an easy means of making
a sequential circuit testable. If there is no redundancy in the combinational logic, the
circuit is fully testable. The problem of test pattern generation is reduced to generating
tests only for the combinational logic. This can mean that the time to test one device
can be greater than would be the case if specific sequential tests had been generated.

The costs of SISO include extra hardware: at least one extra pin for M; SDI and SDO
can be shared with other system functions by using multiplexers. An extra multiplexer

252 Design for testability

Test vectors

Circuit under test

Check responses Go/No go
(perhaps diagnostics)

Figure 11.4 BIST principle.

is needed for each flip-flop and extra wiring is needed for the scan path. Hence this can
lead to performance degradation as the delay through the next state logic is increased.
To minimize the wiring, it makes sense to decide the order of registers in the scan path
after placement of devices on an ASIC or FPGA has been completed. The order of
registers is unimportant provided it is known to the tester.

SISO has now become relatively well accepted as a design methodology. Most VLSI
circuits include some form of scan path, although this is not usually documented.

A number of variations to SISO have been proposed including multiple scan paths – put
flip-flops in more than one scan path to shorten the length of each path and to shorten the
test time – and partial scan paths, whereby some flip-flops are excluded from the scan path.

11.3 Built-in self-test

As with all testing matters, the motivation for built-in self-test (BIST or BIT for built-
in test) is economic. The inclusion of structures on an integrated circuit or board that
not only enhance the testability but also perform some of the testing simplifies the
test equipment and hence reduces the cost of that equipment. BIST can also simplify
test pattern generation because the test vectors are generated internally, and it allows
field testing to be performed for perhaps years after manufacture. Overall, therefore,
BIST should increase user confidence.

The principle of BIST is shown in Figure 11.4. The test vector generation and check-
ing are built on the same integrated circuit as the circuit under test. Thus there are two
obvious problems: how to generate the test vectors and how to check the responses. It
would, in principle, be possible to store pre-generated vectors in ROM. There could,
however, be a very large number of vectors. Similarly, it would be possible to have
a look-up table of responses.

Built-in self-test 253

Figure 11.5 LFSR.

n -bit shift register

n -bit shift register

Figure 11.6 SISR.

DQ DQ DQ

Outputs from circuit under test

Figure 11.7 MISR.

If an exhaustive test were conducted, all possible test vectors could be generated
using a binary counter. This could require a substantial amount of extra combinational
logic. A simpler solution is to use a linear feedback shift register (LFSR), introduced in
Chapter 6. An LFSR is a pseudo-random number generator that generates all possible
states (except the all 0s state) but requires less hardware than a binary counter, as
shown in Figure 11.5.

A similar structure can be used instead of a look-up table to collect the responses. The
single-input signature register is shown in Figure 11.6. This is an LFSR with a single
data input. The register holds the residue from a modulo-2 division. In other words, it
compresses the stream of input data to produce a signature that may be compared, after
a certain number of cycles, with a known good signature.

Another variant is the multiple input signature register (MISR), shown in Figure 11.7.
Again, this is a modified LFSR but with more than one data input. Thus, a number of
output vectors can be gathered and compressed. After a number of clock cycles the

254 Design for testability

signature in the register should be unique. If the circuit contains a fault, the register
should contain an incorrect signature, which can easily be checked.

This approach will obviously fail if the MISR is sensitive to errors. The probability
that a faulty circuit generates a correct signature tends to for an n-stage register and
long test sequences.

11.3.1 Example

For example, consider a circuit consisting of three parts: a three-stage LFSR, a three-
stage MISR and the circuit under test, with the following functions:

The structure of the circuit is shown in Figure 11.8.
In order to see what the correct signature should be, we can perform a simulation.

A VHDL model of an LFSR was presented in Chapter 6. This model can easily be
adapted to implement an MISR (see the exercises at the end of this chapter). The circuit
under test can be described in VHDL by the following model.

library IEEE;
use IEEE.std_logic_1164.all;

entity CUT is
port(a_in, b_in, c_in : in std_logic;

x, y, z : out std_logic);
end entity CUT;

architecture Fault_Model of CUT is
signal a, b, c: std_logic;

begin
a <= a_in;
b <= b_in;
c <= c_in;
x <= a xor b xor c;
y <= (a and b) or (a and c) or (b and c);
z <= (not a and b) or (not a and c) or (b and c);

end architecture Fault_Model;

The input signals a_in, b_in and c_in are not used directly because we will
insert fault models into those signals later. The testbench for this circuit can therefore
consist of the following code.

library IEEE;
use IEEE.std_logic_1164.all;

entity bistex is end entity bistex;

 Z � A.B � A.C � B.C
 Y � A.B � A.C � B.C

 X � A � B � C

2�n

Built-in self-test 255

LFSR

CUT

MISR

A B C

X Y Z

D Q D Q D Q

D Q D QD Q

Figure 11.8 Circuit for BIST example.

architecture tb of bistex is
constant n : NATURAL := 3;
signal clock, reset : std_logic := '0';
signal signature, q, z : std_logic_vector(n-1 downto 0);

begin
l0: entity WORK.lfsr generic map (n)

port map (reset, q, clock);
m0: entity WORK.misr generic map (n)

port map (reset, z, signature,
clock);

c0: entity WORK.CUT port map (q(2), q(1), q(0), z(2),
z(1), z(0));

reset <= '0', '1' after 5 NS, '0' after 10 NS;
clock <= not clock after 20 NS;

end architecture tb;

256 Design for testability

Both the LFSR and MISR are initialized to the 111 state. When the VHDL model is
simulated, we get the following sequence of states:

LFSR output CUT output MISR

abc xyz

111 111 111
011 011 100
001 101 001
100 100 001
010 101 000
101 010 101
110 010 100
111 111 000

The last output of the MISR, 000, is the signature of the fault-free circuit. The inter-
mediate values of the MISR are irrelevant.

We can emulate a stuck fault at the input by changing one of the assignment state-
ments in the CUT. To model a stuck-at-0, the line

a <= a_in;

is changed to

a <= '0';

(We could, of course, implement a full fault simulation model, as described in the
previous chapter.) If this perturbed circuit is simulated, the sequence of states
is now:

LFSR output CUT output MISR

abc xyz

111 011 111
011 011 000
001 101 011
100 000 100
010 101 010
101 101 000
110 101 101
111 011 011

The signature of the circuit when a is stuck at 0 is therefore 011. We do not care
about the sequence of intermediate states. Hence a comparison of the value in the
MISR with 000 when the LFSR is at 111 would provide a pass/fail test of the circuit.
In principle, we could simulate every fault in the circuit and note its signature. This
information could be used for fault diagnosis. In practice, of course, we would be

Built-in self-test 257

B3

B2

B1

SDI

Zn-1

0
1

Zn-2 Z0

Q

Q

Q

Q

Q

Q

Qn-1 Qn-2 Q0

SDO

Figure 11.9 BILBO.

assuming that every defect manifests itself as a single stuck fault, so this diagnostic
information would have to be used with some caution. Moreover, both the LFSR
and MISR could themselves contain faults, which in turn would generate incorrect
signatures.

If we run the simulation again for a stuck-at-1, the signature 000 is generated. This
is an example of aliasing – a fault generates the same signature as the fault-free circuit.
The probability of aliasing can be shown to tend to if a maximal length sequence is
used. As there are only three stages to the MISR, the probability of aliasing is or
1/8. With larger MISRs the probability of aliasing decreases.

In this example, we have made the LFSR and the MISR the same size and used the
complete sequence of inputs once. None of these restrictions is essential. We can use
LFSRs of different lengths and we do not need to use all the outputs from the LFSR nor
all the inputs to the MISR. We can use a shorter sequence than the complete cycle of
the LFSR or we can run through the sequence more than once. In all cases, however,
the sequence has to be defined when the circuit is built.

11.3.2 Built-in logic block observation (BILBO)

The LFSR and MISR, described above, are specialist logic blocks. To include BIST
in a circuit using such blocks would require additional registers to those required
for normal operation. A scan path reuses the existing registers in a design for test-
ing; in much the same way, built-in logic block observation (BILBO) registers are
used both for normal operation and for BIST. A typical BILBO architecture is
shown in Figure 11.9. Three control signals are required, which control the circuit
as follows.

2�3

2�n

258 Design for testability

Zn-1 Zn-2 Z0

Q

Q

Qn-1 Qn-2 Q0

Q

Q

Q

Q

Figure 11.10 BILBO in normal mode.

Q

Q

SDI Q

Q

Q

Q

SDO

Figure 11.11 BILBO in scan mode.

Zn-1 Zn-2 Z0

Q

Q

Q

Q

Q

Q

Qn-1 Qn-2 Q0

Figure 11.12 BILBO in LFSR/MISR mode.

B1 B2 B3 Mode

1 1 – Normal
0 1 – Reset
1 0 0 Signature analysis MISR
1 0 1 Test pattern generation LFSR
0 0 – Scan

To understand the functionality of the circuit, it helps to redraw the functionality of
the BILBO when the control signals are set to their different states. Figures 11.10,
11.11 and 11.12 show the normal mode, scan mode and LFSR/MISR modes respec-
tively. Note that in the scan, LFSR and MISR modes, the Q output of the flip-flops is
used, but is inverted before being fed into the next stage. The reset mode synchronously
initializes the flip-flops to 0. It was noted in Chapter 6 that an LFSR stays in the all-0s
state if it ever enters that state. In LFSR/MISR modes, the BILBO inverts the feedback

Built-in self-test 259

R1

C1

R2

C2

Figure 11.13 Circuit partitioning for self-test.

C1

R1

Bus

C2

R2

C3

R3

Figure 11.14 Alternative circuit partitioning for self-test.

signal, thus making the all-0s state valid, but there still remain – 1 states in the
cycle – one state is excluded from the normal sequence.

Unlike the flip-flops in a scan path, the flip-flops in a BILBO-oriented system must
be grouped into discrete registers. (The scan mode also allows us to link all the
BILBOs in a scan path – see below.) These registers would ideally replace the normal
system registers. An example of a system using BILBOs for self-test is shown in Figure
11.13. R1 and R2 are BILBOs, and C1 and C2 are blocks of combinational logic. To
test C1, R1 is configured as an LFSR, and R2 is configured as an MISR. Similarly,
to test C2, R2 is configured as an LFSR, and R1 as an MISR.

A different arrangement is shown in Figure 11.14. R1, R2 and R3 are BILBOs;
C1, C2 and C3 are combinational logic. To test C1, R2 is an LFSR and R1 is an MISR.
To test C2, R1 is an LFSR and R2 is an MISR; and so on.

We can therefore use BILBOs to test different structures of combinational logic, but
we also need to have some confidence in the correct operation of the BILBOs them-
selves. Thus, how do we test the BILBOs? The first act in any test must be initializa-
tion. This can be done using the synchronous reset. Then the scan path can be used to

2n

260 Design for testability

Figure 11.15 Probe testing.

test the flip-flops. This implies that some form of controller is needed to generate the
BILBO control signals. It is not possible to test that controller (because a further con-
troller would be needed, which in turn would need to be tested, ad infinitum). Therefore
some form of reliable controller is needed to oversee the self-test regime. It makes
sense therefore to adopt a ‘start small’ strategy, in which part of the system is verified
before being used to test a further part of the system. If the system includes some form
of microprocessor, software-based tests can be performed once the microprocessor has
been checked.

Before adopting BIST in a design, the cost and effectiveness of the strategy must be
considered. There is, of course, the cost of additional hardware – just over four gates per
flip-flop for a BILBO-based design, together with the cost of a test controller and the
additional assorted wiring. This means that there will be an increased manufacturing
cost. The extra hardware means that the reliability of the system will be decreased –
there is more to go wrong. There is also likely to be some performance degradation as
the hardware between flip-flops is increased. The incorporation of BIST means that the
complexity of the design and hence the time taken to do the design is increased. On the
other hand, using BIST means that the costs of test pattern generation disappear and that
the equipment needed to test integrated circuits can be simplified. Moreover the tests
can be performed every time the circuit is switched on, not merely once at the time of
manufacture.

11.4 Boundary scan (IEEE 1149.1)

The techniques described so far in this chapter have been oriented towards inte-
grated circuits, in which controllability and observability may be limited. Circuits
built from discrete gates on printed circuit boards (PCBs) are generally considered
easier to test because it is possible to gain access to all the nodes of the circuit using
a probe, as shown in Figure 11.15, or a number of probes arranged as a ‘bed-
of-nails’. This assumption has become invalid in recent years for the following
reasons:

Boundary scan (IEEE 1149.1) 261

Solder bridge

Short to ground
(stuck-at-0)

Figure 11.16 Circuit board faults.

� It is not possible to test mounted ICs (the pins may be connected together).

� PCBs now often have more than 20 layers of metal, so deep layers cannot be reached.

� The density of components on a PCB is increasing. Multi-chip modules (MCMs)
take the chip/board concept further and have unpackaged integrated circuits
mounted directly on a silicon substrate.

Boundary scan is a technique for testing the interconnect on PCBs and for testing
ICs mounted on PCBs. As before, both the ICs and the empty PCB can be tested, but
boundary scan replaces the step of testing the loaded PCB with a ‘bed-of-nails’ tester.
The bed-of-nails approach has also been criticized because of ‘backdriving’ – in order
to test a single gate its inputs would be forced to particular logic values, which also
forces those logic values onto the outputs of other gates. This is not how gates are
designed to work and may cause them damage.

The principle of boundary scan is to allow the outputs of each IC to be controlled and
inputs to be observed. For example, consider the faults shown in Figure 11.16. These faults
are external to the integrated circuits and have arisen as a result of assembling (fault-free)
ICs onto a PCB. Instead of using mechanical probes to access the board, the faults are sen-
sitized electrically. The outputs of the left-hand ICs in Figure 11.16 are used to establish
test patterns and the inputs of the right-hand IC are used to observe the responses.
Therefore we need to control and observe the output and input pins, respectively, of the
integrated circuits. This can be done by connecting those pins on the boundary of the inte-
grated circuits into a scan path, using special logic blocks at each input and output.

Figure 11.17 shows how the input and output pins of all the integrated circuits on
a board are connected together in a scan path. Each IC has dedicated pins to allow the
scan path to pass through it. These pins are labelled as TDI (Test Data In) and TDO
(Test Data Out). In addition, control pins will be needed. The various ICs on a board
may come from different manufacturers. For boundary scan to work, the ICs need to
use the same protocols. Therefore an IEEE standard, 1149.1, has been defined. This

262 Design for testability

Boundary scan cell TDI TDO

Board

Compliant component Internal system logic

Serial data out

Serial data in

Figure 11.17 Board with boundary scan.

System
logic
inputs

System
logic
outputs

Boundary scan register

Internal
system
logic

Other
test data
registers

Bypass register
Instruction

register

TAP controller

TDI

TMS

TCK

Control signals

Test data
register
MUX

Scan
MUX

TDO

Figure 11.18 Boundary scan architecture.

standard arose from the work of the Joint Test Action Group (JTAG). The term JTAG
is therefore often used in reference to the boundary scan architecture.

Every boundary scan-compliant component has a common test architecture, shown
in Figure 11.18. The elements of this architecture are as follows.

1. Test access port (TAP)

The TAP consists of four or five additional pins for testing. The pins are:

� TDI and TDO (Test Data In and Test Data Out). Both data and instructions are
sent to ICs through the scan path. There is no way to distinguish data from instruc-
tions, or indeed to determine which particular IC a sequence of bits is intended to
reach. Therefore the following pin is used to control where the data flows.

Boundary scan (IEEE 1149.1) 263

Test-Logic-Reset

Run-Test/Idle

0
1

0

1

Select-DR-Scan

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

0

0

1

0

1

1

01

0

1

1

0

0

1
Select-IR-Scan

1

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

0

0

1

0

1

1

01

0

1

1

0

0

Figure 11.19 TAP controller state diagram.

� TMS (Test Mode Select). Together with the TCK pin, the TMS pin is used to
control a state machine that determines the destination of each bit arriving
through TDI.

� TCK (Test Clock).

� TRST (Test Reset) which is an optional asynchronous reset (not shown in
Figure 11.18).

2. TAP controller

This is a 16-state machine that controls the test. The inputs to the state machine are
TCK and TMS. The outputs are control signals for other registers. The state chart of
the TAP controller is shown in Figure 11.19. Notice that a sequence of five 1s on
TMS in successive clock cycles will put the state machine into the Test-Logic-Reset
state from any other state. The control signals derived from the TAP controller are
used to enable other registers in a device. Thus a sequence of bits arriving at TDI
can be sent to the instruction register or to a specific data register, as appropriate.

3. Test data registers

A boundary scan-compliant component must have all its inputs and outputs con-
nected into a scan path. Special cells, described below, are used to implement the
scan register. In addition, there must be a bypass register of one bit. This allows the
scan path to be shortened by avoiding the boundary scan register of a component.

264 Design for testability

IN
OUT

SCAN_OUT

SCAN_IN

MUX

ClockDR UpdateDR MODE_CONTROL

ShiftDR

D Q D Q

MUX

Figure 11.20 Boundary scan cell.

Other registers may also be included; for example, an IC might include an identifi-
cation register, the contents of which could be scanned out to ensure that the correct
device had been included on a PCB. Similarly, the internal scan path of a device
could be made accessible through the boundary scan interface. Some programmable
logic manufacturers allow the boundary scan interface to be used for programming
devices. Thus the configuration register is another possible data register.

4. Instruction register

This register has at least two bits, depending on the number of tests implemented. It
defines the use of test data registers. Further control signals are derived from the
instruction register.

The core logic is the normal combinational and sequential logic of the device. This
core logic may (should) contain a scan path and may also contain BIST structures.

A typical boundary scan cell is shown in Figure 11.20. This cell can be used for an
input or an output pin. For an input pin, IN is connected to the pin, and OUT is con-
nected to the device core; for an output pin, IN comes from the core, and OUT goes to
the pin. Other designs of boundary scan cell are possible.

The boundary scan cell has four modes of operation.

1. Normal mode. Normal system data flows from IN to OUT.

2. Scan mode. ShiftDR selects the SCAN_IN input; ClockDR clocks the scan path.
ShiftDR is derived from the similarly named state in the TAP controller of
Figure 11.19. ClockDR is asserted when the TAP controller is in state Capture-DR
or Shift-DR. (Hence, of course, the boundary scan architecture is not truly
synchronous!)

3. Capture mode. ShiftDR selects the IN input; data is clocked into the scan path reg-
ister with ClockDR to take a snapshot of the system.

4. Update mode. After a capture or scan, data from the left flip-flop is sent to OUT by
applying one clock edge to UpdateDR. Again, this clock signal comes from the TAP

Boundary scan (IEEE 1149.1) 265

Core logic

Tristate output

Bidirectional

EN

EN

Figure 11.21 Logic outside boundary scan path.

controller when it is in state Update-DR. MODE_CONTROL is set as appropriate
according to the instruction held in the instruction register (see below).

For normal input and output pins, the boundary scan cells are the only logic between
the core and the IC pins. The only cases where logic is permitted between the boundary
scan cell and an external pin are shown in Figure 11.21.

A number of instructions may be loaded into the instruction register. These allow
specific tests to be performed. Three of these tests are mandatory; the remaining tests
are optional. Some of these tests are:

� EXTEST (mandatory). This instruction performs a test of the system, external to the
core logic of particular devices. Data is sent from the output boundary scan cells of
one device, through the pads and pins of that device, along the interconnect wiring,
through the pins and pads of a second device and into the input boundary scan cells
of that second device. Hence a complete test of the interconnect from one IC core to
another is performed.

� SAMPLE/PRELOAD (mandatory). This instruction is executed before and after the
EXTEST and INTEST instructions to set up pin outputs and to capture pin inputs.

� BYPASS (mandatory). This instruction selects the Bypass register to shorten the
scan path.

� RUNBIST (optional). Runs a built-in self-test on a component.

� INTEST (optional). This instruction uses the boundary scan register to test the inter-
nal circuitry of an IC. Although such a test would normally be performed before a
component is mounted on a PCB, it might be desirable to check that the process of
soldering the component onto the board has not damaged it. Note that the internal
logic is disconnected from the pins, so if pins have been connected together on the
board, that will have no effect on the standard test.

� IDCODE, USERCODE (optional). These instructions return the identification of
the device (and the user identification for a programmable logic device). The code is
put into the scan path.

� CONFIGURE (optional). An SRAM-based FPGA needs to be configured each time
power is applied. The configuration of the FPGA is held in registers. These registers
can be linked to the TAP interface. This clearly saves pins as the configuration and
test interfaces are shared.

266 Design for testability

D(1) 5 2

D(0) 4 3

RESET 3 4

CLK 2 5

TMS 8

TDI 9

11 Q(1)

12 Q(0)

1 VDD

7 GND

10 TCK

6 TDO

1

0

TAP controller
interface and

bypass registers

Figure 11.22 IC with boundary scan.

The MODE_CONTROL signal of Figure 11.20 is set to select the flip-flop output
when instructions EXTEST, INTEST and RUNBIST are loaded in the instruction
register. Otherwise the IN input is selected.

Testing a board with boundary scan components is similar in many ways to testing a
component with a scan path. First, the boundary scan circuitry itself must be tested for
faults such as a broken scan path or a TAP failure. Then interconnect and other tests can
be performed. The boundary scan path allows nodes to be controlled from one point in
the scan path and observed at another point. Test patterns for the interconnect (and for
non-boundary scan-compliant components) have to be derived in much the same way
that tests for logic are determined. These tests and the appropriate instructions have to
be loaded into the registers of boundary scan components in the correct order. This
process is clearly complex to set up and really has to be automated.

An example of how boundary scan might be included on an IC is shown in Figure 11.22.
The basic circuit has two D-type flip-flops with a clock and reset. The D, Q, clock and reset
pins have boundary scan cells included as shown. A TAP controller and instruction and
bypass registers are included, together with the four extra pins.

In order that boundary scan-compliant components from different manufacturers may
be used together, a standard description language – Boundary Scan Description
Language (BSDL) – has been defined. This is a subset of VHDL. A BSDL description of
the IC of Figure 11.22 is shown below. It is not appropriate here to describe every detail.
The standard (1149.1-2001) defines a number of attributes. The BSDL description of the
device consists of an entity with a generic and a port. Note that the VDD and
GND pins are included in the port, with the mode linkage. The attributes are included
in the package STD_1149_1_2001, which is referenced in the middle of the entity
description so that its scope covers only the succeeding part of the entity description.
(As the standard acknowledges, this use clause may need to be amended to include the
library into which the package has been compiled.) The attributes and constant in the
description define the pin mapping, the TAP signals present, the instructions that are
implemented and the bit patterns that implement them, and the structure of the boundary
scan register, including which type of boundary scan cell is used for each pin.

Boundary scan (IEEE 1149.1) 267

entity dff_2 is
generic(PHYSICAL_PIN_MAP : string := "UNDEFINED");
port (CLK : in BIT; RESET : in BIT;

Q : out BIT_VECTOR(1 to 2);
D : in BIT_VECTOR(1 to 2);
GND, VDD : linkage BIT;
TDO : out bit; TMS, TDI, TCK : in BIT);

use STD_1149_1_2001.all;
attribute COMPONENT_CONFORMANCE of dff_2 : entity is
"STD_1149_1_2001";

attribute PIN_MAP of dff_2 : entity is PHYSICAL_PIN_MAP;
constant DIL_PACKAGE : PIN_MAP_STRING :=
"CLK:2, RESET:3, Q:(12,11), D:(4,5), GND:7, VDD:1," &
"TDO:6, TMS:8, TDI:9, TCK:10";

attribute TAP_SCAN_IN of TDI : signal is TRUE;
attribute TAP_SCAN_MODE of TMS : signal is TRUE;
attribute TAP_SCAN_OUT of TDO : signal is TRUE;
attribute TAP_SCAN_CLOCK of TCK : signal is (20.0E6,

BOTH);
attribute INSTRUCTION_LENGTH of dff_2 : entity is 2;
attribute INSTRUCTION_OPCODE of dff_2 : entity is
"Bypass (11), Extest (00), Sample (01)";

attribute INSTRUCTION_CAPTURE of dff_2 : entity is "01";
attribute BOUNDARY_LENGTH of dff_2 : entity is 6;
attribute BOUNDARY_REGISTER of dff_2 : entity is
--num cell port function safe
"5 (BC_1, CLK, input, X)," &
"4 (BC_1, RESET, input, X)," &
"3 (BC_1, D(1), input, X)," &
"2 (BC_1, D(2), input, X)," &
"1 (BC_1, Q(2), output2, X)," &
"0 (BC_1, Q(1), output2, X)";

end dff_2;

The costs of implementing boundary scan on an integrated circuit include the cost of
a boundary scan cell for each pin, the TAP controller, the one-bit bypass register, the
instruction register and four extra pins. There will be extra wiring on the PCB.

On the other hand there can be significant benefits. The fault coverage of a PCB
can be close to 100%. Boundary scan is easy to implement on a PCB requiring four
pins on an edge connector. Specialist, expensive test equipment, such as a bed-
of-nails tester, is not needed. Indeed, it is possible to implement a boundary scan
tester using little more than a standard personal computer or workstation. Tests can
be performed on ICs after they have been mounted on the PCB, so field testing is
easy. Because the test circuitry is independent of normal system functions, it is pos-
sible to monitor the inputs and outputs of ICs in normal operation, thus providing
debugging functions.

268 Design for testability

There are an increasing number of ICs with boundary scan compliance, e.g. Intel
Pentium, Motorola 68040 and Xilinx programmable logic.

Summary

The testability of a circuit can be improved by modifying the circuit design. The sim-
plest modifications include providing asynchronous resets to every register and avoid-
ing redundant and other uncontrollable logic. SISO separates the sequential from the
combinational logic, reducing test generation to a purely combinational circuit prob-
lem. Built-in self-test (BIST) can reduce manufacturing costs by putting much of the
test circuitry on the chip. Boundary scan uses the SISO principle to allow complex
PCBs to be tested. These various techniques can be combined.

Further reading

The books by Abramovici, Breuer and Friedman, by Miczo and by Wilkins all describe
design for test methods. Boundary scan is now incorporated into many FPGAs, and the
TAP interface is used to configure the internal logic. Details are on the manufacturers’
websites. Agilent offer an online BSDL checking facility.

Exercises

11.1 Explain what is meant by initialization. Why is it necessary to initialize a cir-
cuit for test purposes even if it is not necessary in its system function?

11.2 What are the problems that the scan-in, scan-out (SISO) method is intended to
overcome? Explain the principles of the SISO method, and identify the benefits
and costs involved.

11.3 A certain integrated circuit contains 50 D-type flip-flops. Assuming that all
states are reachable, and that it may be clocked at 1 MHz, what is the minimum
time needed for an exhaustive test? If the same integrated circuit is designed
with a full scan path and if all the combinational logic may be fully tested with
200 test vectors, estimate the time now required to complete a full test.

11.4 Show that the circuit of Figure 11.23 is a suitable test generator for an n-input
NAND gate. Hence suggest a suitable BIST structure for each of the NAND planes
in a PLA.

11.5 Figure 11.24 shows the structure of a simple CPU (reproduced from Chapter 7).
There is a single bus, 8 bits wide. ‘PC’, ‘IR’, ‘ACC’, ‘MDR’ and ‘MAR’ are
8-bit registers. ‘Sequencer’ is a state machine with inputs from the ‘IR’ block
and from other points in the system and with outputs that control the operation
of the ‘ALU’ and that determine which register drives the bus.

The CPU design is to be modified to include a self-test facility. This self-test
will not require the use of any external signals or data other than the clock and

Exercises 269

SRGn
S

C1/

1D

&

To CUT

Figure 11.23 Circuit for Exercise 11.4.

Sequencer

MDR MAR

RAM

ACC

Flags

ALU

PC IR

Control signals

Figure 11.24 CPU datapath for Exercise 11.5.

will generate a simple pass/fail indication. The self-test should require as little
additional hardware as possible.

(a) Describe the modifications you would make to the hardware to allow a self-
test to be performed.

(b) Describe the strategy to be used to test the system, excluding the ‘Sequencer’.
Does testing the ‘ALU’ present any particular difficulties?

11.6 What are the main hardware components of the IEEE 1149.1 boundary scan
test architecture?

11.7 Figure 11.19 shows the state transition diagram of the boundary scan TAP
controller. Assuming that the instruction for an EXTEST is 10 for a particular
IC, what sequence of inputs needs to be applied to the TAP of that IC to load
the pattern 1010 into the first four stages of the boundary scan register of the
IC and to run an EXTEST? (Note that the least significant bits should be
loaded first.)

270 Design for testability

11.8 If the outputs of four boundary scan register stages are connected to the inputs
of four similar register stages in a second IC, show, in principle, how the test
sequence from Exercise 11.7 can be extended to capture the responses of the
interconnect. What assumptions have you made about the connection of the test
structures on the two ICs?

11.9 A particular integrated circuit has 2000 flip-flops and 5000 other gates. The
package has 52 pins, including power, ground, clock and reset. All the buses are
16 bits wide. A new version of the circuit is to be built. Before redesigning the
circuit, the manufacturer would like an estimate of the costs of including:

(a) one or more scan paths to cover all of the flip-flops;
(b) boundary scan to IEEE 1149.1 standard;
(c) built-in self-test.

The estimates should be in terms of extra components and pins and should con-
sider each of the three features individually, together with any savings that may
be made by including two or more features.

11.10 Write a synthesizable VHDL model of the IEEE 1149.1 TAP controller. The
following outputs should be asserted:

Signal State(s)

UpdateDR Update-DR
ClockDR Capture-DR
Shift-DR ShiftDR
Shift-DR UpdateIR
Update-IR ClockIR
Capture-IR Shift-IR
ShiftIR Shift-IR

11.11 Modify the VHDL model of the LFSR from Chapter 6 to implement an n-stage
MISR. Hence, write a model of an n-bit BILBO register.

271

Chapter 12

Asynchronous sequential
design

12.1 Asynchronous circuits 271

12.2 Analysis of asynchronous circuits 274

12.3 Design of asynchronous sequential circuits 278

12.4 Asynchronous state machines 286

12.5 Setup and hold times and metastability 290

The sequential circuits described in Chapters 5, 6 and 7 are synchronous. A clock is used
to ensure that all operations occur at the same instant. This avoids the problems of haz-
ards, because such transient effects can be assumed to have died away before the next
clock edge. Therefore irredundant logic can be used, which then makes the combina-
tional parts of the circuits fully testable, at least in theory. The flip-flops used in synchron-
ous design are, however, asynchronous internally. In this chapter we will consider the
design of asynchronous elements and use a VHDL simulator to illustrate the difficulties of
asynchronous design.

12.1 Asynchronous circuits

Throughout this book, the emphasis has been on the design of synchronous sequen-
tial circuits. State information or other data has been loaded into flip-flops at a clock
edge. Asynchronous inputs to flip-flops have been used, but only for initialization.
A common mistake in digital design is to use these asynchronous inputs for purposes
other than initialization. This mistake is made either because of inexperience or
because of a desire to simplify the logic in some way. Almost inevitably, however,
circuits designed in such a manner will cause problems, by malfunctioning or

272 Asynchronous sequential design

because subsequent modification or transfer to a new technology will cause the
assumptions made in the design to become invalid.

Synchronous sequential design is almost overwhelmingly preferred and practised
because it is easier to get right than asynchronous design. Simply connecting logic to the
asynchronous inputs of flip-flops is almost always wrong. Structured design techniques
exist for asynchronous design and this chapter will describe the design process and its pit-
falls. It should be noted, however, that we are primarily concerned with the design of cir-
cuits comprising a few gates. It is possible to design entirely asynchronous systems, but
such methodologies are still the subject of research. Nevertheless, as clock speeds
increase, some of the complex timing issues described here will become relevant. It is
increasingly difficult to ensure that a clock edge arrives at every flip-flop in a system at
exactly the same instant. Systems may consist of synchronous islands that communicate
asynchronously. To ensure such communications are as reliable as possible, specialized
interface circuits will need to be designed, using the techniques described in this chapter.

Although, as noted above, this book has been concerned with synchronous systems,
reference was made to the synthesis of asynchronous elements in Chapter 9. At present,
synthesis tools are intended for the design of synchronous systems, normally with a
single clock. This is particularly true of synthesis tools intended for FPGA design. The
concurrent VHDL construct

q <= d when c = '1' else q;

would be synthesized to an asynchronous sequential circuit structure. Similarly, the
sequential block

process (d, c) is
begin

if c = '1' then
q <= d;

end if;
end process;

would also be synthesized to an asynchronous latch. In both cases, q explicitly holds
on to its value unless c is asserted. It might be thought that the circuit structures created
by a synthesis tool for the two cases would be identical. In general, this is not so. The
first case is exactly the same as writing

q <= (d and c) or (q and not c);

Hence, a synthesis tool would create an inverter, two AND gates and an OR gate (or an
inverter and three NAND gates). On the other hand, a 1076.6 compliant synthesis tool
would infer the existence of a latch from the incomplete if statement of the second
case, and use a latch from a library (while also issuing a warning message, in case the
incomplete if statement were a coding error). The latch created by Boolean mini-
mization and the library latch are not the same. Indeed, the RTL synthesis standard,
IEEE 1076.6, explicitly forbids the use of concurrent assignments of the form shown,
while permitting the use of incomplete if and case statements.

Asynchronous circuits 273

D
1
0

C
1
0

C
1
0

E
1
0

F
1
0

Q
1
0

Figure 12.2 Timing diagram for circuit of Figure 12.1.

D

C

C

E

F

Q

Figure 12.1 Basic D latch.

To see why, assume that the circuit has been implemented directly, as shown in Figure
12.1. This circuit should be compared with that of Figure 2.13. Indeed, the following
analysis is comparable with that of Section 2.4. Let us assume that each gate, including the
inverter, has a delay of one unit of time, e.g. 1 ns. Initially, Q, D and C are at logic 1. C then
changes to 0. From the analysis of Section 2.4, we know that this circuit contains a poten-
tial hazard. When we draw a timing diagram for this circuit, as shown in Figure 12.2, this
hazard appears at Q. This hazard is propagated back to F, which causes Q to change
ad infinitum. Hence the circuit oscillates. The causality between F and Q is not shown
in Figure 12.2, for clarity. This kind of behaviour is obviously extremely undesirable in
a sequential circuit. Although the assumption of a unit delay in each gate may be unrealis-
tic, it can easily be demonstrated, by means of a VHDL simulation, that a hazard and
hence oscillatory behaviour will occur, irrespective of the exact delays in each gate.

We should, at this point, include a very clear warning. Although we will use
VHDL in this chapter to model and to simulate the behaviour of asynchronous cir-
cuits, these simulations are intended to demonstrate that problems may exist. It is
extremely difficult to accurately predict by simulation exactly how a circuit will

274 Asynchronous sequential design

R

C
S

D

Q

Q

Figure 12.3 D latch with hazard removed.

behave, particularly when illegal combinations of inputs are applied. The spurious
effects result from voltage and current changes within electronic devices, not transi-
tions between logic values.

The solution to the problem of oscillatory behaviour is, as stated in Section 2.4, to
include redundant logic by way of an additional gate. Thus,

or

where Q� represents the ‘next’ value of Q. The redundant gate, , has a 0 output
while D is 1, therefore Q is held at 1.

The expression for Q� can be rearranged:

Hence the circuit of Figure 12.3 can be constructed. This would not and could not be
generated by optimizing logic equations, but instead would exist in a library. It is this
circuit that would be called from the library by a synthesis tool when an incomplete
if statement was encountered.

12.2 Analysis of asynchronous circuits

12.2.1 Informal analysis

The operation of the D latch of Figure 12.3 is relatively straightforward. The key
is the operation of the cross-coupled NAND gates. Two NAND (or NOR) gates
connected in this way form an RS latch with the truth table given below. (An RS

Q� � D.C � Q.1C � D 2

D.Q

Q� � D.C.Q.C.D.Q

Q� � D.C � Q.C � D.Q

Analysis of asynchronous circuits 275

S

R

C

D

A

B

E

F

Q

Q

Figure 12.4 Positive edge-triggered D flip-flop.

1At this level, all the inputs are asynchronous, of course. Synchronous design works because we follow cer-
tain conventions about the use of inputs, not because particular inputs are special.

latch built from NOR gates has a similar truth table, but with the polarities of R and
S reversed.)

R S Q�

0 0 1 1
0 1 1 0
1 0 0 1
1 1 Q

The input R � S � 0 is normally considered illegal, because it forces the outputs to be
the same, contradicting the expected behaviour of a latch.

The D latch of Figure 12.3 contains an RS latch, in which R and S are controlled by
two further NAND gates. When C is at logic 0, R and S are at 1; therefore the latch
holds whatever value was previously written to it. When C is 1, S takes the value of
D and R takes the value of . From the truth table above we can see that Q therefore
takes the value of D. We can further note that the signal paths from D to the outputs are
unequal, because of the inverter. It is therefore reasonable to assume that if D and C
were to change at the same time, the behaviour of the latch would be unpredictable.

Figure 12.4 shows the circuit of a positive edge-triggered D flip-flop. We will attempt
to analyze this circuit informally, but this analysis is intended to show that a formal
method is needed. Let us first deal with the ‘asynchronous’ set and reset.1 If S is 0 and
R is 1, Q is forced to 1 and is forced to 0, according to the truth table above. Similarly,
if S is 1 and R is 0, Q is forced to 0 and is forced to 1. Under normal synchronous
operation, S and R are both held at 1, and therefore can be ignored in the following

Q
Q

D

Q

Q�

276 Asynchronous sequential design

analysis. Note, however, that if both S and R are held at 0, both Q and go to 1; hence
this condition is usually deemed to be illegal.

Let us consider the effects of changes at the D and C inputs while R � S � 1. If C is
at 0, then both E and F are at 1 and therefore Q and are held. If D is at 0, internal
nodes A and B are at 0 and 1, respectively. If D is at 1, A is 1 and B is 0. Therefore D can
change while the clock is low, causing A and B to change, but further changes, to E and
F, are blocked by the clock being low.

When the clock changes from 0 to 1, either D is 0, and hence A is 0 and B is 1, which
force E to 1 and F to 0 and therefore Q to 0 and to 1, or D is 1, A is 1, B is 0 and there-
fore E is 0, F is 1, Q is 1 and is 0. Therefore when the clock changes, it is assumed
that A and B are stable. Hence, there is a setup time in which any change in D must have
propagated to A, before the clock edge.

While the clock is 1, D can again change without affecting the outputs. Two condi-
tions are possible: (a) D was 0 at the clock edge, and hence A is 0, B is 1, E is 1 and F is
0. If D changes to 1, there will be no change to B, because F is 0 and hence B is always
1; or (b) D was 1 at the clock edge, thus A is 1, B is 0, E is 0 and F is 1. If D changes to
0, B changes from 0 to 1, but as E is 0, this change is not propagated to A. Therefore,
again, the output is unaffected. The falling clock edge forces both E and F to 1 again.

It is apparent that this descriptive, intuitive form of analysis is not sufficient to ade-
quately describe the behaviour of even relatively small asynchronous circuits.
Moreover, it would be impossible to design circuits in such a manner. It is possible to
use a VHDL simulator to verify the behaviour of such circuits, but we need a formal
analysis technique.

12.2.2 Formal analysis

Before proceeding with the formal analysis of both the D latch and the edge-triggered D
flip-flop, we need to state a basic assumption. The fundamental mode restriction states
that only one input to an asynchronous circuit may change at a time. The effects of an
input change must have propagated through the circuit and the circuit must be stable
before another input change can occur. The need for this restriction can be seen from the
two circuits already considered. If D changes at almost the same time as the clock,
unequal delay paths mean that internal nodes are not at expected, consistent values and
unpredictable behaviour may result. In the worst case the output of a latch or flip-flop
may be in an intermediate metastable state, that is neither 0 nor 1. We will return to
metastability later.

In order to perform a formal analysis, we have to break any feedback loops in the circuit.
Of course, we don’t actually change the circuit, but for the purposes of the analysis we pre-
tend that all the gate delays in the circuit are concentrated in one or more virtual buffers in
the feedback loops. The gates are therefore assumed to have zero delays. The D latch is
redrawn in Figure 12.5. Note that there is only one feedback loop in this circuit, although
at first glance the cross-coupled NAND gate pair might appear to have two feedback loops.
If the one feedback loop were really broken, the circuit would be purely combinational,
which is sufficient. In Figure 12.5, the input to the virtual buffer is labelled as Y�, while the

Q
Q

Q

Q

Analysis of asynchronous circuits 277

C

D

Q

Q

Y

Y+

Figure 12.5 D latch with virtual buffer.

Y 00 01 11 10

0 0 0 1 0

1 1 0 1 1

Y+

DC

Figure 12.6 Transition table for D latch.

output is labelled as Y. Y is the state variable of the system. This is analogous to the state
variable in a synchronous system. Y� is the next state. The system is stable when Y� is
equal to Y. In reality, of course, Y� and Y are two ends of a piece of wire and must have the
same value, but, to repeat, for the purpose of analysis we pretend that they are separated by
a buffer having the aggregate delay of the system. Note that we separate the state variable
from the output, although in this case, Q and Y� are identical.

We can write the state and output equations for the latch as:

From this we can now write a transition table for the state variable, as shown
in Figure 12.6.

A state table replaces the Boolean state variables with abstract states. In the state table
of Figure 12.7 the stable states are circled. A state is stable when the next state is equal to
the current value. The state table can also include the outputs (state and output table), as
shown in Figure 12.7. Notice that there is an unstable state that has both outputs the same.

Using the state and output table, we can trace the change of states when an input
changes. Starting from the top left corner of the table, with the current state as K and the
two inputs at 0, let D change to 1. From Figure 12.8, it can be seen that the state and
output remain unchanged. If C then changes to 1, the system moves into an unstable
state. The system now has to move to the stable state at L, with D and C both equal to 1.

 Q � D .C � Y

 Q � D.C � Y.C � D.Y
 Y� � D.C � Y.C � D.Y

278 Asynchronous sequential design

S 00 01 11 10

S0 S0,01 S0,01 S1,11 S0,01

S1 S1,10 S0,01 S1,10 S1,10

S+,QQ

DC

D changes to 1

C changes to 1

Figure 12.8 Transitions in state table.

S 00 01 11 10

K K ,01 K ,01 L,11 K ,01

L L ,10 K,01 L ,10 L ,10

S+,QQ

DC

Figure 12.7 State table for D latch.

Note that the state transition must be a vertical move on the state transition diagram. This
is in order to comply with the fundamental mode restriction – anything other than a ver-
tical move implies a change in an input value, which would therefore be occurring
before the system was stable. It can be seen that the latch behaves as we would expect a
D latch to behave. If D is changed from 0 to 1, followed by C changing from 0 to 1, we
would expect Q to change from 0 to 1, and it can be seen from Figure 12.8 that this is
what happens.

12.3 Design of asynchronous sequential circuits

In essence, the design procedure for asynchronous sequential circuits is the reverse of
the analysis process. An abstract state table has to be derived, then a state assignment is
performed, and finally state and output equations are generated. As will be seen, how-
ever, there are a number of pitfalls along the way, making asynchronous design much
harder than synchronous design. To illustrate the procedure, we will perform the design
of a simple circuit, and show, both theoretically and by simulation, the kinds of errors
that can be made.

Let us design an asynchronous circuit to meet the following specification: the circuit
has two inputs, Ip and Enable, and an output, Q. If Enable is high, a rising edge on
Ip causes Q to go high. Q stays high until Enable goes low. While Enable is low, Q is low.

It can be see from this specification that there are eight possible combinations of
inputs and outputs, but that two combinations cannot occur: if Enable is low, Q cannot
be high. This leaves six states to the system, as shown in Table 12.1.

Design of asynchronous sequential circuits 279

Table 12.1 States of example asynchronous system.

State Ip Enable Q

a 0 0 0

b 0 1 0

c 1 0 0

d 1 1 0

e 0 1 1

f 1 1 1

Enable

Ip

Q

a b f e f e a c a c d b f c d c d b a

Figure 12.9 States in design example.

e /1 a /0 c /0

f /1 b /0 d /0

01

00

00

00
10

10

11 01 01 00 11 10

10

11 01

11

01

11

Figure 12.10 State transition diagram for design example.

The first task is to work out all the possible state transitions. One way to do this is
to sketch waveforms and to mark the states as shown in Figure 12.9. From this a state tran-
sition diagram can be constructed (Figure 12.10). This state diagram can also be expressed
as the primitive flow table of Figure 12.11. A primitive flow table has one state per row.
Because of the fundamental mode restriction, only state transitions that are reachable

280 Asynchronous sequential design

S 00 01 11 10 Q

a a b – c 0

b a b f – 0

c a – d c 0

d – b d c 0

e a e f – 1

f – e f c 1

Ip Enable

S+

Figure 12.11 Primitive flow table.

S 00 01 11 10 Q

A A A E C 0

C A A C C 0

E A E E C 1

Ip Enable

S+

Figure 12.12 State and output table.

from a stable state with one input change are marked. State transitions that would require
two or more simultaneous input changes are marked as ‘don’t cares’. The outputs are
shown for the stable state and all transitions out of the state. It is also possible to assume
that the outputs only apply to the stable states and that the outputs during all transitions
are ‘don’t cares’.

There are more states in this primitive flow table than are needed. In Chapter 5, it
was shown that states can be merged if they are equivalent. In this example, there are
‘don’t care’ conditions. We now speak of states being compatible if their next states
and outputs are the same or ‘don’t care’. There is an important difference between
equivalence and compatibility. It can be seen that states a and b are compatible and
that states a and c are compatible. States b and c are, however, not compatible. If
a and b were equivalent and a and c were also equivalent, b and c would be equiva-
lent by definition.

Here, states a and b are compatible and may be merged into state A, say. When com-
patible states are merged, ‘don’t cares’ are replaced by defined states or outputs (if they
exist). Similarly, states c and d may be merged into C, and e and f may be merged into E.
The resulting state and output table is shown in Figure 12.12.

At this point, considerable care is needed in making an appropriate state assign-
ment. We will first demonstrate how not to perform a state assignment. We can show,

Design of asynchronous sequential circuits 281

Y1Y0 00 01 11 10 Q

00 00 00 11 01 0

01 00 00 01 01 0

11 00 11 11 01 1

Ip Enable

Y1
+Y0

+

Figure 12.13 Transition table.

using a VHDL simulation, that a poor state assignment can easily result in a malfunc-
tioning circuit. To encode three states requires two state variables, as described in
Chapter 5. There are 24 possible state assignments. As with a synchronous system,
there is no way to tell, in advance, which state assignment is ‘best’. Therefore, let us
arbitrarily assign 00 to A, 01 to C and 11 to E. This gives the transition table shown in
Figure 12.13. The state 10 is not used, so in deriving next state expressions, the entries
corresponding to 10 are ‘don’t cares’. Hazard-free next state and output equations can
be found using K-maps:

A VHDL model of this circuit is as follows. The next state expressions have
been given arbitrary delays. It is left as an exercise for the reader to write a suitable
testbench.

library IEEE;
use IEEE.std_logic_1164.all;

entity Asynch_Ex is
port (ip, enable : in std_logic;

q : out std_logic);
end entity Asynch_Ex;

architecture Version1 of Asynch_Ex is
signal y1, y0 : std_logic;

begin
y1 <= (y1 and enable) or (ip and enable and (not y0))

after 3 NS;
y0 <= ip or (y1 and enable) after 2 NS;
q <= y1;

end architecture Version1;

If Y1 and Y0 are both 0 and Ip and Enable are 0 and 1, respectively, Q is 0. Now, let
Ip change to 1. We would expect to move horizontally into an unstable state and then to
move vertically to the stable state Y1Y0 = 11. In fact, the VHDL simulation shows that

 Q � Y1

 Y0
� � Ip � Y1.Enable

 Y1
� � Y1.Enable � Ip.Enable.Y0

282 Asynchronous sequential design

(a)

0 5 10 15 20 25 30

ip

enable

y0

y1

(b)

y1

y0

Figure 12.14 Simulation of asynchronous circuit example: (a) with race; (b) without race.

Y1Y0 00 01 11 10 Q

00 00 00 11 01 0

01 00 00 01 01 0

11 00 11 11 01 1

10 00 11 11 01 1

Ip Enable

Y1
+Y0

+

Figure 12.15 Transition table with critical race.

the circuit goes to Y1Y0 = 01 (Figure 12.14(a)). If the delays are reversed, however, the
circuit works as expected (Figure 12.14(b)):

y1 <= (y1 and enable) or (ip and enable and (not y0))
after 2 NS;

y0 <= ip or (y1 and enable) after 3 NS;

Why is the circuit sensitive to these delays? We have accounted for hazards in the
Boolean minimization, so they are not the problem. Let us consider the transition table,
including the unused state, with the values for the unused state as implied by the mini-
mized equations, as shown in Figure 12.15.

Design of asynchronous sequential circuits 283

ip

enable

y0

y1

0 5 10 15 20 25 30

Figure 12.16 Simulation of asynchronous circuit with cycle.

In the first case, Y1 changes first; therefore the circuit changes to the unstable
state 10, at which point Y0 changes and the circuit finishes in the correct state. In the
second case, Y0 changes first and the circuit moves to the stable state 01, and stays
there! In other words, the order in which the state variables change can affect the
final state of the circuit. The situation in which two or more state variables change
as a result of one input change is known as a race. If the final state depends on the
exact order of the state variable changes, that is known as a critical race. There is a
potentially even more disastrous situation. If the don’t cares in the K-maps
produced from the transition table of Figure 12.13 were forced to be 0 (which
results in non-minimal next state expressions, but is otherwise perfectly legitimate),
the next state equations become:

When the VHDL model shown below is simulated, the circuit oscillates, as shown
in Figure 12.16.

y1 <= (y1 and y0 and enable) or
(ip and enable and (not y1) and (not y0)) after 2 NS;

y0 <= (ip and (not y1)) or (ip and y0) or
(y1 and y0 and enable) after 3 NS;

Figure 12.17 shows the transition table. Y1 changes to 1 before Y0 can react, so the
circuit moves to state 10. Y1 is then forced back to 0, so the circuit oscillates between
states 00 and 01. This is known as a cycle.

We clearly have to perform a state assignment that avoids both critical races and
cycles. In this example, such an assignment is not possible with just three states.
Therefore we have to introduce a fourth state. This state is unstable, but it ensures that
only one state variable can change at a time. Figure 12.18 shows the modified state
table, while Figure 12.19 shows a simplified state transition diagram, with the newly

 Y0
� � Ip.Y1 � Ip.Y0 � Y1.Y0.Enable

 Y1
� � Y1.Y0.Enable � Ip.Enable.Y1 .Y0

284 Asynchronous sequential design

S 00 01 11 10 Q

A A A G C 0

C A A C C 0

E G E E C 1

–G A – E –

Ip Enable

S+

Figure 12.18 Modified state table.

00 01

10 11

A C

G E

Figure 12.19 Simplified state transition diagram.

Y1Y0 00 01 11 10 Q

00 00 00 11 01 0

01 00 00 01 01 0

11 00 11 11 01 1

10 00 00 00 00 1

Ip Enable

Y1
+Y0

+

Figure 12.17 Transition table with cycle.

introduced state, G, and a suitable state assignment. Hence expressions for the state
variables can be derived. In this case, the state variable expressions are:

We can simulate VHDL models of this circuit with either Y1 or Y0 changing first, and in
both cases the circuit works correctly.

There is, however, one final potential problem. There are no possible redundant
terms in this example, so we can be sure that all potential static hazards have been
eliminated. In principle, therefore, the circuit can be built as shown in Figure 12.20.

 Y0
� � Ip.Enable � Ip.Y0 � Y1.Enable

 Y1
� � Y1.Y0. Ip � Y1.Enable � Ip.Enable.Y0

Design of asynchronous sequential circuits 285

Ip

Enable

Delay

Y1
+

Y0
+

Figure 12.20 Circuit with essential hazard.

If, however, as a result of the particular technology used or the particular layout
adopted, the input to the top AND gate is delayed with respect to the state variables, as
shown, the circuit may still malfunction. This condition can be demonstrated again
with a VHDL model:

islow <= ip after 5 NS;
y1 <= (y1 and y0 and (not ip)) or (islow and enable and

(not y0)) or
(enable and y1) after 2 NS;

y0 <= (ip and y0) or (ip and (not enable)) or
(y1 and enable) after 3 NS;

The transition table of Figure 12.21 shows what happens if Ip changes from 1 to 0
from state 01 while Enable stays at 1. In theory this change should cause only transitions

Y1Y0 00 01 11 10 Q

00 00 00 10 01 0

01 00 00 01 01 0

11 10 11 11 01 1

10 00 – 11 – –

Ip Enable

Y1
+Y0

+

2a

1b
3b

1a

3a

2b

Figure 12.21 Transition table with essential hazard.

286 Asynchronous sequential design

1a and 1b and the final state should be 00. In practice, because of the delay in Ip, the cir-
cuit then follows the other transitions shown, 2a, 2b, 3a and 3b, to finish in state 11. This
is known as an essential hazard, so-called because it is part of the essence of the circuit.
Potential essential hazards can be identified from the transition table if a single input
change results in a different final state than if the input changes three times. The only
way to avoid essential hazards is to ensure that the state variables cannot be fed back
round the circuit before the input transitions. This can be achieved by careful layout or
possibly by deliberately introducing delays into the state variables.

In summary, therefore, the design of an asynchronous sequential circuit has the fol-
lowing steps:

1. State the design specifications.

2. Derive a primitive flow table.

3. Minimize the flow table.

4. Make a race-free state assignment.

5. Obtain the transition table and output map.

6. Obtain hazard-free state equations.

7. Check for essential hazards.

12.4 Asynchronous state machines

In the design flow, above, the first step is to derive the design specifications. In many
ways this is the hardest part of the task. Moreover, if we get that wrong, everything that
follows is also by definition wrong. By the nature of the design process, it is almost
impossible to patch a mistake – the entire process has to be repeated. Therefore, it
would be very desirable to ensure that the design has been specified correctly. One way
to do this is to use simulation again.

The state transition diagram of Figure 12.10 is essentially the same as the state dia-
gram of Figure 5.9 or that of Figure 11.19. One figure represents an asynchronous sys-
tem and two represent a synchronous system. This difference is not, however, apparent
from the diagrams. We advocated the use of ASM charts for the design of synchronous
systems, but we could have used state diagrams. We know that an ASM chart or a state
diagram has an equivalent VHDL description. By the same argument, we can represent
an asynchronous state machine in VHDL. Instead of a set of registers synchronized to
a clock, we would have a virtual buffer, in which the state variable is updated. Let us
therefore write a VHDL description of the state machine of Figure 12.10.

library IEEE;
use IEEE.std_logic_1164.all;

entity Asynch_Ex is
port (ip, enable : in std_logic;

q : out std_logic);
end entity Asynch_Ex;

Asynchronous state machines 287

architecture state_mc of Asynch_Ex is
type state is (a, b, c, d, e, f);
signal present_state, next_state : state;

begin
-- virtual buffer
present_state <= next_state after 1 NS;
com: process (ip, enable, present_state) is
begin
q <= '0';
case present_state is
when a =>

if ip = '0' and enable = '1' then
next_state <= b;

elsif ip = '1' and enable = '0' then
next_state <= c;

else next_state <= a;
end if;

-- other states are written the same way
when f =>
q <= '1';
if ip = '0' and enable = '1' then
next_state <= e;

elsif ip = '1' and enable = '0' then
next_state <= c;

else next_state <= f;
end if;

end case;
end process com;

end architecture state_mc;

The virtual buffer has a delay of 1 ns. For this type of model to work, there must be
a finite delay – a zero delay would cause the process to loop infinitely at time 0. For
reasons of space, the entire state machine is not shown; the other states may be written
in the same way. The don’t cares have been assumed to cause the state machine to stay
in the same state. As these represent violations of the fundamental mode, this is valid.
It is possible to check for fundamental mode violations by including an assert state-
ment in the process:

assert ip'EVENT xor enable'EVENT xor present_state'EVENT
report "Fundamental mode violation"
severity NOTE;

This is not strictly correct as three simultaneous events would not trigger the asser-
tion (see Exercise 12.11). With a suitable testbench, we can use this VHDL model to
reproduce Figure 12.9. Notice that the initial values of the state variables will be the
leftmost entry in the state definition – a.

288 Asynchronous sequential design

We can also repeat the exercise after state minimization.

architecture reduced of Asynch_Ex is
type state is (a, c, e);
signal present_state, next_state : state;

begin
-- virtual buffer
present_state <= next_state after 1 NS;
com: process (ip, enable, present_state) is
begin
q <= '0';
case present_state is
when a =>

if ip = '1' and enable = '1' then
next_state <= e;

elsif ip = '1' and enable = '0' then
next_state <= c;

else next_state <= a;
end if;

when c =>
if ip = '0' then
next_state <= a;

else next_state <= c;
end if;

when e =>
q <= '1';
if ip = '0' and enable = '0' then
next_state <= a;

elsif ip = '1' and enable = '0' then
next_state <= c;

else next_state <= e;
end if;

end case;
end process com;

end architecture reduced;

Again, this can be verified by simulation. Indeed, this is one way to check that the
state minimization has been done correctly.

As a second example, consider the following. We wish to design a phase detector
with two outputs: qA and qB. There are also two inputs: inA and inB. Let us assume
both outputs start high. When inA goes high, qA goes low and stays low until inB goes
high. Similarly, if inB goes low first, qB goes low until inA goes high. This sounds very
simple! We will model the phase detector as an asynchronous state machine. It is left as
an exercise for the reader to derive the VHDL model, below, to implement this specifi-
cation. You can further test your understanding of asynchronous design by taking this
design through to gate level.

Asynchronous state machines 289

library IEEE;
use IEEE.std_logic_1164.all;

entity phase_detector is
port (inA, inB : in std_logic;

qA, qB : out std_logic);
end entity phase_detector;

architecture asynch_sm of phase_detector is
type state_type is (A, B, C, D, E, F, G, H);
signal present_state, next_state : state_type;

begin
present_state <= next_state after 1 NS;
process (inA, inB, present_state) is
begin
next_state <= present_state; -- default
qA <= '1';
qB <= '1';
case present_state is
when A =>

if inA = '0' and inB = '1' then
next_state <= E;

elsif inA = '1' and inB = '0' then
next_state <= B;

end if;
when B =>
qA <= '0';
if inA = '0' and inB = '1' then
next_state <= D;

elsif inA = '1' and inB = '1' then
next_state <= C;

end if;
when C =>
if inA = '0' and inB = '1' then
next_state <= D;

elsif inA = '1' and inB = '0' then
next_state <= F;

end if;
when D =>
if inA = '0' and inB = '0' then
next_state <= A;

elsif inA = '1' and inB = '1' then
next_state <= H;

end if;
when E =>
qB <= '0';
if inA = '1' and inB = '1' then

290 Asynchronous sequential design

next_state <= C;
elsif inA = '1' and inB = '0' then
next_state <= F;

end if;
when F =>
if inA = '0' and inB = '0' then
next_state <= A;

elsif inA = '1' and inB = '1' then
next_state <= G;

end if;
when G =>
qB <= '0';
if inA = '0' and inB = '0' then
next_state <= E;

elsif inA = '0' and inB = '1' then
next_state <= D;

end if;
when H =>
qA <= '0';
if inA = '0' and inB = '0' then
next_state <= B;

elsif inA = '1' and inB = '0' then
next_state <= F;

end if;
end case;

end process;
end architecture asynch_sm;

One final word of warning: do not try to synthesize these state machine models! In
the light of the previous discussions, it should be obvious that you would generate
hardware with races and hazards!

12.5 Setup and hold times and metastability

12.5.1 The fundamental mode restriction and synchronous circuits

The fundamental mode restriction requires that an input to an asynchronous circuit
must not change until the circuit has become stable after a previous input change.
Individual flip-flops are themselves asynchronous internally, but are used as synchro-
nous building blocks. We do not, however, speak of the fundamental mode restriction
when designing synchronous systems. Instead, we define setup and hold times.

Because of the gate delays in a circuit, the fundamental mode restriction does
not mean that two inputs must not change at the exact same time. It means that the
effect of one input change must have propagated through the circuit before the next
input can change. To use the example of a D flip-flop, a change at the D input must
have propagated through the flip-flop before an active clock edge may occur.

Setup and hold times and metastability 291

Similarly, the effect of the clock edge must have propagated through the circuit
before the D input can change again. These two time intervals are known as the setup
and hold times, respectively.

The setup and hold times of a latch or flip-flop depend on the propagation delays of
its gates. These propagation delays depend, in turn, on parametric variations. So we can
never know the exact setup and hold times of a given flip-flop. Furthermore, the timing
of clock edges may be subject to jitter – the exact period of the clock may vary slightly.
Therefore there has to be a margin of tolerance in estimating the setup and hold times.
It should finally be noted that some of the effects of ignoring the fundamental mode
restriction, or equivalently, violating setup and hold times, are not purely digital. In par-
ticular, metastability is effectively an analogue phenomenon.

Bearing all this in mind, it is possible to get some insight into the consequences of
not observing the fundamental mode restriction by using a VHDL simulator. We could
use trial and error to find the setup and hold times of a flip-flop; if the gate delays are
specified, it is not difficult to calculate the various path lengths through the circuit.
Here, however, we will use the random pulse stream generator from Chapter 6.

12.5.2 Random pulse generator

As seen in Chapter 6, random pulses can be generated using the pseudo-random func-
tion in the VHDL Math Package (1076.2). From a given pair of seeds, the same
sequence will always be generated. This can be a good thing, because then an experi-
ment is repeatable. On the other hand, this predictability may not be desirable.
Elsewhere, it is common to use an integer such as the current time to randomize the
seed. VHDL does not have this capability. The VHDL package below gets round this
problem by saving the seeds between runs. Therefore with each simulation run, a seed
will be read from a file to initialize the random number generator. At the same time,
a new seed is generated and written back to the file. To repeat a simulation with the
same seed, the seed file would need to be saved elsewhere and copied back (or the seed
file is simply deleted to rerun the same simulation each time).

A shared variable, seed, is used to hold the state of the random number gen-
erator within a simulation run. In the 2002 VHDL standard, shared variables must be
protected types. The package below defines a protected type. This is not compatible
with the 1993 standard; Appendix C has a version of this package suitable for a simu-
lator compliant with that standard. (The 1987 standard does not support shared vari-
ables at all.) The seed is initialized by calling the function init_seed, in which the
value of the seed is read from a file, modified and written back to the same file, so that
each time a simulation is run the seed will be different. This operation is done only
once per simulation. There are two forms of the file_open function. Here the
version with four parameters is used. The first parameter gives the status of the file
operation, which allows us to take different actions depending on whether the file exists
or not. A simple pseudo-random number generator uses seed to generate a real value
between 0 and 1. Functions init_seed, get_seed and rand are impure
because they read and modify the shared variable seed. The initial seed values and the
modifying value are entirely arbitrary.

292 Asynchronous sequential design

We could use the result of the random number generator, scaled and converted to
a time, to cause random changes in a signal. It is more realistic to use a negative expo-
nential function, as in Chapter 6. The mean time to the next event is specified, but
instead of a uniform distribution half the event times will be between zero and the mean
time, and half will be between the mean time and infinity. This model is commonly
used in queuing theory. Two negexp functions are defined. The first generates a real
number, given a real mean value. The second function uses the first negexp function,
but takes a time as the mean value and returns the time to the next event in an integral
number of nanoseconds. Note how the type and scale conversions are performed.

package random is
impure function rand return REAL;

end package random;

library IEEE;
use IEEE.math_real.all;

package body random is
type seed_pair is record
seed1, seed2 : INTEGER;

end record seed_pair;
type pseed is protected
impure function get_seed return seed_pair;
impure function rand return REAL;

end protected pseed;

type pseed is protected body
impure function init_seed return seed_pair is
type natfile is file of INTEGER;
file seedfile : natfile;
variable status : FILE_OPEN_STATUS;
variable seed1, seed2 : INTEGER;

begin
file_open(status, seedfile, "seed.dat", READ_MODE);
assert status = OPEN_OK
report "seed.dat not opened" severity NOTE;

if (status = OPEN_OK) then
read(seedfile, seed1);
read(seedfile, seed2);
file_close(seedfile);

else
seed1 := 56;
seed2 := 42;

end if;
if seed1 < NATURAL'HIGH – 1000 then
seed1 := seed1 + 1000;

else

Setup and hold times and metastability 293

seed1 := 56;
end if;
if seed2 < NATURAL'HIGH – 1000 then
seed2 := seed2 + 1000;

else
seed2 := 42;

end if;
file_open(seedfile, "seed.dat", WRITE_MODE);
write(seedfile, seed1);
write(seedfile, seed2);
file_close(seedfile);
return (seed1, seed2);

end function init_seed;

variable vseed : seed_pair := init_seed;

impure function get_seed return seed_pair is
begin

return vseed;
end function get_seed;

procedure set_seed (sp: seed_pair) is
begin
vseed := sp;

end procedure set_seed;
end protected body seed;

shared variable seed : pseed;

impure function rand return REAL is
variable seeds : seed_pair;
variable rnd : REAL;

begin
seeds := seed.get_seed;
uniform (seeds.seed1, seeds.seed2, rnd);
seed.set_seed(seeds);
return rnd;

end function rand;

function negexp(t : TIME) return TIME is
begin

return INTEGER(-log(rand)*(REAL(t / NS))) * NS;
end function negexp;

end package body random;

We can use this random event generator as follows:

library IEEE;
use IEEE.std_logic_1164.all;
use WORK.random.all;

294 Asynchronous sequential design

entity testrnd is end entity testrnd;

architecture testrnd of testrnd is
signal r : std_logic := '0';

begin
r <= not r after negexp(10 ns);

end architecture testrnd;

12.5.3 VHDL modelling of setup and hold time violations

A structural model of a level-sensitive D latch can be described in VHDL using gate
instances or by using a set of concurrent assignments, as shown below. Note that q
and qbar are declared as ports with mode out, so they cannot be read. Therefore two
internal signals, y and z, are used to model the RS latch. If a simulation of this latch
is run, using a regular clock and a random event generator for the D input, as shown in
the testbench fragment, it will be observed that the latch works correctly unless the D
input changes 2 ns or less before a falling clock edge. If this occurs, the q and qbar
outputs oscillate.

Of course, two D latches can be put together to form an edge-triggered flip-flop. The
clock input is inverted for the master flip-flop (introducing a delay of, say, 1 ns). Thus,
when the clock is low the master flip-flop is conducting. From the previous simulation
we would expect therefore that the setup time is 2 ns, less the delay in the clock caused by
the inverter, or 1 ns in total. We can verify this by simulation. Again we observe that a
change in the D input 1 ns or less before the clock edge may cause the output to oscillate,
depending on the state of the flip-flop and whether D is rising or falling. The six-NAND
gate edge-triggered D flip-flop behaves similarly. In both cases, the hold time is 0 ns.

library IEEE;
use IEEE.std_logic_1164.all;

entity dlatch is
generic (delay : DELAY_LENGTH := 1 NS);
port (q, qbar : out std_logic;

d, c : in std_logic);
end entity dlatch;

architecture concurrent of dlatch is
signal e, f, g, z, y : std_logic;

begin
e <= not d after delay;
f <= d nand c after delay;
g <= e nand c after delay;
y <= g nand z after delay;
z <= f nand y after delay;
q <= z;
qbar <= y;

end architecture concurrent;

Setup and hold times and metastability 295

Part of the testbench is shown below.

d0 : dlatch port map (q => q, qbar => qbar, d => d,c => c);
d <= not d after negexp(20 NS);
c <= not c after 10 ns;

There has to be some doubt as to whether this modelled behaviour is exactly what
would be observed in a real circuit. These VHDL models assume that 0 to 1 and 1 to 0
transitions are instantaneous. Of course, in reality, such transitions are finite. Therefore,
if a gate had one of its two inputs rising and the other falling simultaneously, it would be
reasonable to expect that the output might switch into some state that was neither a logic
1 nor a logic 0 for a period of time. The VHDL standard logic package does not include
such a state; ‘X’ is generally taken to represent a state that could be either 1 or 0.

To show that these results should be treated with caution, we will model the circuit gates
in another manner. VITAL (VHDL Initiative Towards ASIC Libraries, 1076.4-2000)
allows detailed gate-level timing simulations to be performed by providing a pair of pack-
ages for VHDL modelling. A VITAL model of the latch is shown below.

library IEEE;
use IEEE.vital_primitives.all;

architecture vtl of dlatch is
signal e, f, g, z, y : std_logic;

begin
VitalINV(e, d, (delay, delay));
VitalNAND2(f, d, c, (delay, delay), (delay, delay));
VitalNAND2(g, e, c, (delay, delay), (delay, delay));
VitalNAND2(y, g, z, (delay, delay), (delay, delay));
VitalNAND2(z, f, y, (delay, delay), (delay, delay));
q <= z;
qbar <= y;

end architecture vtl;

The references to VitalINV and VitalNAND2 are concurrent procedure calls.
VitalINV and VitalNAND2 are defined in package vital_primitives. A
concurrent procedure call is equivalent to a sequential procedure call inside a process
with an appropriate wait statement or sensitivity list:

process is
begin
VitalNAND2(a, e, b, (delay, delay), (delay, delay));
wait on e, b;

end process;

The pairs of parameters (delay, delay) are the delays for a 0 to 1 and a 1 to 0
transition, respectively, for each of the inputs. Normally, these two parameters would

296 Asynchronous sequential design

take different values. Within the VITAL models, rising and falling transitions are
considered and appropriate outputs are generated. When this model is simulated, the
simulation results are similar to those of the basic NAND gate model, except that
after oscillation, because of violation of the fundamental mode restriction, the outputs
of the flip-flop go into the ‘X’ state. Hence two different modelling methods both
suggest that the flip-flop behaves in an undesirable way if two inputs change simulta-
neously, but that the exact nature of that behaviour is uncertain.

12.5.4 Metastability

While the oscillations predicted by both the structural models may occur if the fun-
damental mode restriction is violated, another condition can occur that a VHDL
simulation cannot predict. All flip-flops have two stable states and a third unstable,
or metastable, state. In this metastable state both flip-flop outputs have an equal
value at a voltage level between 0 and 1. A SPICE, or similar, transistor-level oper-
ating point analysis is likely to find this metastable condition. This may be likened
to balancing a pencil on its point – in theory it is stable, but in practice, noise (vibra-
tions, air movement, etc.) would cause the pencil to topple. The metastable state of
a flip-flop is similarly unstable; electrical or thermal noise would cause it to fall into
a stable state.

Metastability is most likely to occur when external (asynchronous) signals are inputs
to a synchronous system. If metastability is likely to be a problem, then care needs
to be taken to minimize its effects. The threat of metastability can never be entirely
eliminated, but there is no point in constructing elaborate defences if the chances of its
happening are remote. Therefore the critical question is how likely is it to occur?
The formula used to calculate the mean time between failures (MTBF) has been found
by experiment to be

where tx is the time for which metastability must exist in order that a system failure
occurs, fclk is the clock frequency, fin is the frequency of the asynchronous input
changes, and T and T0 are experimentally derived constants for a particular device. If a
metastable state occurs at the output of a flip-flop, it will cause a problem if it propa-
gates through combinational logic and affects another flip-flop. Therefore,

where tclk is the clock period, tpd is the propagation delay through any combinational
logic and tsetup is the setup time of the second flip-flop.

Let us put some numbers into this formula. The system is clocked at 10 MHz; there-
fore tclk is 100 ns. We will examine whether an input flip-flop with a setup time of 10 ns
can go into a metastable state, therefore tpd is zero and, hence, tx is 90 ns. If the asyn-
chronous input changes on average, say, once every 10 clock cycles, fin is 1 MHz. For

tx � tclk � tpd � tsetup

MTBF �
exp1T � tx 2

fclk � fin � T0

Summary 297

Asynchronous input 1D

C1

Synchronous
system

Clock

1D

C1

Figure 12.22 Synchronizer design.

a relatively slow D flip-flop (e.g. a 74LS74), T is about 7 � 108 seconds, while T0 is
0.4 seconds. Therefore

or about 2 � 107 years. Metastability is unlikely to be a problem in such a system! But
suppose the clock frequency is doubled to 20 MHz, and hence tx becomes 40 ns.
The asynchronous input changes at the same average rate as before, 1 MHz. Now,

So we probably will have a problem with metastability in this system.
There are several ways to alleviate the problem. The flip-flop cited above is very slow.

A faster flip-flop would have a larger T and a smaller T0. So using a faster flip-flop will
increase the MTBF. Another common solution is to use two flip-flops in series as shown
in Figure 12.22. This arrangement does not necessarily reduce the MTBF, but it does
reduce the possibility that a metastable state is propagated into the synchronous system.

Although it is fairly unlikely that metastability would be observed in a student labora-
tory, it is apparent that with increasing clock speeds, and perhaps a move towards a style
of design in which there is no global clock, coping with metastability is going to be a
challenge for digital designers.

Summary

The design and analysis of asynchronous circuits is harder than for synchronous circuits.
Asynchronous circuits may be formally analyzed by breaking feedback loops. The
design of an asynchronous circuit starts from a description of all the possible states of
the system. A primitive flow table is constructed, which is then minimized. State assign-
ment follows. A poor state assignment can result in race conditions or cycles. From the
transition table, next state and output expressions are derived. Hazards can cause erro-
neous behaviour or oscillations. Essential hazards may result from uneven delays. The
design of asynchronous circuits depends on observing the fundamental mode restriction.
This is reflected in the specification of setup and hold times for asynchronous blocks

MTBF �
exp17 � 108 � 40 � 10�9 2

2 � 107 � 106 � 0.4
 � 0.18 second

MTBF �
exp17 � 108 � 90 � 10�9 2

107 � 106 � 0.4
 � 5.7 � 1014 seconds

298 Asynchronous sequential design

D

C

Figure 12.23 Circuit for Exercise 12.5.

used in synchronous design. Failure to observe these restrictions can lead to spurious
behaviour and possibly metastability.

Further reading

Although the design of asynchronous (or level-mode, or fundamental mode) sequential
circuits is covered in many textbooks, close reading reveals subtle variations in the tech-
niques. Hill and Peterson provide a very good description. Wakerley has a very straight-
forward description. Unger’s 1995 paper has provided perhaps the most rigorous analysis
of the problems of metastability. The Amulet project has one of the most significant large
asynchronous designs and the website (http://www.cs.man.ac.uk/amulet/index.html) has
links to many sources of information about asynchronous design.

Exercises

12.1 What is the difference between a synchronous sequential circuit and an asyn-
chronous sequential circuit? Why is synchronous design preferred?

12.2 What assumption is made in the design of fundamental-mode sequential circuits,
and why? How can essential hazards cause the fundamental mode to be violated?

12.3 The excitation equation for a D latch may be written as

Why would a D latch implemented directly from this transition equation be
unreliable? How would the D latch be modified to make it reliable?

12.4 Describe, briefly, the steps needed to design an asynchronous sequential circuit.

12.5 Figure 12.23 shows a master–slave edge-triggered D flip-flop. How many feed-
back loops are there in the circuit, and hence how many state variables?

Derive excitation and output equations and construct a transition table.
Identify all races and decide whether the races are critical or non-critical.

Q� � C.D � Q.C

Exercises 299

A/0

00

E /0

01

01

00

10

B /0 F /0

11 01

11

10

1110

C /0 D /1 0100

00 10

01

00

11

Figure 12.24 State diagram for Exercise 12.6.

Construct a state and output table and show that the circuit behaves as a positive
edge-triggered flip-flop.

12.6 Figure 12.24 shows a state diagram of an asynchronous circuit with two inputs,
R and P, and a single output, Q. The input values are shown on the arcs; the
state names and the output values of the stable states are shown in the circles.
Design an asynchronous circuit to implement this function.

12.7 A positive edge-triggered D flip-flop has a preset and clear input, in addition to
the clock and D inputs (Figure 12.4). Write down the state equations for the
flip-flop including the preset and clear inputs. Hence write a transition table.

12.8 Table 12.2 shows the transition table for an asynchronous circuit. Identify all
the non-critical races, critical races and cycles (a cycle is a repeated series
of unstable states that requires an input to change in order for a stable state
to be reached).

12.9 Design a D flip-flop that triggers on both the positive and negative edges of the
clock pulse.

12.10 An asynchronous sequential circuit has two inputs, two internal states and one
output. The excitation and output functions are:

 Z � B � Y1
 Y2� � B � A.Y1.Y2 � A .Y1
 Y1� � A.B � A.Y2 � B .Y1

300 Asynchronous sequential design

Table 12.2 Transition table for Exercise 12.8.

AB

Y1Y2 00 01 11 10

00 00 11 10 11

01 11 01 01 10

11 10 11 01 10

10 11 10 01 01

Y1*Y2*

(a) Draw the logic diagram of the circuit.
(b) Derive the transition table and output map.
(c) Obtain a flow table for the circuit.

12.11 The assert statement shown in Section 12.4 can detect two simultaneous
events. Three simultaneous events appear to be the same as one event because
of the nature of the xor operator. Write an assert statement to detect two or
three simultaneous events. You may find it easiest to write a function to perform
the logical operation. Include the check in a complete model of the asynchro-
nous state machine and verify its operation using a testbench with random
events.

301

Chapter 13

Interfacing with the
analogue world

13.1 Digital to analogue converters 302

13.2 Analogue to digital converters 303

13.3 VHDL-AMS 306

13.4 Phase-locked loops 315

13.5 VHDL-AMS simulators 319

In previous chapters, we have considered the world to be purely digital. Indeed, with
the exception of the last chapter, we have further considered only synchronous sys-
tems. Of course the real world is asynchronous and, even worse, analogue. All digital
systems must at some point interact with the real world. In this chapter, we will
consider how analogue inputs are converted to digital signals and how digital signals
are converted to analogue outputs. Until recently, the modelling and simulation of
digital and analogue circuits and systems would have been performed independently of
each other. In 1999, a set of analogue and mixed-signal extensions to VHDL were
approved as an IEEE standard (1076.1-1999). The new language is commonly known as
VHDL-AMS (Analogue and Mixed-Signal). VHDL-AMS is a complete superset of VHDL.
VHDL-AMS simulators that support the entire language are starting to appear, at the
time of writing. Having looked at digital to analogue converters (DACs) and analogue
to digital converters (ADCs), we will review the basics of VHDL-AMS and see how ADCs
and DACs can be modelled in VHDL-AMS. There is not sufficient space to provide a
complete tutorial of VHDL-AMS here. Furthermore, it should be remembered that we
are considering only simulation models, designed for verifying the interaction of a digi-
tal model with the real world. Synthesis of analogue and mixed-signal designs is still
a research topic. The final section of the chapter looks at some further mixed-signal
circuits and their models in VHDL-AMS.

302 Interfacing with the analogue world

–
+

8R

4R

2R

R

R

MSB

LSB

Figure 13.1 Binary-weighted ladder DAC.

13.1 Digital to analogue converters

We will start the discussion of interface circuits with digital to analogue converters
because, as we will see, one form of analogue to digital converter requires the use of a
DAC. The motivation in this chapter is not to describe every possible type of converter –
that would require at least an entire book – but to show one or two examples of the type
of circuit that can be employed.

In moving between the analogue and digital worlds, we ideally want to preserve the
maximum amount of information. This can be summarized in terms of three aspects:
resolution, accuracy and speed. Resolution defines the smallest change that can be
measured. For example, 8 bits can represent 28 or 256 voltage levels. If we want to
represent a signal that changes between 0 and 5 volts using 8 bits, the resolution is
5/256 � 19.5 mV. Accuracy describes how precisely a signal is represented with respect
to some reference. In turn, this depends on factors such as linearity. For example, while
8 bits can represent a 5 V signal with an average resolution of 19.5 mV, differences
(non-linearities) in the circuit might mean that some changes are really 18.5 mV, while
others are 20.5 mV. These differences will add up and affect the overall accuracy.
Finally, the speed at which data is converted between the two domains affects the design
of converters. In the digital world, samples are taken at discrete points in time. The users
of converters need to be aware of what happens between these sample points.

The simplest type of DAC is the binary-weighted ladder circuit of Figure 13.1. The
bits are added together according to their relative weights. The operational amplifier
(opamp) forms a classic (inverting) adder. While this circuit is easy to understand, it is
a manufacturing nightmare. The resistors have to be manufactured with very tight
tolerances. Any inaccuracy in a resistor value would affect the accuracy. Note that the
resistors have to be accurate with respect to the feedback resistor (R), but also with
respect to each other.

A variation on the binary-weighted ladder is the R–2R ladder of Figure 13.2. To a
significant extent, this overcomes the manufacturing problem as only two values of
resistor need to be constructed.

For both these circuits, the speed is limited only by the response of the opamp. In
practice, however, we might find that the resistors are more easily implemented as

Analogue to digital converters 303

–
+

2R

2R

2R

2R

R

MSB

LSB

2R

R

R

R

0

Figure 13.2 Binary-weighted R–2R ladder DAC.

1In CMOS technology, it is generally easier to build accurate capacitors than accurate resistors. It is possible
to emulate the behaviour of a resistor by rapidly switching a capacitor between an input and ground.

switched capacitors.1 If this is so, the speed is limited by the clock. Notice also that the
output changes in discrete steps.

13.2 Analogue to digital converters

The task of an ADC is to translate a voltage (or current) into a digital code. This is gen-
erally harder to achieve than the reverse process. Again, we need to consider resolution,
accuracy and speed, but for example suppose we have a signal that changes between
0 V and 5 V, with a maximum frequency of 10 kHz. Eight bits gives a resolution of
19.5 mV, as above. To accurately capture changes in a signal, it needs to be sampled at
twice its maximum frequency. Here, therefore, we need to sample at 20 kHz or greater.

Conceptually, the simplest ADC is the flash ADC of Figure 13.3. This consists of
nine identical resistors (for eight voltage levels) and eight comparators. As the input
voltage, Vin, increases past a level in the resistor change, the corresponding comparator
output switches to 1. Therefore, we can use a priority encoder to determine which is the
most significant bit, and to encode that value as a binary number. It should be immedi-
ately obvious that this circuit is impractical for large numbers of bits. We need 2n iden-
tical, ideal comparators and 2n � 1 identical resistors to achieve n bits at the output. It
is very difficult to achieve high consistency and hence high accuracy. On the other
hand, this type of converter is very fast. In practice, the cost of a flash ADC is usually

304 Interfacing with the analogue world

PRIORITY
ENCODER

A(1)

A(0)

Y(0)

A(2)

A(3)

Y(1)A(5)

A(4)

A(6)

A(7)
Y(2)

Vin

–

+

–

+

–

+

–

+

–

+

–

+

–

+

–

+

Vref

R

R

Figure 13.3 Flash ADC.

too high. In return for a smaller design and better accuracy, we pay the price of slower
conversion speeds.

Figure 13.4 shows a tracking ADC. This is much easier to implement than the flash
ADC. It is essentially a DAC, a comparator and a counter. When the value in the
counter is greater than that of the input, Ain, the counter counts down; when the
counter’s value is less than Ain, the counter counts up. Therefore, the counter attempts
to track the input. At first glance, it might appear that a very high clock speed is needed
to make this work. Suppose we wish to convert an audio signal with a maximum
frequency of 20 kHz. We need to sample at twice this frequency – 40 kHz. In the worst
case, the counter needs to count through its entire range, 24 or 16 states, between
samples. This means that the counter clock must be 16 � 40 kHz or 640 kHz. On the

Analogue to digital converters 305

COUNTER

1

2

4

8

UP/DOWN–
+

8R

4R

2R

R

R

–
+

Clock

Reset

Ain
DAC

Dout

Aout
Up

Figure 13.4 Tracking ADC.

Integrator
Comparator

Flip-flop

1-bit DAC

Vin

∫
–

+

–

+

Figure 13.5 Delta-Sigma ADC.

other hand, to achieve CD quality resolution, we would need 16 bits at the output,
which implies a clock speed of nearly 3 GHz. This is clearly much less practical.

For high-speed, high-resolution applications an entirely different approach is usually
taken. Delta-Sigma ADCs convert from voltage to a serial encoding. Figure 13.5 shows
a simple Delta-Sigma ADC. The mark to space ratio of the output is proportional to the
ratio of the input voltage to some reference, Vref (as set by the DAC). Let us assume
that the DAC output is at Vref. When Vin is less than Vref, the output of the first com-
parator is negative. This causes the integrator output to ramp downwards. When that

306 Interfacing with the analogue world

output crosses zero (possibly after several clock cycles), the output of the second
comparator goes negative. At the next clock edge, a 0 is stored in the flip-flop, causing
the DAC to output zero. Now the first comparator causes the integrator to start ramping
upwards. Again this might take several clock cycles. In this way, the mark to space ratio
of the output is changed. This type of converter is widely used in digital audio applica-
tions. The resolution is determined by the clock frequency. As with the tracking ADC,
for high resolution, a very high clock speed is needed. However, by using differential
coding methods (in other words, by recording changes rather than absolute signal
values), the clock speed requirement can be significantly reduced.

In the following section, we will see how some of these circuits can be modelled in
VHDL-AMS. It should be borne in mind that these models simply describe the func-
tional behaviour of converters. We have already noted that DACs and ADCs are subject
to limitations in terms of accuracy, resolution and speed. Very often it is necessary to
model these imperfections and to use the results of such simulations to determine the
most suitable designs. As with much else in this chapter, detailed modelling of
converter circuits could comprise yet another complete book.

13.3 VHDL-AMS

VHDL-AMS is a superset of VHDL. Several new keywords and constructs have been
added to allow modelling of physical systems. The standard defines the interaction
between a standard VHDL simulator and an analogue solver. It is important to realize
that VHDL-AMS is not ‘analogue VHDL’ but a true mixed-signal modelling language.
Moreover, VHDL-AMS has been designed to allow modelling of general physical
systems, not simply electrical networks.

13.3.1 VHDL-AMS fundamentals

VHDL-AMS introduced some important new concepts. The most important of these
can be summed up by the three keywords: nature, terminal and quantity. In
‘standard’VHDL, a signal represents a physical wire. When we display the results of a
simulation, we can observe the changes of state of that wire over time. Therefore a sig-
nal covers two ideas: a physical connection and a time history. In electrical, and other,
networks, these two ideas need to be separated. An electrical node represents the point
at which two or more components are connected. We cannot, however, talk about the
behaviour of that node, unless we specify whether we are referring to its voltage or
current or some other aspect.

To distinguish between the physical connection and the behaviour, VHDL-AMS
introduces new keywords. The network node is declared as a terminal. The voltage
or current at that node is declared as a quantity. Before giving an example, how-
ever, we need to explain how quantities and terminals relate to each other.

A terminal belongs to a particular type of network. For example, an electrical
terminal belongs to an electrical network; a magnetic terminal belongs to a magnetic
network. Each type of network has behaviour that can be described in terms of

VHDL-AMS 307

quantities. So, for example, the behaviour of an electrical network can be described in
terms of voltages and currents, while the behaviour of a magnetic network can be
described in terms of magneto-motive force and flux. Each type of network has a pair
of quantities. These can be described as through and across quantities. For example, in
an electrical network, current flows from one terminal to another through network
components, while we can also measure the voltage across such components. Each
type of network has such a pair of through and across quantities. (Note that it is also
possible to define an electrical network in which currents are thought of as the across
quantities and voltages are thought of as the through quantities. Mathematically, either
convention is acceptable. The first convention is more common, however, and we will
stick with that. In other kinds of network, the decision about which quantity is across
and which is through may be less clear.)

In declaring that a terminal belongs to a particular kind of network, we are effect-
ively defining the through and across quantities for that terminal. Therefore it would
not be adequate to declare a terminal to be of a particular VHDL type. Instead, a new
construct is used – a nature. A nature has three parts: an across type, a through type
and a reference node. The reference node is the name of the terminal with respect to
which all across quantities are calculated. In electrical networks, this is often known as
the ground or earth node.

An electrical nature might be declared as:

nature electrical is
voltage across
current through
electrical_ref reference;

As elsewhere, the keywords are highlighted. Unusually, the keywords across,
through and reference follow the identifiers. What are voltage and current? We
know that the across and through parts are quantities, so voltage and current must be
the types of those quantities. In fact, voltage and current are declared as subtypes of
REAL:

subtype voltage is REAL;
subtype current is REAL;

All quantities must be declared as subtypes of REAL. At first glance, this might
appear unnecessary. Why not simply say that natures are composed of an across and a
through quantity, both of type REAL? There are two reasons for declaring these sub-
types. First, by naming the quantities, the meaning becomes clearer. It should be easier
to see whether we are doing something silly, such as adding currents and voltages.
(VHDL-AMS does not, however, perform dimensional analysis. There would need to
be a significant revision of the overall VHDL type system to make that possible.)
Second, in VHDL-AMS, we can extend the subtype declaration to include a tolerance:

subtype voltage is REAL tolerance "DEFAULT_VOLTAGE";

The string following the tolerance is not part of VHDL-AMS but refers to a para-
meter passed to the analogue simulator (e.g. the simulator might have a control

308 Interfacing with the analogue world

2At the time of writing, a number of standard packages were being developed. It is expected that these will be
approved as IEEE standard 1076.1.1. We have assumed here that these standard packages have been
compiled into the IEEE library.

command such as ‘.OPTION DEFAULT_VOLTAGE = 1.0E-3’). This defines the
accuracy to which quantities of type voltage should be calculated.

In the examples that follow, we will assume that the definitions of the electrical
nature are contained in a package, electrical_systems, that has been compiled
into the IEEE library.2

We can now define one or more terminals with the nature electrical:

terminal node1, node2 : electrical;

Terminals can be declared within architectures (in exactly the same way as signals)
or as ports. In port declarations, the keyword terminal must be included. Terminal
ports have no mode. For example, the entity declaration of a resistor might be:

library IEEE;
use IEEE.electrical_systems.all;

entity resistor is
generic (R: REAL);
port (terminal node1, node2: electrical);

end entity resistor;

At this point, we have created only the physical node. We cannot yet refer to the
voltage and current of that node. We now need to declare one or more quantities. There
are three types of quantity declaration in VHDL-AMS: free quantities, branch quanti-
ties and source quantities. We will not discuss source quantities here – they are used
primarily for noise modelling.

A free quantity is simply a declaration of a quantity:

quantity v1 : voltage;

This does not relate v1 to any particular node, and so is not a very useful or likely
declaration. More usual would be something like:

quantity q1 : charge;

Free quantities can be given initial values, like variables and signals:

quantity q1 : charge := 0.01;

Branch quantities identify the across and through quantities in some branch between
two terminals. So, given the declaration of node1 and node2, above, we can declare:

quantity vr across ir through node1 to node2;

This declares vr to be the voltage between node1 (positive) and node2 (negative),
and ir to be the current flowing from node1 to node2. A branch quantity declaration

VHDL-AMS 309

can be simplified to include only the parts that are needed for a model. The following
declares a voltage with respect to ground (electrical_ref):

quantity v1 across node1;

13.3.2 Simultaneous statements

VHDL has three styles of modelling: structural (netlists), concurrent statements and
sequential statements (in processes). VHDL-AMS adds two new styles: simultaneous
statements and procedurals. We will briefly discuss procedurals later. Simultaneous state-
ments are, in a sense, the analogue equivalents of concurrent statements. Perhaps more
accurately, they can be thought of as algebraic equations. Simultaneous statements use
the symbol ‘==’ to separate the left and right sides. Note that this is not an assignment. As
with algebraic equations, the symbol shows that the two sides should be equal. The left
and right sides must each result in a floating point value. Each statement must also
contain at least one quantity. (If each side resulted in a constant, the statement would be
both unsolvable and irrelevant!)

The simultaneous statements are therefore the simultaneous equations that are
solved by the analogue simulator. In accordance with the standard rules of algebra, the
number of simultaneous statements should be equal to the number of unknowns,
i.e. the free and through quantities. VHDL-AMS has the additional constraint that this
equality should be satisfied within each architecture. (This is a slight simplification of
the rule, but it is sufficient for the models that we will discuss here.) The across
quantities are also unknown, but equations to solve those quantities are created
automatically.

In order to illustrate a simultaneous statement, we will give a complete model of
a resistor:

library IEEE;
use IEEE.electrical_systems.all;

entity resistor is
generic (R: REAL);
port (terminal node1, node2: electrical);

end entity resistor;

architecture ohmic of resistor is
quantity vr across ir through node1 to node2;

begin
ir == vr/R;

end architecture ohmic;

We can model other components in a similar way. For example, a capacitor can be
modelled as follows:

library IEEE;
use IEEE.electrical_systems.all;

310 Interfacing with the analogue world

entity capacitor is
generic (C: REAL);
port (terminal node1, node2: electrical);

end entity capacitor;

architecture dvdt of capacitor is
quantity vc across ic through node1 to node2;

begin
ic == C*vc'DOT;

end architecture dvdt;

The attribute causes a new quantity to be created that is the time derivative of the
original quantity. This attribute can be applied only to a named quantity, not to an
expression. Similarly, there is an 'INTEG attribute for calculating the time integral.

Because the simultaneous statement is an algebraic equation and not an assignment, it
is not necessary to put the (unknown) through quantity on the left-hand side of the equa-
tion. Furthermore, it is possible to write an expression on the left-hand side. If, however,
neither the left-hand side nor the right-hand side is a simple quantity, a tolerance clause
must be included in the statement to indicate to the solver what accuracy is required in
evaluating the expression. All of the following are valid ways to describe a capacitor:

ic == C*vc'DOT;
C*vc'DOT == ic;
vc'DOT == ic/C tolerance "DEFAULT_CHARGE";
vc == ic'INTEG/C;
ic'INTEG == C*vc tolerance "DEFAULT_VOLTAGE";
ic'INTEG == C*(node1'REFERENCE – node2'REFERENCE)

tolerance "DEFAULT_VOLTAGE";

In the last example, the attribute 'REFERENCE is used to obtain the absolute value of each
node voltage. If we do this, we do not need to explicitly declare the across quantity vc.

Before leaving these basic models, let us consider a pure voltage source that gener-
ates a sine wave. We will need a version of this element to describe a digital to analogue
converter.

library IEEE;
use IEEE.electrical_systems.all;
use IEEE.math_real.all;

entity vsin is
generic (vo, va, freq: REAL);
port (terminal np, nm: electrical);

end entity vsin;

architecture source of vsin is
quantity vs across iss through np to nm;

begin
vs == vo + va * sin(2.0*math_pi*freq*NOW);

end architecture source;

VHDL-AMS 311

The sin function and math_pi are defined in the math_real package. In
VHDL-AMS the function NOW is overloaded to return the current simulation time as a
real number (in seconds). Above, we noted that the branch quantity declaration can
omit across or through quantities if they are not used. Why, therefore, is the through
quantity, iss, declared? Recall, also, that for the set of equations to be solvable, the
number of through and free quantities (unknowns) must equal the number of simultan-
eous statements (equations). Therefore, iss must be declared, even though it is not
explicitly used. This is true of all pure voltage sources.

13.3.3 Mixed-signal modelling

VHDL-AMS is a mixed-signal modelling language. Therefore, we can mix ‘analogue’
and ‘digital’ constructs in the same models. Let us consider a simple comparator. We
want to convert two analogue voltages into a one-bit digital signal, such that the output
is a logic ‘1’ when the first input is greater than the second and ‘0’ otherwise. The entity
description can be written as:

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.electrical_systems.all;

entity Comp is
port (terminal Aplus, Aminus : electrical;

signal Dout : out std_logic);
end entity Comp;

This entity has three ports – two are terminal objects and one is a signal object. The
keyword signal is optional; it’s included here to distinguish the digital port from the
analogue ports. This is not a VHDL-AMS extension; we could specify ports to be signals
in standard VHDL, but we don’t bother, because there is nothing else that they can be.

In the architecture, we need to detect when one voltage becomes greater or less than
the other and switch the output accordingly. This could be done with a simple compari-
son operator, but it is better to use the 'ABOVE attribute. A threshold, which can be a
quantity or an expression, is specified. This creates a new signal and hence causes an
event to pass to the digital simulator when the attributed quantity crosses the threshold.
Although the attribute is called 'ABOVE, it causes an event when the threshold is
crossed in either direction.

architecture Simple of Comp is
quantity Vplus across Aplus;
quantity Vminus across Aminus;

begin
Dout <= '1' when Vplus'ABOVE(Vminus) else

'0';
end architecture Simple;

312 Interfacing with the analogue world

Notice that there is one concurrent VHDL assignment. There are no through or free
quantities, so there are no simultaneous statements.

This example simply converts a signal to one bit. We can use the comparator as part
of a flash ADC (see Section 13.2 and Exercise 13.5). Later, we will use the comparator
again as part of a tracking ADC. We can, however, also model a flash ADC behav-
iourally. We simply need to convert a varying (real) quantity into a bit vector. In the
example below, the model is parameterized in terms of the analogue voltage range and
the number of bits. We also include a clock to sample the waveform – otherwise the
model will be evaluated at every analogue time step.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use IEEE.electrical_systems.all;

entity adc is
generic (Vrange : REAL; N : POSITIVE);
port (signal Dout : out Std_logic_vector(N-1 downto 0);

terminal Ain : electrical);
signal clock : in std_logic);

end entity adc;

architecture Simple of adc is
quantity Vin across Ain;
constant Dmax : unsigned(N-1 downto 0) := (others => '1');

begin
process (clock) is
begin

if rising_edge(clock) then
Dout <=
std_logic_vector(to_unsigned(INTEGER(Vin/Vrange *

REAL(to_integer(Dmax))),N));
end if;

end process;
end architecture Simple;

In the following example, a digital to analogue converter is modelled as a voltage
source and resistance in the analogue world. The voltage source can take one of three
values – V1, V0 or Vx for logic 1, logic 0 or unknown, respectively. Similarly, the out-
put resistance can take a low impedance value or a high impedance value. If we assume
that metavalues such as 'U' can be mapped onto 'X', this allows us to represent all
std_logic values as voltage and resistance pairs. A parameterized entity desciption
for a DAC is as follows.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.electrical_systems.all;

VHDL-AMS 313

entity Dac is
generic (V1 : REAL := 5.0;

V0 : REAL := 0.0;
Vx : REAL := 2.5;
Zhi : REAL := 1.0e9;
Zlo : REAL := 1.0);

port (signal Din : in std_logic;
terminal Aout : electrical);

end entity Dac;

To convert from analogue quantities to digital signals, we write concurrent state-
ments. To convert the other way, we need to write simultaneous statements. There is a
catch, however. In discrete simulation (‘standard’ VHDL), signals change instant-
aneously. In a continuous simulation, instantaneous step changes cause problems.

Without going into great detail, an analogue or continuous solver approximates a
changing quantity by taking discrete time steps. The waveform is therefore approxi-
mated by a polynomial expression. The size of these time steps is varied to minimize
the error in the polynomial. A large step change makes it impossible to construct a
polynomial expression across that change, so the error is considered large and the time
step is reduced in an attempt to minimize the error. No matter how small the time step
is made, the error will remain large and the simulation fails.

One way to avoid instantaneous changes is to force a transition to occur in a finite
time. This can be done with the 'RAMP attribute. The values of the voltage and resis-
tance are held as signals within the DAC model. When the input signal changes, these
signals are updated. An expression for the output voltage in terms of these signals can
then be written as a simultaneous statement. Note that changes in the signals are slowed
by 1 ns using the 'RAMP attribute in the simultaneous statement.

architecture ramped of Dac is
quantity Vout across Iout through Aout;
signal Zth : REAL := Zlo;
signal Vth : REAL := Vx;

begin
Zth <= Zhi when Din = 'Z' else

Zlo;
Vth <= V0 when Din = '0' else

V1 when Din = '1' else
Vx;

Vout == Vth'RAMP(1.0e-9) – Iout*Zth'RAMP(1.0e-9);
end architecture ramped;

The obvious disadvantage of this approach is that the time to change between values
has to be specified; 1 ns might easily be far too large or far too small compared with
other changes in the system. It would be better to let the solver decide for itself what
would constitute a suitable change. For this to happen, the solver needs to be told that
there could be a problem, and this is the responsibility of the model writer. VHDL-
AMS includes a mechanism for indicating a discontinuity – the break statement.

314 Interfacing with the analogue world

3There is also an inconsistency in the syntax here; the last line of a simultaneous case statement is end
case. The last line of a simultaneous if statement is end use. Don’t try to memorize this – that is what
compilers are for!

architecture breakon of Dac is
quantity Vout across Iout through Aout;

begin
break on Din;
case Din use
when '0' => Vout == V0 – Iout*Zlo;
when '1' => Vout == V1 – Iout*Zlo;
when 'Z' => Vout == Vx – Iout*Zhi;
when others => Vout == Vx – Iout*Zlo;

end case;
end architecture breakon;

When Din changes, the analogue solver stops and restarts, therefore avoiding the
error detection mechanism. In this example, we also introduce the simultaneous case
statement. Unlike the sequential case statement, this exists outside a sequential block.
Each branch of the case statement consists of one simultaneous statement. At any
time, only one of these statements is therefore valid and thus the solvability conditions
are met. The syntax of the case statement is very similar to that of the sequential case
statement, except for the inclusion of use instead of is. There is also a simultaneous
if statement, which we will introduce later.3

If we wish to convert several bits to an analogue equivalent, we could use a one-bit
DAC for each input bit and add the outputs together, with appropriate weighting. If we
are not concerned with converting 'X' and 'Z' bits, it is easier to simply convert the
bits to a real number as follows. Notice that the output is scaled to a generic, Vref.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use IEEE.electrical_systems.all;

entity NbitDac is
generic (Vref : REAL; N : POSITIVE);
port (signal Din : in std_logic_vector(N-1 downto 0);

terminal Aout : electrical);
end entity NbitDac;

architecture Nbit of NbitDac is
quantity Vout across Iout through Aout;
constant Dmax : unsigned(N-1 downto 0) := (others => '1');

begin
break on Din;
Vout == (Vref*REAL(to_integer(unsigned(Din))))/

REAL(to_integer(Dmax));
end architecture Nbit;

Phased-locked loops 315

We now have the necessary parts to build the tracking ADC from Section 13.2. We
also need the counter from Exercise 6.6. This has been written as a self-contained test-
bench. It would be equally valid to include the four component parts in a separate
entity. Notice that we have created a netlist in exactly the same way as digital netlist,
the only difference being that the analogue nodes needed for connecting components
are declared as terminals.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use IEEE.electrical_systems.all;

entity Tracking is
end entity Tracking;

architecture Structural of Tracking is
signal Clock, Reset, Up : std_logic := '0';
signal Dout : std_logic_vector(3 downto 0);
terminal Ain, Aout : electrical;

begin
Clock <= not Clock after 10 NS;
Reset <= '1', '0' after 2 NS;
C1 : entity WORK.Counter generic map (4)

port map (Clock, Reset, Up,
Dout);

D1 : entity WORK.NBitDac generic map (5.0, 4)
port map (Dout, Aout);

O1 : entity WORK.Comp port map (Ain, Aout, Up);
V1 : entity WORK.Vsin generic map (2.5, 2.5, 1.0E4)

port map (Ain, electrical_ref);
end architecture Structural;

13.4 Phased-locked loops

Although ADCs and DACs are the main interfaces between the analogue and digital
worlds, another class of circuits also sits at this boundary. One of the major uses for
phase-locked loops (PLLs) is for generating clocks. PLLs can be used to recover the
clock from a stream of data. A PLL can also be used to ‘clean up’ a clock that has an
irregular period and to multiply a clock signal to create a higher frequency signal. All of
these tasks are difficult to achieve with conventional digital circuit techniques. PLLs can
be built as purely analogue circuits, as purely digital circuits or using a mixture of meth-
ods. As with ADCs and DACs, there is not enough space in a book like this to give any
more than a brief introduction to PLLs. The purpose here is to show a simple example
and to illustrate one way of modelling that example in VHDL-AMS. As with ADCs and
DACs, the real art of modelling PLLs is to capture non-linearities and other imperfec-
tions to determine whether a particular design will work in a particular context.

316 Interfacing with the analogue world

Phase detector Low Pass
Filter

VCO

Counter

ref_clk
vco_out

Figure 13.6 PLL structure.

Figure 13.6 shows the basic structure of a PLL. The phase detector determines the
difference between the input (ref_clk) and the stabilized output (vco_out). The phase
detector could be an analogue four-quadrant multiplier or a digital XOR gate or a sequen-
tial digital circuit. The output from the phase detector is a sequence of pulses. The low pass
filter averages these pulses in time. This filter is important to the working of the PLL. If its
time constant is too small, the PLL will not settle into a regular ‘locked’pattern. If the time
constant is too great, the PLL may not lock at all. The voltage controlled oscillator (VCO)
converts the output of the filter into a oscillation whose frequency is determined by the
filter output voltage. The VCO is likely to be the hardest part of the design. It can oscillate
only within a relatively narrow band of frequencies. Finally, the counter is optional. By
dividing the VCO output, the phase detector compares with this reduced frequency output.
In other words the VCO output must be a multiple of the input frequency.

There are many books about PLL design, but perhaps the best way to understand
their operation is by playing with the circuit parameters in a simulation. Therefore, we
will simply present one, ideal, model of a PLL.

We start with the largest model – the phase detector. We will use the example from
Chapter 12. The two outputs, qa and qb, correspond to two control signals, up and
down, respectively. These need to be converted to analogue voltages and filtered. We
will use two instances of the one-bit DAC from the previous section. The low pass filter
can be modelled using the Laplace Transform attribute in VHDL-AMS. This attribute
takes two parameters, each of which is a vector of real numbers. The first vector
contains the coefficients of the numerator and the second contains the coefficients of
the denominator. Here we want to create a parameterized low pass filter, which in the
s-domain has the transfer function .

Therefore the numerator has the value 1.0, and the denominator has the values 1.0
and T. Hence, this is the VHDL-AMS model. Although this is a frequency domain
model, it can be interpreted in the time domain. Similarly, time domain models (such as
v'DOT) can be interpreted in the frequency domain.

library IEEE;
use IEEE.electrical_systems.all;

1
1 � sT

Phased-locked loops 317

entity lpf is
generic (T : REAL := 1.0e-6);
port (terminal Ao, Ai : electrical);

end entity lpf;

architecture ltf of lpf is
constant Num : REAL_VECTOR := (0 =>1.0);
constant Den : REAL_VECTOR := (1.0, T);
quantity Vo across Io through Ao;
quantity Vi across Ai;

begin
Vo == Vi'LTF(Num, Den);

end architecture ltf;

The voltage controlled oscillator is mixed-signal, but can be written using a VHDL
process.

library IEEE;
use IEEE.Std_logic_1164.all;
use IEEE.electrical_systems.all;

entity vco is
generic (gain : REAL := 5.0e5;

fnom : REAL := 2.5e5;
vc : REAL := 2.5);

port (terminal Ina, Inb : electrical;
vout : out std_logic);

end entity vco;

architecture a2d of vco is
begin
process is

variable frequency : REAL;
variable period : REAL;

begin
frequency := fnom +
(Ina'REFERENCE – Inb'REFERENCE – vc)*gain;

if frequency > 0.0 then
period := 1.0/frequency;

else
period := 1.0/fnom;

end if;
wait for period/2.0;
vout <= '1';
wait for period/2.0;
vout <= '0';

end process;
end architecture a2d;

318 Interfacing with the analogue world

Note that there are VHDL-AMS extensions, even within the process. The values of
the input quantities are found using the 'REFERENCE attribute and the wait state-
ments take real numbers, not time units.

The counter is purely digital, although we will use it in an asynchronous way.

library IEEE;
use IEEE.std_logic_1164.all;

entity counter is
generic(n : NATURAL := 4);
port(clk : in std_logic;

count : out std_logic);
end entity counter;

architecture rtl of counter is
begin
p0: process (clk) is

variable cnt : NATURAL;
begin

if clk = '1' then
cnt := cnt + 1;
if cnt = n then
cnt := 0;
count <= '1';

else
count <= '0';

end if;
end if;

end process p0;
end architecture rtl;

Finally, we can put all the parts together and include a suitable stimulus.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.electrical_systems.all;

entity pll is
end entity pll;

architecture structural of pll is
terminal up, down, up_a, down_a : electrical ;
signal up_d, down_d, VCO_out, VCO_div : std_logic ;
signal ref_clk : std_logic := '0' ;

begin
P0: entity WORK.phase_detector port map (inA => ref_clk,

inB => VCO_div, qA => up_d, qB => down_d);

VHDL-AMS simulators 319

D0: entity WORK.dac port map (Din => up_d, Aout => up_a);
D1: entity WORK.dac port map (Din => down_d, Aout =>

down_a);
L0: entity WORK.lpf generic map (50.0e-6)

port map (Ai => up_a, Ao => up);
L1: entity WORK.lpf generic map (50.0e-6)

port map (Ai => down_a, Ao => down);
V0: entity WORK.vco generic map (gain => 1.0e5,

fnom => 8.0e5, vc => 2.5)
port map (Ina => down, Inb => up, vout =>

VCO_out);
C0: entity WORK.counter generic map (5)

port map (clk => VCO_out, count => VCO_div);
ref_clk <= not ref_clk after 5 US;

end architecture structural;

Simulation of this PLL model shows that the output frequency varies between about
450 kHz and 600 kHz, before settling at 500 kHz after about 260 µs. The clock has a
frequency of 100 kHz and the counter counts to 5, so the PLL behaves exactly as we
would expect.

13.5 VHDL-AMS simulators

It could be argued that the mixed-signal models of ADCs, DACs and PLLs could be
modelled entirely in standard VHDL. Indeed, there is a very limited amount of behav-
iour that requires an analogue solver in these models. The real power of VHDL-AMS is
that it allows digital VHDL models to be simulated at the same time as analogue
circuits that would traditionally have been simulated with SPICE. For several reasons,
it is appropriate to bring the discussion to a close.

First, at the time of writing, there are very few VHDL-AMS simulators available. None
of these yet cover the entire language. For example, there is a whole style of modelling
that is still unsupported by most of these tools. Just as it is possible to write sequential
code in ‘digital’VHDL, it is possible to write sequential code in VHDL-AMS. For exam-
ple, the following is a model of an opamp that uses the procedural construct.

library IEEE;
use IEEE.electrical_systems.all;

entity Opamp is
generic (Rin : REAL := 4.0E5;

Vinoffset : REAL := 40.0E-6;
Rout : REAL := 640.0;
Gain : REAL := -50.0;
Voutoffset : REAL := 0.0;
Iddtf : REAL := 70.0E-6);

320 Interfacing with the analogue world

port(terminal Inn, Outt, Psu : electrical);
end entity Opamp;

architecture ClosedLoop of Opamp is
quantity Vout across Iout through Outt;
quantity Vin across Iin through Inn;
quantity Vdd across Idd through Psu;

begin
procedural is

variable Vin1, Vo : Voltage;
begin
Vin1 := Vin – Vinoffset;
Vo := Vin1 * Gain + Voutoffset;
Iin := Vin1 / Rin;
Vout := Vo – (-Iout * Rout);
Idd := -((Vin*Iddtf) + Iout);

end procedural;
end architecture ClosedLoop;

This model will compile in some simulators, but will not simulate. You may also find
that parts of the 1993 VHDL standard are not implemented in VHDL-AMS simulators.

Second, the VHDL-AMS standard does not specify an algorithm for the analogue
solver. At present, most VHDL-AMS simulators are based on a SPICE-like simulator.
There is a particular problem in calculating initial conditions as assumptions may be
built into the solver. For example, in one simulator, the n-bit DAC needed the following
modification:

if domain = quiescent_domain use
Vout == 0.0;

else
Vout == (Vref*REAL(to_integer(unsigned(Din))))/

REAL(to_integer(Dmax));
end use;

DOMAIN is a built-in signal that can take the values QUIESCENT_DOMAIN,
TIME_DOMAIN or FREQUENCY_DOMAIN. The signal is automatically updated as
each type of analysis is performed. Similar ‘fixes’ may be needed in other models. It
may also be necessary to change the library and use clauses to make these models
work with particular simulators.

Another compatibility problem exists with SPICE models. It is very likely that the
analogue part of a design will be described in terms of SPICE models, either at
component level or in terms of SPICE macromodels. Although SPICE is widely used,
it is not standardized. Therefore each simulator accepts a slightly different set of com-
ponents and commands. To use SPICE models in a VHDL-AMS description, either
there needs to be an interface between VHDL-AMS and SPICE (which is not defined
and therefore unique to each simulator) or the SPICE models need to be converted to
VHDL-AMS (which in turn raises a host of compatibility issues). Nevertheless, both
these approaches can be used in existing VHDL-AMS simulators. Therefore, for the

Exercises 321

immediate future, it is likely that the use of VHDL-AMS will be limited to providing
interfaces between VHDL and SPICE.

Summary

At some point, digital circuits have to interface with the real, analogue world.
Modelling this interface and the interaction with analogue components has always been
difficult. VHDL-AMS extends VHDL to allow analogue and mixed-signal modelling.
Typical converters include ladder DACs, flash ADCs, Delta-Sigma ADCs and PLLs.
All of these components can be modelled and simulated in VHDL-AMS. There is, as
yet, no way to automatically synthesize such elements from a behavioural description.
VHDL-AMS simulators are still relatively new and generally do not support the entire
language. They do, however, provide means for interfacing between SPICE models and
VHDL-AMS, allowing modelling of complete systems.

Further reading

For an explanation of analogue simulation algorithms, see Litovski and Zwolinski.
Horowitz and Hill is an excellent guide to practical circuit design and includes descrip-
tions of ADCs, DACs and PLLs. For a full description of VHDL-AMS, the language
reference manual is, of course, invaluable. Manufacturers’ manuals need to be read
with the LRM to understand any limitations.

Exercises

13.1 An inductor is described by the equation . Write a VHDL-AMS model
of an inductor, using the 'DOT attribute.

13.2 Write an inductor model that uses the 'INTEG attribute.

13.3 Write a parameterizable model of a voltage source that generates a ramp. The
parameters should be initial voltage, final voltage, delay before the ramp, and rise
(or fall) time.

13.4 Write a model of voltage source that generates a pulse. What parameters need to
be specified? How is it made to repeat?

13.5 Write a VHDL-AMS model of the flash ADC shown in Figure 13.1.

vL � L #
diL

dt

Appendix A

VHDL standards

A.1 VHDL and related standards

IEEE Std 1076-2002

IEEE Standard VHDL Language Reference Manual

This is the formal definition of VHDL. The original version of the standard was pro-
duced in 1987. A revised version of the standard was produced in 1993 and this version
is implemented in most tools. The differences between the 2002 and 1993 versions are
slight, with the exception of shared variables. Some tools still conform only to the 1987
version. Sections A.2 and A.3 summarize the differences between the 1987, the 1993
and the 2002 standards. Appendix C lists alternative forms of the packages used in this
book that use shared variables.

IEEE Std 1076.1-1999

Analog and mixed signal extensions to IEEE Standard VHDL

VHDL was designed for describing digital systems. IEEE Std 1076.1, known colloqui-
ally as VHDL-AMS, defines a set of extensions to allow analogue and mixed-signal
modelling and simulation.

IEEE Std 1076.2-1996

IEEE standard VHDL mathematical packages

Most programming languages have built-in functions for performing floating-point math-
ematical operations. This standard defines real and complex functions for VHDL.

322

VHDL standards 323

IEEE Std 1076.3-1997

IEEE standard VHDL synthesis packages

These two packages (for types bit and std_logic, respectively) define the
signed and unsigned types and arithmetic functions, for use with synthesis
tools. These packages replace a number of vendor-specific packages that achieved
the same results.

IEEE Std 1076.4-2000

IEEE standard VITAL application-specific integrated circuit (ASIC)
modeling specification

VITAL (VHDL Initiative Towards ASIC Libraries) is a set of low-level primitives for
accurate timing simulations of gate-level models.

IEEE Std 1076.6-1999

IEEE standard for VHDL register transfer level synthesis

The RTL synthesis standard defines the subset of VHDL appropriate to RTL synthesis.
Certain constructs, for example delays and floating-point operators, are not synthesiz-
able. This standard defines what a synthesis tool should be able to implement. The first
version of this standard recognizes only VHDL conforming to the 1076-1987 standard.
VHDL’93 constructs may be ignored.

IEEE Std 1029.1-1998

IEEE standard for waveform and vector exchange (WAVES)

WAVES (Waveform and Vector Exchange to Support Design and Test Verification) is a
set of VHDL methods to assist in verifying and testing hardware. The motivation for
this standard is to allow test vector files to be shared between VHDL simulators and
hardware testers.

IEEE Std 1164-1993

IEEE standard multivalue logic system for VHDL model interoperability

This defines the std_ulogic and std_logic types, together with the respective
vector types and their Boolean operators.

324 VHDL standards

A.2 Differences between 1076-2002 and 1076-1993

The 2002 standard is essentially the same as the 1993 standard, but certain ambiguities
have been removed. Most of the examples in this book conform to both standards.
There are a small number of differences as follows.

The restriction on the use of ports with mode buffer has been eased. In the 1993
standard, a port signal with this mode can be written to and read within an architecture,
but can be connected only to an internal signal or a port also with mode buffer
within an instantiating architecture. This restricts how such a model can be used. The
reason for this restriction was that a signal with mode buffer may have only a single
driver. In the 2002 standard, ports with mode buffer can be connected to ports with
mode out or inout in the instantiating architecture. Similarly, ports with mode out
or inout can be connected to ports with mode buffer in the instantiating architec-
ture. This makes it possible to use the buffer mode for modelling devices such as
latches, without requiring internal signals.

Thus, the following is legal in the 2002 standard, but not in earlier versions.

entity nand2 is
port (z : out BIT; a, b : in BIT);

end entity nand2;
architecture dataflow of nand2 is
begin
z <= a nand b;

end architecture dataflow;

entity latch is
port (q, qb : buffer BIT; r, s : in BIT);

end entity latch;
architecture gate of latch is
begin
g0: entity WORK.nand2 port map (q, qb, r);
g1: entity WORK.nand2 port map (qb, q, s);
end architecture gate;

entity dlatch is
port (q, qb : out BIT; d, c : in BIT);

end entity dlatch;
architecture struct of dlatch is
signal notd, r, s : BIT;

begin
notd <= not d;

n0: entity WORK.nand2 port map (r, d, c);
n1: entity WORK.nand2 port map (s, notd, c);
l0: entity WORK.latch port map (q, qb, r, s);
end architecture struct;

The function NOW, which returns the current simulation time, is now defined as
a pure function, not an impure function. In the 1987 standard, there were no impure

VHDL standards 325

functions! This has implications for the definition of functions that themselves
use NOW.

Shared variables are discussed in Appendix C.
The following features are marked as likely to be removed in the next revision

(which is why they have been ignored in this book). It is suggested that these features
should not be used for new VHDL code.

1. The linkage mode for ports.

2. Replacement characters. ‘!’ can replace ‘|’ (when statements); ‘%’ can replace ‘"’
(strings); and ‘:’ can replace ‘#’ in delimiting numbers.

A.3 Differences between 1076-1993 and 1076-1987

The 1993 VHDL standard was largely an extension of the 1987 standard. The examples
in this book conform to the 1993 standard and will not work unmodified with some
older tools. With the exceptions of file handling and of impure functions not explicitly
declared as such, VHDL written according to the 1987 standard will compile with tools
conforming to the 1993 standard.

The following new reserved words were added to the 1993 standard: group,
impure, inertial, literal, postponed, pure, reject, rol, ror,
shared, sla, sll, sra, srl, unaffected and xnor.

Most of the other changes from the 1987 to 1993 standards are rationalizations of
various structures. Listed below are some of the changes that would have to be made to
the examples given, to make them acceptable to a 1987 compliant tool:

end entity XYZ;
end architecture XYZ;
end configuration XYZ;
end procedure XYZ;
end function XYZ;
end package XYZ;
end package body XYZ;
component XYZ is
process XYZ is

The form given here is more verbose, but easier to read. Note also that labels can be
prepended to most VHDL constructs in the 1993 standard. The 1987 places much
tighter restrictions on which constructs may be labelled.

Here is an example of a file declaration, using the 1987 standard:

use std.textio.all;
file DataFile : text is in "data.dat";

This is how it would be done using the 1993 standard:

use std.textio.all;
file DataFile : text open read_mode is "data.dat";

326 VHDL standards

In addition, the procedures file_open (two forms) and file_close are implicitly
defined when a new file type is declared.

The 1987 standard had two attributes that worked with blocks or architectures:
'STRUCTURE and 'BEHAVIOR. These have been deleted. The following attributes
were added in the 1993 standard: t'ASCENDING, t'IMAGE(x), t'VALUE(x),
a'ASCENDING, s'DRIVING, s'DRIVING_VALUE, e'SIMPLE_NAME,
e'INSTANCE_NAME and e'PATH_NAME.

A.4 VHDL 200x

The next revision of VHDL is likely to be a lot more radical than the 2002 revision.
Various groups around the world are considering matters such as object-oriented exten-
sions to VHDL and including the std_logic package as part of the main standard.
At this stage it is not possible to predict how and when these changes might finally
appear. In any case, VHDL like all IEEE standards is subject to a balloting process dur-
ing which significant syntactic and semantic changes could emerge.

For example, one model of object-oriented VHDL (SUAVE) would allow types to be
passed to entities as, for example:

entity counter is
generic (type count_type is (<>));
port (clk : in BIT;

data : out count_type);
end entity counter;

This entity declaration would allow the same counter model to be used, for example,
for both natural and unsigned types. A number of other extensions are proposed
in SUAVE.

Another approach (Objective VHDL) allows one declaration to be derived from
another. For example, a flip-flop with an enable signal could be derived from a basic
flip-flop as follows:

entity DFF is
port(D, Clk : in bit;

Q : buffer bit);
end entity DFF;

entity EDFF is new DFF with
port(EN : in Bit);

end entity EDFF;

Again this is only one enhancement among many.

327

Appendix B

Verilog

Verilog is often seen as an alternative to VHDL. The Verilog language was developed in
the early 1980s by Gateway Design Automation, which was later taken over by
Cadence. Verilog was then put into the public domain and became an IEEE standard
(1364-1995 and 1364-2001). In many respects, Verilog resembles the C programming
language, while VHDL is closer to Ada. Verilog is weakly typed: assignments that
would be illegal in VHDL are permissible in Verilog. Verilog is often said to be simpler
and closer to hardware than VHDL. Indeed, Verilog can be used to model logic circuits
at the transistor or switch level, which is difficult in VHDL. Similarly, fault simulators
have been developed to use Verilog, while such tools are almost non-existent for
VHDL. On the other hand, VHDL has high-level constructs and abstract data types that
Verilog does not have, making VHDL much more suited to behavioural modelling.
Many simulation and RTL synthesis tools accept both VHDL and Verilog. Therefore it
is possible to use VHDL for high-level design and Verilog for low-level post-synthesis
timing and fault simulation.

This appendix is a brief introduction to Verilog. The purpose is to highlight
the differences (and similarities) between VHDL and Verilog, not to provide a
detailed tutorial.

A Verilog model of a two-input NAND gate is shown below.

// Comment
module NAND (in1, in2, out);
input in1, in2;
output out;
assign out = ~(in1 & in2);

endmodule // Note no semicolon

Verilog is case-sensitive (like C, but unlike VHDL). Identifiers must start with a letter
or underscore, and can include letters, digits, _ and $. Note that Verilog does not have
separate interface and implementation sections – everything is in a module. Signals
do not have types; a signal can take the value 0, 1, Z or X. assign introduces a
continuous assignment statement, analogous to a concurrent assignment in VHDL.

328 Verilog

The bitwise logical operators are ~ (NOT), & (AND), | (OR) and ^ (XOR). To instan-
tiate a module, it simply has to be invoked:

module simple (a, b, c, d);
input a, b, c;
output d;
wire p, q;
NAND g1 (a, b, p);
NAND g2 (a, c, q);
NAND g3 (p, q, d);

endmodule

g1 to g3 are instance names. The internal signals, p and q, are declared with wire,
although this declaration can be omitted (the compiler would work out that p and q are
wires!). In order for the compilation to succeed, the NAND module must be compiled first.

As with VHDL, the sequential programming constructs are much more powerful
than the concurrent constructs. For example, a 4 to 1 multiplexer could be modelled by:

module MUX (Sel, A, B, C, D, Y);
input [1:0] Sel; // 2 bit vector
input A, B, C, D;
output Y;
reg Y; // needed for procedural assignment
always @(Sel or A or B or C or D)
case (Sel)
2'b00 : Y = A;
2'b01 : Y = B;
2'b10 : Y = C;
2'b11 : Y = D;
default : Y = A;

endcase
endmodule

The procedural (sequential) section is introduced by the always reserved word. This is
analogous to a VHDL process. The always section is executed when any of the inputs
in the expression following the @ changes. The sequential section has only one statement:
the case statement. If it had more than one statement, we would need to bracket the state-
ments with begin and end. The constants in the case statement are of the form 2'b00,
where the first digit shows the number of bits and the b shows that the digits are binary.
The characters o (octal), h (hexadecimal) and d (decimal) may also be used.

A level-sensitive latch can be modelled using an incomplete if statement, as
in VHDL:

module LATCH (En, D, Q);
input En, D;
output Q;
reg Q;
always @(En or D)

Verilog 329

if (En)
Q <= D;

endmodule

There are two sorts of procedural assignment: blocking and non-blocking. Two non-
blocking assignments are shown in the following code fragment:

reg M;
always @(En or D)
if (En)
begin
M <= D;
Q <= M;
end

Like a VHDL signal assignment (which it syntactically resembles), all non-blocking
assignments are completed at the end of the current time period. (Note that Verilog
does not have the concept of delta delays.) Therefore the example shown would syn-
thesize to two latches. On the other hand, the following code fragment has blocking
assignments and would synthesize to a single latch.

reg M;
always @(En or D)
if (En)
begin
M = D;
Q = M;
end

A blocking assignment must be completed before control passes to the next state-
ment. This is similar to a variable assignment in VHDL (but there is no distinction
between signals and variables in Verilog). In general, to write portable code for synthe-
sizable hardware, blocking assignments should be used for combinational logic and
non-blocking assignments used for sequential hardware. The two types of assignment
should not be mixed in the same procedural block.

An edge-triggered flip-flop is modelled by detecting the edge:

module DFF (Clk, D, Q);
input Clk, D;
output Q;
reg Q;
always @ (posedge Clk)
Q <= D;

endmodule

A negative edge would be detected using negedge. Similarly, a flip-flop with an
asynchronous reset would detect an edge on the reset:

module DFF (Clk, Reset, D, Q);
input Clk, Reset, D;

330 Verilog

output Q;
reg Q;
always @(posedge Clk or negedge Reset)
if (!Reset)
Q <= 0;

else
Q <= D;

endmodule

Verilog does not have enumerated types. Therefore state machines require the state
assignment to be explicitly stated. The integer values would be mapped directly onto
binary values in synthesis. The following example shows a Verilog version of the
vending machine example from Chapter 5, followed by a suitable testbench.

module
vending(clock,reset,twenty,ten,ready,dispense,ret,coin);

input clock,reset,twenty,ten;
output ready,dispense,ret,coin;
reg ready,dispense,ret,coin;
parameter A=0, B=1, C=2, D=3, F=4, I=5;
reg [0:2] present_state, next_state;

always @(posedge clock or posedge reset)
if (reset)
present_state <= A;

else
present_state <= next_state;

always @(twenty or ten or present_state)
begin
ready = 0;
dispense = 0;
ret = 0;
coin = 0;
case (present_state)
A : begin

ready = 1;
if (twenty)
next_state = D;

else if (ten)
next_state = C;

else
next_state = A;

end
B : begin

dispense = 1;
next_state = A;
end

Verilog 331

C : begin
coin = 1;
if (twenty)
next_state = F;

else if (ten)
next_state = D;

else
next_state = C;

end
D : begin

coin = 1;
if (twenty)
next_state = B;

else if (ten)
next_state = F;

else
next_state = D;

end
F : begin

coin = 1;
if (twenty)
next_state = I;

else if (ten)
next_state = B;

else
next_state = F;

end
I : begin

ret = 1;
next_state = A;
end

default : next_state = A;
endcase

end //always
endmodule

‘timescale 1ns / 100ps

module testbench;
reg clock, reset, twenty, ten;
wire ready, dispense, ret, coin;
vending vm
(clock,reset,twenty,ten,ready,dispense,ret,coin);
always
begin
#10 clock = 1'b0;

332 Verilog

#10 clock = 1'b1;
end

initial
begin
reset = 1;
twenty = 0;
ten = 0;
#1 reset = 0;
#64 twenty = 1;
#80 twenty = 0;
#20 ten = 1;
#20 ten = 0;
#20 twenty = 1;
#20 twenty = 0;
end

endmodule

The reserved word initial introduces a sequential block that is executed once.
Hence it is suitable for generating inputs in testbenches. The notation #10 indicates a
delay of 10 time units. The directive ‘timescale 1ns/100ps states that the time
units are nanoseconds, with a resolution of 100 ps.

In summary, there are a lot of features of the Verilog language that we have not
discussed here. Nevertheless, the main advantages of Verilog are that it is relatively
concise and that low-level hardware modelling is easier than in VHDL. Compared with
VHDL its disadvantages are the lack of abstract data types, making behavioural model-
ling difficult; weak type checking, which makes it easy to write poor code; and the
absence of the delta delay model, meaning that simulation results may vary between
simulators. Nevertheless, it is becoming increasingly important that hardware design-
ers are able to use, or at least understand, both VHDL and Verilog.

333

Appendix C

Shared variable packages

The shared variable construct was introduced in 1993. This construct caused some
disquiet when it was introduced, because it can cause simulations to be non-deterministic.
For example, the order in which the fault list is built in the fault simulator code of Section
10.5.3 may vary between simulators. When a VHDL simulation starts, all processes are
executed once until the first wait statement (which may be implicit), when they suspend.
The order of execution of the processes is not defined. Normally this does not matter.
A shared variable can, however, be read from or written to in different processes.
Unlike the situation with a signal, a process would not suspend while it was waiting for a
shared variable. Thus the value of x in the example below could be ‘0’ or ‘1’ at the begin-
ning of the simulation, depending on which process was executed first (which may in turn
depend on which process was compiled first!).

shared variable sv : BIT := '0';
signal x : BIT;
a : process is

begin
sv := '1';
wait for 10 NS;

end process a;
b : process is

begin
x <= sv;
wait for 5 NS;

end process b;

In late 1999, a revision to the VHDL standard (1076A) was approved. This signifi-
cantly changed the way in which shared variables can be used. The change was incorp-
orated into the 2002 revision to VHDL.

In the new standard, to give the user control, the types of shared variables are
declared as protected (a new reserved word). Within a protected type declaration,
variables, functions and procedures may be declared. Protected types and the publicly

334 Shared variable packages

visible parts of declared types may not, however, be access or file types. The most
important point to note is that functions and procedures have to be used to change the
value of the field within a protected type.

The fault simulator of Section 10.5.3 uses shared variables and needs to be written in
two ways for the two versions of the standard. This is the full VHDL 1076-2002 com-
pliant package definition.

package fault_inject is
type fault_list is protected
impure function new_fault(name : STRING)
return NATURAL;

procedure first_fault;
impure function end_fault_list return BOOLEAN;
procedure inc_fault_list;
impure function simulating(fault_no : NATURAL) return
BOOLEAN;

impure function detected return BOOLEAN;
impure function fault_name return STRING;
procedure set_simulate;
procedure clr_simulate;
procedure set_detected;

end protected fault_list;
shared variable fault_sim : fault_list;

end package fault_inject;

The 10 function and procedure definitions are now placed within the protected
body of the type, which in turn is placed in a package body. Note that the data
structure type itself, together with local variables, is also declared here.

use STD.textio.all; -- contains definition of line

package body fault_inject is
type fault_list is protected body
type fault_model; -- incomplete type declaration
type fault_ptr is access fault_model;

type fault_model is
record

fault_name : line; -- line is access string
simulating : BOOLEAN;
detected : BOOLEAN;
index : NATURAL; -- to allow unique reference
next_fault : fault_ptr;

end record fault_model;

variable fault_head, present_fault: fault_ptr := null;
variable fault_count : NATURAL := 0;

Shared variable packages 335

impure function new_fault(name : STRING) return
NATURAL is

begin
fault_count := fault_count + 1;
fault_head := new fault_model'(new STRING'(name),

FALSE, FALSE
fault_count,
fault_head);

return (fault_count);
end function new_fault;

procedure first_fault is
begin
present_fault := fault_head;

end procedure first_fault;

impure function end_fault_list return BOOLEAN is
begin

return present_fault = null;
end function end_fault_list;

procedure inc_fault_list is
begin

if present_fault /= null then
present_fault := present_fault.next_fault;

end if;
end procedure inc_fault_list;

impure function simulating(fault_no : NATURAL)
return BOOLEAN is

begin
if present_fault /= null then

return present_fault.index = fault_no and
present_fault.simulating;

else
return FALSE;

end if;
end function simulating;

impure function detected return BOOLEAN is
begin

if present_fault /= null then
return present_fault.detected;

else
return FALSE;

end if;
end function detected;

336 Shared variable packages

impure function fault_name return STRING is
begin

if present_fault /= null then
return present_fault.fault_name.all;

else
return "";

end if;
end function fault_name;

procedure set_simulate is
begin

if present_fault /= null then
present_fault.simulating : = TRUE;

end if;
end procedure set_simulate;

procedure clr_simulate is
begin

if present_fault /= null then
present_fault.simulating : = FALSE;

end if;
end procedure clr_simulate;

procedure set_detected is
begin

if present_fault /= null then
present_fault.detected : = TRUE;

end if;
end procedure set_detected;

end protected body fault_list;
end package body fault_inject;

At the time of writing, the 2002 VHDL standard had not appeared in any simulator.
Therefore the package definition has to be changed to be compliant with the 1993
standard. The following code ‘fakes’ the 2002-compliant package.

package fault_sim is
impure function new_fault(name : STRING)
return NATURAL;

procedure first_fault;
impure function end_fault_list return BOOLEAN;
procedure inc_fault_list;
impure function simulating(fault_no : NATURAL)
return BOOLEAN;

impure function detected return BOOLEAN;
impure function fault_name return STRING;

Shared variable packages 337

procedure set_simulate;
procedure clr_simulate;
procedure set_detected;

end package fault_sim;

Notice that the package name has been changed to that of the protected type. In order
to keep the use clauses the same, we now need the following package:

package fault_inject is
alias fault_sim is WORK.fault_sim;

end package fault_inject;

Finally, the package body for fault_sim can be defined:

use STD.textio.all; -- contains definition of line
package body fault_sim is

type fault_model; -- incomplete type declaration
type fault_ptr is access fault_model;
type fault_model is
record
fault_name : line; -- line is access string
simulating : BOOLEAN;
detected : BOOLEAN;
index : NATURAL; --added to allow unique reference
next_fault : fault_ptr;

end record fault_model;

shared variable fault_head, present_fault: fault_ptr
:= null;

shared variable fault_count : NATURAL := 0;
-- The procedure and function definitions are identical
-- to those in the 2002 version.
end package body fault_sim;

In Chapter 12, a random number generator that used a 2002 compliant shared variable
was shown. The following emulates that package, but is compliant with the 1993 standard.
Here, the shared variable is hidden in the package body, so the emulation is much simpler.

package random is
impure function rand return REAL;
impure function negexp(t : TIME) return TIME;

end package random;

library IEEE;
use IEEE.math_real.all;
package body random is
type seed_pair is record
seed1, seed2 : INTEGER;

end record seed_pair;

338 Shared variable packages

impure function init_seed return seed_pair is
-- same as in Chapter 12

end function init_seed;

shared variable vseed : seed_pair := init_seed;

impure function rand return REAL is
variable seeds : seed_pair;
variable rnd : REAL;

begin
seeds := vseed;
uniform (seeds.seed1, seeds.seed2, rnd);
vseed := seeds;
return rnd;

end function rand;

function negexp(t : TIME) return TIME is
begin

return INTEGER(-log(rand)*(REAL(t / NS))) * NS;
end function negexp;

end package body random;

For both the 1993 and 2002 compliant versions, the package is referenced by includ-
ing the clause:

use WORK.random.all;

339

Bibliography

[1] Abramovici, M., Breuer, M.A. and Friedman, A.D. (1990). Digital System Testing
and Testable Design, revised printing. IEEE Press, New York.

[2] Aftabjahani, S.A. and Navabi, N. (1997). ‘Functional fault simulation of VHDL gate
level models’. Proceedings VHDL International Users’ Forum, pp. 18–23, October.

[3] Ashenden, P.J. (1998). ‘SUAVE: VHDL extensions for system-level modeling’.
VHDL International Users’ Forum, October.

[4] Bergeron, J. (2003). Writing Testbenches: Functional Verification of HDL
Models, 2nd edn. Kluwer Academic Publishers, Boston, MA.

[5] De Micheli, G. (1994). Synthesis and Optimization of Digital Circuits. McGraw-Hill,
New York.

[6] Dewey, A. (1997). Analysis and Design of Digital Systems with VHDL. PWS
Publishing Company, Boston, MA.

[7] Edwards, M.D. (1992). Automatic Logic Synthesis Techniques for Digital Systems.
Macmillan, Basingstoke.

[8] Hamming, R.W. (1980). Coding and Information Theory. Prentice-Hall, Englewood
Cliffs, NJ.

[9] Hennessy, J.L. and Patterson, D.A. (1990). Computer Architecture: a Quantitative
Approach. Morgan Kaufmann, San Francisco.

[10] Hewlett-Packard (1990). HP Boundary-Scan Tutorial and BSDL Reference
Guide. Hewlett-Packard Company, Palo Alto, CA.

[11] Hill, F.J. and Peterson, G.R. (1993). Computer Aided Logical Design with
Emphasis on VLSI, 4th edn. John Wiley & Sons, New York.

[12] Horowitz, P. and Hill, W. (1989). The Art of Electronics. Cambridge University
Press, New York.

340 Bibliography

[13] Litovski, V. and Zwolinski, M. (1997). VLSI Circuit Simulation and Optimization.
Chapman & Hall, London.

[14] Maccabe, A.B. (1993). Computer Systems: Architecture, Organization and Pro-
gramming. Richard D. Irwin, Homewood, IL.

[15] Maunder, C. (1992). The Board Designer’s Guide to Testable Logic Circuits.
Addison-Wesley, Reading, MA.

[16] Miczo, A. (1987). Digital Logic Testing and Simulation. John Wiley & Sons, New
York.

[17] Molenkamp, E. and Mekenkamp, G. (1997). ‘Processes with “incomplete” sensi-
tivity lists and their synthesis aspects’. Proceedings VHDL International Users’
Forum, pp. 75–81, October.

[18] Morison, J.D. and Clarke, A.S. (1994) ELLA 2000. McGraw-Hill, New York.

[19] Navabi, Z. (1993). VHDL Analysis and Modeling of Digital Systems. McGraw-Hill,
New York.

[20] Nixon, M.S. (1995). Introductory Digital Design: a Programmable Approach.
Macmillan, Basingstoke.

[21] Perry, D.L. (1994). VHDL, 2nd edn. McGraw-Hill, New York.

[22] Rushton, A. (1998). VHDL for Logic Synthesis, 2nd edn. John Wiley & Sons,
New York.

[23] Skahill, K. (1996). VHDL for Programmable Logic. Addison-Wesley, Reading, MA.

[24] Smith, D.J. (1996). HDL Chip Design. Doone Publishing, Austin, TX.

[25] Unger, S.H. (1995). ‘Hazards, critical races, and metastability’. IEEE Transac-
tions on Computers, 44(6), 754–68.

[26] Wakerley, J.F. (2002). Digital Design Principles and Practices, 3rd edn. Prentice
Hall, Englewood Cliffs, NJ.

[27] Weste, N.H.E. and Eshraghian, K. (1992). Principles of CMOS VLSI Design:
a Systems Perspective, 2nd edn. Addison-Wesley, Reading, MA.

[28] Weyerer, M. and Goldemund, G. (1992). Testability of Electronic Circuits. Carl
Hanser Verlag, Munich and Vienna, and Prentice Hall International, Englewood
Cliffs, NJ.

[29] Wilkins, B.R. (1986). Testing Digital Circuits. Van Nostrand Reinhold (UK),
Wokingham.

[30] Wilkinson, B. (1992). Digital System Design, 2nd edn. Prentice Hall, Englewood
Cliffs, NJ.

[31] Wolf, W. (1994). Modern VLSI Design: a Systems Approach. Prentice Hall,
Englewood Cliffs, NJ.

341

Answers to selected
exercises

3.3

entity Nand3 is
port (w, x, y : in BIT; z: out BIT);

end entity Nand3;

architecture ex1 of Nand3 is
begin
z <= not (w and x and y) after 5 NS;

end architecture ex1;

3.5

entity FullAdder is
port (a, b, Ci : in BIT; S, Co: out BIT);

end entity FullAdder;

architecture netlist of FullAdder is
signal na, nb, nc, d, e, f, g, h, i, j : BIT;

begin
n0 : entity WORK.Not1 port map (a, na);
n1 : entity WORK.Not1 port map (b, nb);
n2 : entity WORK.Not1 port map (Ci, nc);
a0 : entity WORK.And3 port map (na, nb, Ci, d);
a1 : entity WORK.And3 port map (na, b, nc, e);
a2 : entity WORK.And3 port map (a, b, Ci, f);
a3 : entity WORK.And3 port map (a, nb, nc, g);
o0 : entity WORK.Or4 port map (d, e, f, g, S);

342 Answers to selected exercises

a4 : entity WORK.And2 port map (b, Ci, h);
a5 : entity WORK.And2 port map (a, b, i);
a6 : entity WORK.And2 port map (a, Ci, j);
o1 : entity WORK.Or3 port map (h, i, j, Co);

end architecture netlist;

3.6

entity testadder is
end entity testadder;

architecture ta of testadder is
signal a, b, Ci, S, Co : BIT;

begin
f0 : entity WORK.FullAdder port map(a, b, Ci, S, Co);
a <= '0', '1' after 10 NS, '0' after 20 NS,

'1' after 30 NS, '0' after 40 NS, '1' after 50 NS,
'0' after 60 NS, '1' after 70 NS;

b <= '0', '1' after 20 NS, '0' after 40 NS,
'1' after 60 NS;

Ci <= '0', '1' after 40 NS;
end architecture ta;

4.3

library IEEE;
use IEEE.std_logic_1164.all;

entity decoder is
port (a : in std_logic_vector(2 downto 0);

z : out std_logic_vector(7 downto 0));
end entity decoder;

architecture bool_expr of decoder is
begin
z(0) <= not a(0) and not a(1) and not a(2);
z(1) <= a(0) and not a(1) and not a(2);
z(2) <= not a(0) and a(1) and not a(2);
z(3) <= a(0) and a(1) and not a(2);
z(4) <= not a(0) and not a(1) and a(2);
z(5) <= a(0) and not a(1) and a(2);

Answers to selected exercises 343

z(6) <= not a(0) and a(1) and a(2);
z(7) <= a(0) and a(1) and a(2);

end architecture bool_expr;

architecture when_else of decoder is
begin
z <= "00000001" when a = "000" else

"00000010" when a = "001" else
"00000100" when a = "010" else
"00001000" when a = "011" else
"00010000" when a = "100" else
"00100000" when a = "101" else
"01000000" when a = "110" else
"10000000" when a = "111" else
"XXXXXXXX";

end architecture when_else;

architecture with_select of decoder is
begin

with a select
z <= "00000001" when "000",

"00000010" when "001",
"00000100" when "010",
"00001000" when "011",
"00010000" when "100",
"00100000" when "101",
"01000000" when "110",
"10000000" when "111",
"XXXXXXXX" when others;

end architecture with_select;

library IEEE;
use IEEE.std_logic_1164.all;

entity testdecode is
end entity testdecode;

architecture td of testdecode is
signal a : std_logic_vector(2 downto 0);
signal z0, z1, z2 : std_logic_vector(7 downto 0);

begin
d0 : entity WORK.decoder(bool_expr) port map (a, z0);
d1 : entity WORK.decoder(when_else) port map (a, z1);
d2 : entity WORK.decoder(with_select) port map (a, z2);
a <= "000", "001" after 10 NS, "010" after 20 NS;

end architecture td;

344 Answers to selected exercises

4.4

library IEEE;
use IEEE.std_logic_1164.all, IEEE.numeric_std.all;

entity priority is
generic (n : positive);
port (a: in std_logic_vector(2**n-1 downto 0);

y: out std_logic_vector(n-1 downto 0);
valid: out std_logic);

end entity priority;

architecture iterative of priority is
begin

process (a) is
begin
valid <= '0';
y <= (others => '0');
for i in a'RANGE loop
if a(i) = '1' then
y <= std_logic_vector(to_unsigned(i, n));
valid <= '1';
exit;

end if;
end loop;

end process;
end architecture iterative;

4.5

library IEEE;
use IEEE.std_logic_1164.all;

entity comparator is
port (x, y : in std_logic_vector;

eq : out std_logic);
end entity comparator;

architecture iterative of comparator is
begin

process (x,y) is
variable eqi : std_logic;

begin
eqi := '1';
for i in x'range loop
eqi := eqi and (x(i) xnor y(i));

end loop;

Answers to selected exercises 345

eq <= eqi;
end process;

end architecture iterative;

4.6

package quad_logic is
type quad is ('0', '1', 'Z', 'X');
type quad_vector is array (natural range <>) of quad;
function "and" (Left, Right: quad) return quad;
function resolved (arg : quad_vector) return quad;
subtype quad_wire is resolved quad;

end package quad_logic;

package body quad_logic is
function "and" (Left, Right: quad) return quad is
type quad_array is array (quad, quad) of quad;
constant and_table : quad_array := (('0', '0', '0', '0'),

('0', '1', '1', 'X'),
('0', '1', '1', 'X'),
('0', 'X', 'X', 'X'));

begin
return and_table(Left, Right);

end function "and";
function resolved (arg : quad_vector) return quad is
variable temp : quad := '1';

begin
for i in arg'RANGE loop
temp := temp and arg(i);

end loop;
return temp;

end function resolved;
end package body quad_logic;

use work.quad_logic.all;

entity nand2 is
port (a, b : in quad; z : out quad);

end entity nand2;

architecture open_drain of nand2 is
begin
z <= '0' when a = '1' and b = '1' else

'Z' when a = '0' or b = '0' else
'X';

end architecture open_drain;

346 Answers to selected exercises

use work.quad_logic.all;

entity testbus is
end entity testbus;

architecture tb of testbus is
signal a, b : quad_vector (3 downto 0);
signal q : quad_wire;

begin
n0 : entity WORK.nand2 port map (a(0), b(0), q);
n1 : entity WORK.nand2 port map (a(1), b(1), q);
n2 : entity WORK.nand2 port map (a(2), b(2), q);
n3 : entity WORK.nand2 port map (a(3), b(3), q);
a <= "1111";
b <= "0000", "0001" after 10 NS, "0000" after 20 NS,

"0010" after 30 NS;
end architecture tb;

5.3

seq: process (clock, reset) is
begin

if reset = '1' then
state <= S0;

elsif rising_edge(clock) then
state <= next_state;

end if;
end process seq;

5.5

entity state_machine is
port(x, clock, reset : in BIT;

z : out BIT);
end entity state_machine;

architecture behaviour of state_machine is
type state_type is (S0, S1, S2);
signal state, next_state : state_type;

begin
seq: process (clock, reset) is
begin

if reset = '1' then
state <= S0;

elsif clock = '1' and clock'EVENT then
state <= next_state;

Answers to selected exercises 347

end if;
end process seq;
com: process (state, x) is
begin
Z <= '0';
case state is
when S0 =>

if X = '0' then
next_state <= S0;

else
next_state <= S1;

end if;
when S1 =>

if X = '0' then
next_state <= S0;

else
next_state <= S2;

end if;
when S2 =>

if X = '0' then
next_state <= S0;

else
Z <= '1';
next_state <= S2;

end if;
end case;

end process com;
end architecture behaviour;

5.8

entity state_machine is
port(a, b, clock, reset : in BIT;

z : out BIT);
end entity state_machine;

architecture one of state_machine is
type state_type is (S0, S1, S2);
signal state, next_state : state_type;

begin
seq: process (clock, reset) is
begin

if reset = '1' then
state <= S0;

elsif clock = '1' and clock'EVENT then
state <= next_state;

348 Answers to selected exercises

end if;
end process seq;
com: process (state, a, b) is
begin
Z <= '0';
case state is
when S0 =>

if a = '1' and b = '1' then
next_state <= S1;

else
next_state <= S0;

end if;
when S1 =>

if a = '1' and b = '0' then
next_state <= S2;

else
next_state <= S0;

end if;
when S2 =>

if a = '0' and b = '0' then
Z <= '1';

end if;
next_state <= S0;

end case;
end process com;

end architecture one;

5.9

architecture three of state_machine is
type state_type is (S0, S1, S2);
signal state, next_state : state_type;

begin
seq: process (clock, reset) is
begin

if reset = '1' then
state <= S0;

elsif clock = '1' and clock'EVENT then
state <= next_state;

end if;
end process seq;
com: process (state, a, b) is
begin

case state is
when S0 =>

Answers to selected exercises 349

if a = '1' and b = '1' then
next_state <= S1;

else
next_state <= S0;

end if;
when S1 =>

if a = '1' and b = '0' then
next_state <= S2;

else
next_state <= S0;

end if;
when S2 =>
next_state <= S0;

end case;
end process com;
Z <= '1' when state = S2 and a = '0' and b = '0' else '0';

end architecture three;

5.10

architecture one of state_machine is
begin
seq: process (clock, reset) is

type state_type is (S0, S1, S2);
variable state : state_type;

begin
Z <= '0';
if reset = '1' then
state := S0;

elsif clock = '1' and clock'EVENT then
case state is
when S0 =>

if a = '1' and b = '1' then
state := S1;

else
state := S0;

end if;
when S1 =>
if a = '1' and b = '0' then
state := S2;

else
state := S0;

end if;
when S2 =>
if a = '0' and b = '0' then

350 Answers to selected exercises

Z <= '1';
end if;
state := S0;

end case;
end if;

end process seq;
end architecture one;

6.3

library IEEE;
use IEEE.std_logic_1164.all;

entity D_FF is
generic (Setup, Hold: TIME := 3 NS);
port (D, Clk, Set, Reset: in std_logic;

Q : out std_logic);
begin

assert (not(Clk = '1' and Clk'EVENT and not
D'STABLE(Setup)))

report "Setup time violation" severity WARNING;
assert (not(Clk = '1' and D'EVENT and not

Clk'STABLE(Hold)))
report "Hold time violation" severity WARNING;

end entity D_FF;

architecture behavioural of D_FF is
begin
p0 : process (Clk, Set, Reset) is
begin

if Set = '0' then
Q <= '1';

elsif Reset = '0' then
Q <= '0';

elsif rising_edge(Clk) then
Q <= D;

end if;
end process p0;

end architecture behavioural;

6.6

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

Answers to selected exercises 351

entity Counter is
generic(N : POSITIVE := 8);
port(Clk, Reset, Up : in std_logic;

Count : out std_logic_vector(N-1 downto 0));
end entity Counter;

architecture Rtl of Counter is
signal Cnt : unsigned(N-1 downto 0);
constant Cmax : unsigned(N-1 downto 0) := (others => '1');
constant Cmin : unsigned(N-1 downto 0) := (others => '0');

begin
process(Clk, Reset) is
begin

if Reset = '1' then
Cnt <= (others => '0');

elsif rising_edge(Clk) then
if Up = '1' and Cnt < Cmax then
Cnt <= Cnt + 1;

elsif Up = '0' and Cnt > Cmin then
Cnt <= Cnt - 1;

end if;
end if;

end process;
Count <= std_logic_vector(Cnt);

end architecture Rtl;

6.7

library IEEE;
use IEEE.std_logic_1164.all;

entity piso is
generic(n : NATURAL := 8);
port(a : in std_logic_vector(n-1 downto 0);

q : out std_logic;
clk, load : in std_logic);

end entity piso;

architecture rtl of piso is
begin
p0: process (clk) is

variable reg : std_logic_vector(n-1 downto 0);
begin

if rising_edge(clk) then
if load = '1' then
reg := a;

352 Answers to selected exercises

else
reg := ('0' & reg(n-1 downto 1));

end if;
q <= reg(0);

end if;
end process p0;

end architecture rtl;

6.11

library IEEE;
use IEEE.std_logic_1164.all;

entity counter is
port(clk : in std_logic;

reset : in std_logic;
count : out std_logic_vector(2 downto 0));

end entity counter;

architecture lfsr of counter is
begin
p0: process (clk, reset) is

variable reg : std_logic_vector(2 downto 0);
begin

if reset = '1' then
reg := (others => '1');

elsif rising_edge(clk) then
reg := reg(1 downto 0) & (reg(2) xor reg(1));

end if;
count <= reg;

end process p0;
end architecture lfsr;

7.6

State s9 is modified to load the PC from the Addr part of the IR.

when s9 =>
Addr_bus <= '1';
load_PC <= '1';
next_state <= s0;

In fact, this could be done in the same clock cycle as s6; thus s9 becomes a conditional
output for s6:

when s6 =>
CS <= '1';

Answers to selected exercises 353

R_NW <= '1';
if op = load then
next_state <= s7;

elsif op = bne then
if z_flag = '0' then
Addr_bus <= '1';
load_PC <= '1';

end if
next_state <= s0;

else
next_state <= s8;

end if;

8.4

architecture correct1 of mux is
signal sel : integer range 0 to 1;

begin
m1: process is
begin
sel <= 0;
wait for 0 ns;
if (c = '1') then
sel <= sel + 1;

end if;
wait for 0 ns;
case sel is
when 0 =>

z <= a;
when 1 =>
z <= b;

end case;
wait on a, b, c;

end process m1;
end architecture correct1;

architecture correct2 of mux is
begin
m1: process (a, b, c) is

variable sel : integer range 0 to 1;
begin
sel := 0;
if (c = '1') then
sel := sel + 1;

end if;
case sel is

354 Answers to selected exercises

when 0 =>
z <= a;

when 1 =>
z <= b;

end case;
end process m1;

end architecture correct2;

9.2

library IEEE;
use IEEE.std_logic_1164.all, IEEE.numeric_std.all;

entity counter is
generic(n : NATURAL := 4);
port(clk : in std_logic;

reset : in std_logic;
ready : out std_logic);

end entity counter;

architecture fsm of counter is
begin
p0: process (clk, reset) is

attribute enum_encoding : string;
type state_type is (s0, s1, s2, s3, s4, s5, s6, s7);
attribute enum_encoding of state_type: type is

"0000 0001 0011 0111 1111 1110 1100 1000";
variable state : state_type;

begin
if reset = '1' then
state := s0;
ready <= '1';

elsif rising_edge(clk) then
ready <= '0';
case state is
when s0 =>
state := s1;
ready <= '1';

when s1 => state := s2;
when s2 => state := s3;
when s3 => state := s4;
when s4 => state := s5;
when s5 => state := s6;
when s6 => state := s7;
when s7 => state := s0;

end case;
end if;

Answers to selected exercises 355

end process p0;
end architecture fsm;

9.4

library IEEE;
use IEEE.std_logic_1164.all;

entity fsm is
port (clk, a, reset: in std_logic;

y: out std_logic);
end entity fsm;

architecture try1 of fsm is
type statetype is (s0, s1, s2);
signal currentstate, nextstate : statetype;

begin
seq: process (clock, reset) is
begin

if reset = '1' then
currentstate <= s0;

elsif rising_edge(clock) then
currentstate <= nextstate;

end if;
end process seq;
com: process (currentstate, a) is
begin
y <= '0';
case currentstate is
when s0 =>

if a = '1' then
nextstate <= s1;

else
nextstate <= s2;

end if;
when s1 =>
y <= '1';
nextstate <= s0;

when s2 =>
if a = '1' then
nextstate <= s2;

else
nextstate <= s0;

end if;
end case;

end process com;
end architecture try1;

356 Answers to selected exercises

10.3

Test for A/0: 0100/0; also covers E/1, G/1, H/0, I/0 and J/1.

Test for A/1: 1100/1; also covers B/0, C/1, D/1, E/0, F/0, H/1 and J/0.

Test for G/0 implies G � 1, hence B � C � 1. To propagate G to I implies F � 1,
which implies C � D � 0. Hence there is a contradiction.

10.7

11 . . . 11/0, 11 . . . 10/1, 11 . . . 01/1, . . . , 10 . . . 11/1, 01 . . . 11/1.

11.3

50 flip-flops implies 250 � 1015 states. At 1 MHz it would take 109 seconds � 32 years
to reach all states.

It takes 50 clock cycles to load the scan path (unloading can be done at the same time
as loading the next pattern). 200 patterns take 10 000 cycles � 10 ms at 1 MHz.

11.7

State TMS TDI

Test-Logic-Reset 0 –
Run-Test/Idle 1 –
Select-DR-Scan 1 –
Select-IR-Scan 0 –
Capture-IR 0 –
Shift-IR 0 0
Shift-IR 1 1
Exit1-IR 1 –
Update-IR 1 –
Select-DR-Scan 0 –
Capture-DR 0 –
Shift-DR 0 0
Shift-DR 0 1
Shift-DR 0 0
Shift-DR 1 1
Exit1-DR 1 –
Update-DR 0 –
Run-Test/Idle

– means ‘don’t care’. Change of state occurs on rising edge of TCK.

Answers to selected exercises 357

11.10

entity tap_controller is
port (tms, tck : in BIT;

ShiftIR, ClockIR, UpdateIR,
ShiftDR, ClockDR, UpdateDR : out BIT);

end entity tap_controller;

architecture fsm of tap_controller is
type state is (test_logic_reset, run_test_idle,

select_DR_scan, capture_DR,
shift_DR, exit1_DR, pause_DR,
exit2_DR, update_DR, select_IR_scan,
capture_IR, shift_IR, exit1_IR,
pause_IR, exit2_IR, update_IR);

signal current_state, next_state : state;
begin
seq: process is
begin

wait until tck = '1';
current_state <= next_state;

end process seq;
com: process (tms, current_state) is
begin
ShiftIR <= '0';
ClockIR <= '0';
UpdateIR <= '0';
ShiftDR <= '0';
ClockDR <= '0';
UpdateDR <= '0';
case current_state is
when test_logic_reset =>

if tms = '0' then
next_state <= run_test_idle;

else
next_state <= test_logic_reset;

end if;
when run_test_idle =>

if tms = '1' then
next_state <= select_DR_scan;

else
next_state <= run_test_idle;

end if;
when select_DR_scan =>

if tms = '1' then
next_state <= select_IR_scan;

358 Answers to selected exercises

else
next_state <= capture_DR;

end if;
when capture_DR =>
ClockDR <= '1';
if tms = '1' then
next_state <= exit1_DR;

else
next_state <= shift_DR;

end if;
when shift_DR =>
ClockDR <= '1';
ShiftDR <= '1';
if tms = '1' then
next_state <= exit1_DR;

else
next_state <= shift_DR;

end if;
when exit1_DR =>

if tms = '1' then
next_state <= update_DR;

else
next_state <= pause_DR;

end if;
when pause_DR =>

if tms = '1' then
next_state <= exit2_DR;

else
next_state <= pause_DR;

end if;
when exit2_DR =>

if tms = '1' then
next_state <= update_DR;

else
next_state <= shift_DR;

end if;
when update_DR =>
UpdateDR <= '1';
if tms = '1' then
next_state <= select_DR_scan;

else
next_state <= run_test_idle;

end if;
when select_IR_scan =>

if tms = '1' then
next_state <= test_logic_reset;

Answers to selected exercises 359

else
next_state <= capture_IR;

end if;
when capture_IR =>
ClockIR <= '1';
if tms = '1' then
next_state <= exit1_IR;

else
next_state <= shift_IR;

end if;
when shift_IR =>
ClockIR <= '1';
ShiftIR <= '1';
if tms = '1' then
next_state <= exit1_IR;

else
next_state <= shift_IR;

end if;
when exit1_IR =>

if tms = '1' then
next_state <= update_IR;

else
next_state <= pause_IR;

end if;
when pause_IR =>

if tms = '1' then
next_state <= exit2_IR;

else
next_state <= pause_IR;

end if;
when exit2_IR =>

if tms = '1' then
next_state <= update_IR;

else
next_state <= shift_IR;

end if;
when update_IR =>
UpdateIR <= '1';
if tms = '1' then
next_state <= select_IR_scan;

else
next_state <= run_test_idle;

end if;
end case;

end process com;
end architecture fsm;

360 Answers to selected exercises

12.6

States A, E and F can be merged. States B and C can be merged. An extra state (T) needs
to be introduced to avoid races – let this be between D and AEF. A possible state
assignment is AEF (00), BC (01), D (11), T (10), giving next state and output equations:

12.7

There are three feedback loops in Figure 12.4. Insert a virtual buffer at A (Y1), between
F and the NAND gate with output B (Y2) and at Q (Y3).

13.1

library IEEE;
use IEEE.electrical_systems.all;

entity inductor is
generic (L: REAL);
port (terminal node1, node2: electrical);

end entity inductor;

architecture didt of inductor is
quantity vl across il through node1 to node2;

begin
vl == L*il'DOT;

end architecture didt;

13.3

library IEEE;
use IEEE.electrical_systems.all;

entity vramp is
generic (vl, vh, td, tr: REAL);
port (terminal node1, node2: electrical);

end entity vramp;

architecture sim of vramp is
quantity vr across ir through node1 to node2;

 Y3
� � Y3.Y1.R � Y3.R.C � Y3.Y2.D.R � Y1.R.C � S

 Y2
� � Y1.R � C � Y2.D.R

 Y1
� � D.R.Y2 � S � Y1.R.C

 Q � Y1

 Y �
0 � P.R � P.R.Y0 � P.Y1.Y0

 Y �
1 � Y1.Y0 � P.R.Y0

Answers to selected exercises 361

begin
if NOW < td use
vr == vl;

elsif NOW < td+tr use
vr == vl + (NOW – td)*(vh – vl)/tr;

else
vr == vh;

end use;
end architecture sim;

accuracy in digital to analogue converters 302
ad hoc testability improvements 249
adders 69–72

functional model 69–71
ripple adder 71–2

ALAP schedules in synthesis of VHDL 211–12
algorithmic state machines (ASM)

charts, synthesis from 89–99
hardware implementation 89–91
state assignment 91–5
state minimization 95–8

in complex sequential systems 157–8, 161, 165–9
synchronous sequential design 85–9

aliases 149–50
aliasing 257
alphanumeric characters 34
analogue to digital converters (ADC) 303–6
application-specific integrated circuits (ASICs) 3, 5
architectures 38–9
area constraints in synthesis of VHDL 204–6
ASAP schedules in synthesis of VHDL 211–12
asymmetric clock 150–1
asynchronous circuits 271–4

analysis of 274–8
formal analysis of 276–8
fundamental mode restriction 276, 290–1
informal analysis of 274–6

asynchronous design 4–5
asynchronous sequential design 271–98

asynchronous circuits 271–4
analysis of 274–8
formal analysis of 276–8

fundamental mode restriction 276, 290–1
informal analysis of 274–6

and asynchronous state machines 286–90
circuit design 278–86
metastability 276, 296–7
random pulse generator 291–4
setup and hold times 290–6

violations 294–6
asynchronous set and reset 121–3
asynchronous state machines 286–90
avalanche mechanism 12

behavioural synthesis of VHDL 209–16
binary counter 135–8
bipolar junction transistors (BJTs) 5
Boolean algebra 19–22

De Morgan’s law 22
operators 19–20
rules 21–2
Shannon’s expansion theorem 22
truth tables 20–1
values 19

boundary scan testing 260–8
built-in logic block observation (BILBO)

257–60
built-in self-test 252–60

case, use of in combinational logic design 39, 40
circuit testability 224
CMOS inverter 15–16
CMOS technology 5–10

voltage levels 15

363

Index

364 Index

combinational building blocks 53–77
adders 69–72

functional model 69–71
ripple adder 71–2

decoders 58–64
2 to 4 decoder 58–60
n to 2n decoder 62
shift operators 62–4
with . . . select statement 60–1

multiplexers 64–5
parity checker 72–5

attributes 74–5
priority encoder 66–9

don’t cares 66–8
sequential VHDL 68–9

testbenches for 75–7
three-state buffers 53–8

multi-valued logic 53–5
standard logic package 55–7
when . . . else statement 57–8

combinational logic design
Boolean algebra 19–22

De Morgan’s law 22
operators 19–20
rules 21–2
Shannon’s expansion theorem 22
truth tables 20–1
values 19

Karnaugh maps 25, 26–9
logic gates 22
logic minimization 25
number codes 32–6

alphanumeric characters 34
fixed-point numbers 33
floating-point numbers 34
Gray codes 34–5
integers 33
parity bits 35–6

timing diagrams 30–2
using VHDL gate models 38–50

architectures 38–9
case, use of 39, 40
comments 39–40
configurations 48–50
constant ports 47
entities 38–9
generics 45–7
identifiers 39
netlists 41–3
open ports 47
signal assignments 43–4
spaces 39
testbenches 48

combinational logic in RTL synthesis 198–202
comments in combinational logic design 39–40

compilation in VHDL 183–4
complex sequential systems 156–76

datapath controller/partitioning 160–2
instructions 162–3
linked state machines 156–9
simple microprocessor 163–7

VHDL model of 167–76
concurrent fault simulation 233–5
concurrent signal assignments 68
concurrent statements in VHDL 309
configurations 48–50
constant ports 47
constraints on synthesis of VHDL 191, 203–6

area and structure 204–6
resource constraints 205
state encoding 204
timing constraints 205–6

user-defined attributes 203–4
controllability in testing digital systems 224, 248
counters 135–42

binary counter 135–8
Johnson counter 138–40
linear feedback shift register 140–2
ripple counter 137–8
self-correcting 139

critical race in asynchronous circuit design 282–3

D latch 118–19
D-algorithm in testing digital systems 227–30
datapath in complex sequential systems 156

controller 160–2
implementation 162

De Morgan’s law 22
decoders 58–64

2 to 4 decoder 58–60
n to 2n decoder 62
shift operators 62–4
with . . . select statement 60–1

default binding in simulation of VHDL 184
default configuration 43
design automation 2
design flow 4–5
design for testability 248–68

ad hoc testability improvements 249
boundary scan 260–8
built-in self-test 252–60

built-in logic block observation (BILBO)
257–60

structured design for test 249–52
digital design 1–5
digital to analogue converters (DAC) 302–3
direct addressing 163
direct instantiation 42–43
don’t cares 66–8
drain 7

drivers 184
dynamic hazards 32
dynamic RAM 145–6

edge-sensitive flip-flop 195–8
edge-triggered flip-flops 119–21
elaboration in VHDL 184
electrical faults and physical defects 222
electrical properties of transistors 14–17

fan-out 16–17
noise margins 14–16

electromagnetic interference (EMI) 222
electronic design automation (EDA) 2
entities 38–9
Espresso program 25
essential hazard in asynchronous circuit

design 286
event-driven simulation 178–82
events 179

falling_edge flip-flops 123–4
fan-out of gates 16–17
fault collapsing 230–1
fault injection in VHDL 236–7

transparent injection 237–40
fault models 222–4

PLA faults 223–4
single-stuck 223

fault simulation 231–5
concurrent simulation 233–5
parallel simulation 232–3
in VHDL 235–44

fault injection 236–7
transparent fault injection 237–40

fault-oriented test pattern generation 224–31
D-algorithm 227–30
fault collapsing 230–1
PODEM algorithm 230
sensitive path algorithm 225–6
undetectable faults 226–7

field effect transistors (FETs) 5–6
field programmable gate arrays (FPGAs) 4, 5,

12–14, 15
in synthesis of VHDL 206–9

file operations in simulation of VHDL 186–8
fixed-point numbers 33
flash ADC 303–4
flip-flops 119–28

asynchronous set and reset 121–3
edge-triggered 119–21
inferred, in RTL synthesis of VHDL 193–8

edge-sensitive 195–8
rising_edge and falling_edge 123–4
synchronous set and reset 124–6
timing and logic checks 126–8

floating-point numbers 34
formal analysis of asynchronous circuits 276–8
Fowler-Nordheim tunnelling 12
functional testing 221
fundamental mode restriction in asynchronous

circuits 276, 290–1

gates 2–3
generics in combinational logic design 45–7
Gray codes 34–5

hardware description language (HDL) 2
hardware implementation from ASM charts 89–91
hazards 31–2, 284–6
high-level design flow 191
hot electron injection mechanism 12

identifiers in combinational logic design 39
immediate mode addressing 163
implicant 24
inertial delay 44
inferred flip-flops and latches in RTL synthesis

of VHDL 193–8
informal analysis of asynchronous

circuits 274–6
instances of gates 42–43
integers 33

JK flip-flops 128–32
Johnson counter 138–40
Joint Test Action Group (JTAG) 262

Karnaugh maps 25, 26–9

latches 115–19
D latch 118–19
inferred, in RTL synthesis of VHDL 193–8

level-sensitive 194–5
SR latch 115–18

level-sensitive latches 194–5
linear feedback shift register 140–2
linked state machines in complex sequential

systems 156–9
logic checks 126–8
logic gates 2–3
logic minimization 25

mask-programmable gate arrays 3
maxterm 24
Mealy machines 81–2
memory 143–7

dynamic RAM 145–6
ROM 143–4
static RAM 144–5
synchronous RAM 146–7

Index 365

366 Index

metastability
in asynchronous sequential design 276, 296–7
of flip-flops 126

minterm 24
mixed signal modelling in VHDL-AMS 311–15
Möbius counter 138
Moore machines 81–2
MOS inverter 8
MOS transistor symbols 7
multi-bit adder 71–2
multiple bit register 132
multiplexers 64–5
multi-valued logic in combinational building

blocks 53–5

nature in VHDL-AMS 306
netlists 41–3, 235

in VHDL-AMS 309
NMOS transistor 6, 8
noise margins of transistors 14–16
non-synthesizable VHDL 192–3
number codes 32–6

alphanumeric characters 34
fixed-point numbers 33
floating-point numbers 34
Gray codes 34–5
integers 33
parity bits 35–6

observability in testing digital systems 224, 248
open ports 47
overloading in VHDL 57

packages
standard logic package 55–7
user-defined 151–2, 167–9, 237, 292–3

parallel fault simulation 232–3
parasitic state machine 138
parity bits 35–6
partitioning of state machines 160–2
phase-locked loops (PLLs) 315–19
physical defects and electrical faults 222
PLL (see phase-locked loops)
PMOS transistor 7–8
PODEM algorithm in testing digital systems 230
prime implicant 25, 27
primitive flow table in asynchronous circuit

design 279
priority encoder 66–9

don’t cares 66–8
sequential VHDL 68–9

programmable logic 10–14
programmable logic arrays (PLAs) 3, 11–12

fault models in 223–4
pseudo-random sequence generator 140

quantity in VHDL-AMS 306
Quine-McCluskey algorithm 25

race in asynchronous circuit design 282–3
random pulse generator 151–2

in asynchronous circuit design 291–4
random-access memory (RAM) 144–7

dynamic RAM 145–6
static RAM 144–5
synchronous RAM 146–7

read-only memory (ROM) 143–4
reconfigurable logic 11
register transfer level (RTL) synthesis 190,

191–203
combinational logic 198–202
in design flow 5, 6
inferred flip-flops and latches 193–8

edge-sensitive flip-flop 195–8
level-sensitive latches 194–5

non-synthesizable VHDL 192–3
rules, summary 202–3

registers in sequential logic block models
multiple bit register 132
shift registers 132–5

resolution in digital to analogue converters 302
resource constraints in synthesis of VHDL 205
ripple adder 71–2
ripple counter 137–8
rising_edge flip-flops 123–4

scan-in, scan-out principle 250–1
schedules in synthesis of VHDL 211
schematic capture 2
self-correcting counters 139
sensitive path algorithm 225–6
sensitivity lists 68
sequential logic block models 115–53

counters 135–42
binary counter 135–8
Johnson counter 138–40
linear feedback shift register 140–2
ripple counter 137–8

flip-flops 119–28
asynchronous set and reset 121–3
edge-triggered 119–21
rising_edge and falling_edge 123–4
synchronous set and reset 124–6
timing and logic checks 126–8

JK and T flip-flops 128–32
latches 115–19

D latch 118–19
SR latch 115–18

memory 143–7
dynamic RAM 145–6
ROM 143–4

static RAM 144–5
synchronous RAM 146–7

registers
multiple bit register 132
shift registers 132–5

sequential multiplier 147–50
aliases 149–50

testbenches for 150–3
asymmetric clock 150–1
random pulse generator 151–2
responses, checking 153

see also complex sequential systems
sequential multiplier 147–50

aliases 149–50
sequential parity detector 103–5
sequential statements in VHDL 309
sequential VHDL 68–9
serial fault simulation 232
serial-in, parallel-out register 133
Shannon’s expansion theorem 22
shared variables 333–8
shift operators 62–4
shift registers 132–5
signal assignments in combinational logic

design 43–4
simulation of VHDL 178–88

compilation 183–4
cycle of 184–5
elaboration 184
event-driven 178–82
file operations 186–8
modelling issues 185–6
time 182–3

simulation time 182–3
simultaneous statements in VHDL-AMS 309–11
single assignment form 211
single-precision numbers 34
single-stuck fault models 223
source 7
spaces in combinational logic design 39
speed in digital to analogue converters 302
SR latch 115–18
Standard Delay Format (SDF) 217
standard logic package in combinational building

blocks 55–7
state assignment from ASM charts 91–5
state encoding constraints in synthesis of VHDL 204
state machines 81, 99–109

asynchronous 286–90
linked in complex sequential systems 156–9
sequential parity detector 103–5
storing data 107–9
vending machine model 105–7

ASM chart of 96–7
state tables 98

state minimization 95–8
state registers 81–3
state table in asynchronous circuit design 277
static hazards 31–2, 284
static RAM 144–5
storing data in synchronous sequential

design 107–9
structural constraints in synthesis of VHDL 204–6
structural modelling in VHDL 309
structural testing 222
structured design for test 249–52
stuck fault models 223
synchronous circuits 290–1
synchronous design 4–5
synchronous RAM 146–7
synchronous sequential design 80–111

algorithmic state machines 85–9
state machines in VHDL 99–109

sequential parity detector 103–5
storing data 107–9
vending machine model 105–7

synthesis from ASM charts 89–99
hardware implementation 89–91
state assignment 91–5
state minimization 95–8

systems 80–5
models of 81–5
Moore and Mealy machines 81
state registers 81–3
three-bit counter 83–5

testbenches for 109–11
clock generation 109
reset signals 109–10
synchronized inputs 110–11

synchronous set and reset 124–6
synthesis of VHDL 190–217

ASM charts 89–99
hardware implementation 89–91
state assignment 91–5
state minimization 95–8

behavioural synthesis 209–16
constraints 191, 203–6

area and structure 204–6
user-defined attributes 203–4

RTL synthesis 191–203
combinational logic 198–202
inferred flip-flops and latches 193–8
non-synthesizable VHDL 192–3
rules, summary 202–3

synthesis for FPGAs 206–9
verifying synthesis 216–17

VITAL and SDF 217

T flip-flops 128–32
terminal in VHDL-AMS 306

Index 367

368 Index

testbenches
for combinational building blocks 75–7
in combinational logic design 48
for sequential logic block models 150–3

asymmetric clock 150–1
random pulse generator 151–2
responses, checking 153

for synchronous sequential design 109–11
clock generation 109
reset signals 109–10
synchronized inputs 110–11

testing digital systems 221–44
fault models 222–4

PLA faults 223–4
single-stuck 223

fault simulation 231–5
concurrent simulation 233–5
parallel simulation 232–3

fault simulation in VHDL 235–44
fault injection 236–7
transparent fault injection 237–40

fault-oriented test pattern generation 224–31
D-algorithm 227–30
fault collapsing 230–1
PODEM algorithm 230
sensitive path algorithm 225–6
undetectable faults 226–7

need for 221–2
VHDL fault simulation 240–4
see also design for testability

three-bit counter 83–5
three-state buffers 53–8

multi-valued logic 53–5
standard logic package 55–7
when . . . else statement 57–8

threshold voltages 7
timing checks 126–8
timing constraints in synthesis of VHDL 205–6
timing diagrams 30–2

in complex sequential systems 159
traffic signal controller 85–91

ASM chart 87–8, 157–8
state machine of 86
timing diagrams 89, 159

transaction 180
transition table in asynchronous circuit design 277
transparent fault injection in VHDL 237–40

truth tables
in combinational logic design 20–1
for D-algorithm 228
of SR latch 116
see also Karnaugh maps

two’s complement notation 33

undetectable faults 226–7
user-defined attributes in synthesis of VHDL 203–4

vending machine model 105–7
ASM chart of 96–7
state tables 98

verification 221
Verilog 2, 235, 327–32
Very High Speed Integrated Circuit (VHSIC) 2
VHDL fault simulation 240–4
VHDL Initiative Towards ASIC Libraries (VITAL)

217, 235, 295
VHDL standards 322–3

differences between 324–6
VHDL 200x 326
VHDL-Analogue and Mixed Signal (VHDL-AMS)

301, 306–15
fundamentals 306–9
mixed signal modelling 311–15
simulators 319–21
simultaneous statements 309–11

VHISC Hardware Description Language (VHDL) 2
gate models in combinational logic design 38–50

architectures 38–9
case, use of 39, 40
comments 39–40
configurations 48–50
constant ports 47
entities 38–9
generics 45–7
identifiers 39
netlists 41–3
open ports 47
signal assignments 43–4
spaces 39
testbenches 48

virtual buffers 276

when . . . else statement 57–8
with . . . select statement 60–1

