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INTRODUCTION

A sequential circuit is specified by a time sequence of inputs, outputs, and internal
states. In synchronous sequential circuits, the change of internal state occurs in re-
sponse to the synchronized clock pulses. Asynchronous sequential circuits do not use
clock pulses. The change of internal state occurs when there is a change in the input
variables. The memory elements in synchronous sequential circuits are clocked flip-
flops. The memory elements in asynchronous sequential circuits are either unclocked
flip-flops or time-delay elements. The memory capability of a time-delay device is due
to the finite time it takes for the signal to propagate through digital gates. An asyn-
chronous sequential circuit quite often resembles a combinational circuit with feedback.

The design of asynchronous sequential circuits is more difficult than that of syn-
chronous circuits because of the timing problems involved in the feedback path. In a
properly designed synchronous system, timing problems are eliminated by triggering all
flip-flops with the pulse edge. The change from one state to the next occurs during the
short time of the pulse transition. Since the asynchronous circuit does not use a clock,
the state of the system is allowed to change immediately after the input changes. Care
must be taken to ensure that each new state keeps the circuit in a stable condition even
though a feedback path exists.

Asynchronous sequential circuits are useful in a variety of applications. They are
used when speed of operation is important, especially in those cases where the digital
system must respond quickly without having to wait for a clock pulse. They are more
economical to use in small independent systems that require only a few components, as

341



342
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it may not be practical to go to the expense of providing a circuit for generating clock
pulses. Asynchronous circuits are useful in applications where the input signals to the
system may change at any time, independently of an internal clock. The communica-
tion between two units, with each unit having its own independent clock, must be done
with asynchronous circuits. Digital designers often produce a mixed system where
some part of the synchronous system has the characteristics of an asynchronous circuit.
Knowledge of asynchronous sequential logic behavior is helpful in verifying that the to-
tal digital system is operating in the proper manner.

Figure 9-1 shows the block diagram of an asynchronous sequential circuit. It con-
sists of a combinational circuit and delay elements connected to form feedback loops.
There are n input variables, =t output variables, and k internal states. The delay ele-
ments can be visualized as providing short-term memory for the sequential circuit. In a
gate-type circuit, the propagation delay that exists in the combinational circuit path
from input to output provides sufficient delay along the feedback loop so that no specific
delay elements are actually inserted in the feedback path. The present-state and next-
state variables in asynchronous sequential circuits are customarily called secondary
variables and excitation variables, respectively. The excitation variables should not be
confused with the excitable table used in the design of clocked sequential circuits.

,‘Cl B - zl
n input 2 g 22 mooutput
variables . . variables
Xy =P —» Z,,
Combinational
circuit
Y1 Y,

k secondary - Y k excitation
variables V2 2 variables
(present . . (next state)

state - .
) Yi o L
Delay |-
Delay |-
Delay |
FIGURE 9-1

Block diagram of an asynchronous sequential circuit
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When an input variable changes in value, the y secondary variables do not change
instantaneously. It takes a certain amount of time for the signal to propagate from the
input terminals through the combinational circuit to the ¥ excitation variables where
new values are generated for the next state. These values propagate through the delay
elements and become the new present state for the seccondary variables. Note the dis-
tinction betwen the y’s and the Y’s. In the steady-state condition, they are the same,
but during transition they are not. For a given value of input variables, the system is
stable if the circuit reaches a steady-state condition withy; = Y fori = 1,2, . . ., k.
Otherwise, the circuit is in a continuous transition and is said to be unstable. It is im-
portant to realize that a transition from one stable state to another occurs only in re-
sponse to a change in an input variable. This is in contrast to synchronous systems,
where the state transitions occur in response to the application of a clock pulse.

To ensure proper operation, asynchronous sequential circuits must be allowed to at-
tain a stable state before the input is changed to a new value. Because of delays in the
wires and the gate circuits, it is impossible to have two or more input variables change
at exactly the same instant of time without an uncertainty as to which one changes first.
Therefore, simultaneous changes of two or more variables are usually prohibited. This
restriction means that only one input variable can change at any one time and the time
between two input changes must be longer than the time it takes the circuit to reach a
stable state. This type of operation is defined as fundamental mode. Fundamental-mode
operation assumes that the input signals change one at a time and only when the circuit
is in a stable condition.

9-2 ANALYSIS PROCEDURE

The analysis of asynchronous sequential circuits consists of obtaining a table or a dia-
gram that describes the sequence of internal states and outputs as a function of changes
in the input variables. A logic diagram manifests an asynchronous-sequential-circuit
behavior if it has one or more feedback loops or if it includes unclocked flip-flops. In
this section, we will investigate the behavior of asynchronous sequential circuits that
have feedback paths without employing flip-flops. Unclocked flip-flops are called
latches, and their use in asynchronous sequential circuits will be explained in the next
section.

The analysis procedure will be presented by means of three specific examples. The
first example introduces the transition table. The second example defines the flow table.
The third example investigates the stability of asynchronous sequential circuits.

Transition Table

An example of an asynchronous sequential circuit with only gates is shown in Fig. 9-2.
The diagram clearly shows two feedback ioops from the OR-gate outputs back to the
AND-gate inputs. The circuit consists of one input variable, x, and two internal states.
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FIGURE 9-2
Example of an asynchronous sequential circuit

The internal states have two excitation variables, ¥, and Y, and two secondary vari-
ables, y, and y,. The delay associated with each feedback loop is obtained from the
propagation delay between each y input and its corresponding Y output. Each logic gate
in the path introduces a propagation delay of about 2 to 10 nanoseconds. The wires that
conduct electrical signals introduce approximately one-nanosecond delay for each foot
of wire. Thus, no additional external delay elements are necessary when the combina-
tional circuit and the wires in the feedback path provide sufficient delay.

The analysis of the circuit starts by considering the excitation variables as outputs
and the secondary variables as inputs. We then derive the Boolean expressions for the
excitation variables as a function of the input and secondary variables. These can be
readily obtained from the logic diagram.

Yi = xy1 + x'y2
.= xy] + x'y,

The next step is to plot the ¥; and ¥, functions in a map, as shown in Fig. 9-3(a) and
(b). The encoded binary values of the y variables are used for labeling the rows, and
the input x variable is used to designate the columns. This configuration results in a
slightly different three-variable map from the one used in previous chapters. However,
it 1s still a valid map, and this type of configuration is more convenient when dealing
with asynchronous sequential circuits. Note that the variables belonging to the appro-
priate squares are not marked along the sides of the map as done in previous chapters.

The transition table shown in Fig. 9-3(c) is obtained from the maps by combining
the binary values in corresponding squares. The transition table shows the value of
Y = Y\Y, inside each square. The first bit of ¥ is obtained from the value of ¥, and the
second bit 1s obtained from the value of ¥, in the same square position. For a state to be
stable, the value of Y must be the same as that of y = y;y,. Those entries in the transi-
tion table where Y = y are circled to indicate a stable condition. An uncircled entry
represents an unstable state.

Now consider the effect of a change in the input variable. The square for x = 0 and
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Yi1¥Va ¥Y1¥2 Y1¥a

00 0 0 00 0 1 00 01
01 1 0 01 1 1 01 1%
11 1 1 I 1 0 11 @ 10
10 0 1 10 0 0 10] 00

(a} Map for (b) Map for (c) Transition table
Yi=xy + x'y, Yo=xy + x'p,
FIGURE 9-3

Maps and transition table for the circuit of Fig. 9-2

y = 00 in the transition table shows that ¥ = 00. Since Y represents the next value of
y, this is a stable condition. If x changes from 0 to 1 while y = 00, the circuit changes
the value of ¥ to 01. This represents a temporary unstable condition because Y is not
equal to the present value of y. What happens next is that as soon as the signal propa-
gates to make ¥ = 01, the feedback path in the circuit causes a change in y to 01. This
is manifested in the transition table by a transition from the first row (y = 00) to the
second row, where y = 01. Now that y = Y, the circuit reaches a stable condition with
an input of x = 1. In general, if a change in the input takes the circuit to an unstable
state, the value of y will change {while x remains the same) until it reaches a stable
(circled) state. Using this type of analysis for the remaining squares of the transition
table, we find that the circuit repeats the sequence of states 00, 01, 11, 10 when the in-
put repeatedly alternates between 0 and 1.

Note the difference between a synchronous and an asynchronous sequential circuit.
In a synchronous system, the present state is totally specified by the flip-flop values and
does not change if the input changes while the clock pulse is inactive. In an asyn-
chronous circuit, the internal state can change immediately after a change in the input.
Because of this, it is sometimes convenient to combine the internal state with the input
value together and call it the total state of the circuit. The circuit whose transition table
is shown in Fig. 9-3(c) has four stable total states, y; y,x = 000, 011, 110, and 101,
and four unstable total states, 001, 010, 111, and 100.

The transition table of asynchronous sequential circuits is similar to the state table
used for synchronous circuits. If we regard the secondary variables as the present state
and the excitation variables as the next state, we obtain the state table, as shown in
Table 9-1. This table provides the same information as the transition table. There is
one restriction that applies to the asynchronous case but does not apply to the syn-
chronous case. In the asynchronous transition table, there usually is at least one next-
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Flow Table

TABLE 9-1
State Table for the Circuit of Fig. 9-2
Present Ne_xr_?ﬁfi”*g
State x=0 x =1
0 0 0 0 0 I
0 i | 1 0 i
| 0 0 0 1 0
| 1 | 1 1 ]

state entry that is the same as the present-state value in each row. Otherwise, all the
total states in that row will be unstable.

The procedure for obtaining a transition table from the circuit diagram of an asyn-
chronous sequential circuit is as follows:

1. Determine all feedback loops in the circuit.
2. Designate the output of each feedback loop with variable ¥; and its corresponding

input with y; fori = 1,2, . . ., k, where £ is the number of feedback loops in the
circuit.

3. Derive the Boolean functions of all ¥’s as a function of the external inputs and
the y’s.

4. Plot each Y function in a map, using the y variables for the rows and the external
inputs for the columns.

5. Combine all the maps into one table showing the value of ¥ = ¥, Y2 - - - ¥} inside
each square.

6. Circle those values of Y in each square that are equal to the value of y =
Yiyz -+ + yi in the same row.

Once the transition table is available, the behavior of the circuit can be analyzed by ob-
serving the state transition as a function of changes in the input variables.

During the design of asynchronous sequential circuits, it is more convenient to name
the states by letter symbols without making specific reference to their binary values.
Such a table is called a flow table. A flow table is similar to a transition table except that
the internal states are symbolized with letters rather than binary numbers. The flow
table also includes the output values of the circuit for each stable state.

Examples of flow tables are shown in Fig. 9-4. The one in Fig. 9-4(a) has four states
designated by the letters a, b, ¢, and 4. It reduces to the transition table of Fig. 9-3(¢)
if we assign the following binary values to the states: ¢ = 00, » = 01, ¢ = 11, and
d = 10. The table of Fig. 9-4(a) is called a primitive flow table because it has only one
stable state in each row. Figure 9-4(b) shows a flow table with more than one stable
state 1n the same row. It has two states, a and b; two inputs, x, and x,; and one output,
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X1X2
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vl ¢ | & a | (@) 0] (@)o| ()0} b0
cl O @ b| a0 | a0 @) 1.0

d a @ (b) Two states with two
inputs and one output

(a) Four states with
one input

FIGURE 9-4
Examples of flow tables

z. The binary value of the output variable is indicated inside the square next to the state
symbol and is separated by a comma. From the flow table, we observe the following
behavior of the circuit. If x; = 0, the circuit is in state a. If x, goes to 1 while x; is 0,
the circuit goes to state 5. With inputs x,x; = 11, the circuit may be either in state a
or state b. If in state a, the output is 0, and if in state b, the output is 1. State b is
maintained if the inputs change from 10 to 11. The circuit stays in state a if the
inputs change from 01 to 11. Remember that in fundamental mode, two input variables
cannot change simultaneously, and therefore we do not allow a change of inputs
from 00 to 11.

In order to obtain the circuit described by a flow table, it is necessary to assign to
each state a distinct binary value. This assignment converts the flow table into a transi-
tion table from which we can derive the logic diagram. This is illustrated in Fig. 9-5
for the flow table of Fig. 9-4(b). We assign binary 0 to state @ and binary 1 to state b.
The result is the transition table of Fig. 9-5(a). The output map shown in Fig. 9-5(b) is
obtained directly from the output values in the flow table. The excitation function Y and
the output function z are simplified by means of the two maps. The logic diagram of
the circuit is shown in Fig. 9-5(c).

This example demonstrates the procedure for obtaining the logic diagram from a
given flow table. This procedure is not always as simple as in this example. There are
several difficulties associated with the binary state assignment and with the output as-
signed to the unstable states. These problems are discussed in detail in the following
sections.

Race Conditions

A race condition is said to exist in an asynchronous sequential circuit when two or
more binary state variables change value in response to a change in an input variable.
When unequal delays are encountered, a race condition may cause the state variables to
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FIGURE 9-5
Derivation of a circuit specified by the flow table of Fig. 9-4(bj

change in an unpredictable manner. For example, if the state variables must change
from 00 to 11, the difference in delays may cause the first variable to change faster than
the second, with the result that the state variables change in sequence from 00 to 10
and then to 11. If the second variable changes faster than the first, the state variables
will change from 00 to Ol and then to 11. Thus, the order by which the state variables
change may not be known in advance. If the final stable state that the circuit reaches
does not depend on the order in which the state variables change, the race 1s called a
noncritical race. If it is possible to end up in two or more different stable states, de-
pending on the order in which the state variables change, then it is a critical race. For
proper operation, critical races must be avoided.

The two examples in Fig. 9-6 illustrate noncritical races. We start with the total sta-
ble state v, y.x = 000 and then change the input from 0 to 1. The state variables must
change from Q0 to 11, which defines a race condition. The listed transitions under each
table show three possible ways that the state variables may change. They can either
change simultaneously from 00 to [], or they may change in sequence from 00 to 01
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{a) Possible transitions:
0a - 11
00 - 01 = 11
00 - 10 = 11

FIGURE 9-6
Examples of nancritical races
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{b) Possible transitions:
00 ~ 11 - 01
00 - 01
00 = 10 - 11 = 01

and then to 11, or they may change in sequence from 00 to 10 and then to 11. In all
cases, the final stable state is the same, which results in a noncritical race condition. In
(a), the final total state is y, y.x = 111, and in (b), it is 011.

The transition tables of Fig. 9-7 illustrate critical races. Here again we start with the

x
0 I
Yi¥a
00 11
:
J @
10

(a) Possible transitions:
00 - 11
00 — 01

00 =+ 10
FIGURE 9-7
Examples of critical races
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Possible transitions:
00 — 11

00 - 01 - 11
00 - 10
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total stable state y, y,x = 000 and then change the input from 0 to 1. The state vari-
ables must change from 00 to 11. If they change simultaneously, the final total stable
state is 111. In the transition table of part (a), if ¥> changes to 1 before ¥, because of
unequal propagation delay, then the circuit goes to the total stable state 011 and re-
mains there. On the other hand, if ¥, changes first, the internal state becomes 10 and
the circuit will remain in the stable total state 101. Hence, the race is critical because
the circuit goes to different stable states depending on the order in which the state vari-
ables change. The transition table of Fig. 9-7(b) illustrates another critical race, where
two possible transitions result in one final total state, but the third possible transition
goes to a different total state.

Races may be avoided by making a proper binary assignment to the state variables.
The state variables must be assigned binary numbers in such a way that only one state
variable can change at any one time when a state transition occurs in the flow table.
The subject of race-free state assignment is discussed in Section 9-6.

Races can be avoided by directing the circuit through intermediate unstable states
with a unique state-variable change. When a circuit goes through a unique sequence of
unstable states, it is said to have a cycle. Figure 9-8 illustrates the occurrence of cycles.
Again we start with y,y2 = 00 and then change the input from 0 to 1. The transition
table of part (a) gives a unique sequence that terminates in a total stable state 101. The
table in (b) shows that even though the state variables change from 00 to 11, the cycle
provides a unique transition from 00 to 01 and then to 11. Care must be taken when
using a cycle that it terminates with a stable state. If a cycle does not terminate with a
stable state, the circuit will keep going from one unstable state to another, making the
entire circuit unstable. This is demonstrated in Fig. 9-8(c) and also in the following ex-
ample.

X X X
0 1 0 1 0 1
yiva = AV EY m Vi o
oo | {00} ol oo | (oo} | ol oo | (oo} | o
0l I 1 11 0l 1
11 10 T (1 11 10
e AT

10 (10) 10 (10) 10 01
(a} State transition: {b) State transition: (¢} Unstabie
00 -» 01 — i - 10 00 - 01 =~ 11 01 11 = 10

FIGURE 9-8
Examples of cycles
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Stability Considerations

Because of the feedback connection that exists in asynchronous sequential circuits, care
must be taken to ensure that the circuit does not become unstable. An unstable condi-
tion will cause the circuit to oscillate between unstable states. The transition-table
method of analysis can be useful in detecting the occurrence of instability.

Consider, for example, the circuit of Fig. 9-9(a). The excitation function is

Y=y xn=x+yhn=xix+xy

The transition table for the circuit is shown in Fig. 9-9(b). Those values of ¥ that are
equal to y are circled and represent stable states. The uncircled entries indicate unstable
conditions. Note that column 11 has no stable states. This means that with input x;x;
fixed at 11, the values of ¥ and y are never the same. If y = 0, then ¥ = 1, which
causes a transition to the second row of the table with y = 1 and ¥ = 0. This causes a
transition back to the first row, with the result that the state variable alternates between
0 and 1 indefinitely as long as the input is 11.

The instability condition can be detected directly from the logic diagram. Let
xy = 1,x =1, and y = 1. The output of the NAND gate is equal to 0, and the output
of the AND gate is equal to 0, making ¥ equal to 0, with the result that ¥ # y. Now if
y = 0, the output of the NAND gate is 1, the output of the AND gate is 1, making ¥
equal to 1, with the result that ¥ # y. If it is assumed that each gate has a propagation
delay of 5 ns (including the wires), we will find that ¥ will be O for 10 ns and 1 for the
next 10 ns. This will result in a square-wave waveform with a period of 20 ns. The fre-
quency of oscillation is the reciprocal of the period and is equal to 50 MHz. Unless one

D

X3

{a) Logic diagram

X142
00 01 11 10
Vv
[ T [®
1 0 @ 0 0
(b) Transition table
FIGURE 9-9

Example of an unstable circuit
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is designing a square-wave generator, the instability that may occur in asynchronous se-
quential circuits is undesirable and must be avoided.

9-3 CIRCUITS WITH LATCHES

SR Latch

Historically, asynchronous sequential circuits were known and used before synchronous
circuits were developed. The first practical digital systems were constructed with re-
lays, which are more adaptable to asynchronous-type operations. For this reason, the
traditional method of asynchronous-circuit configuration has been with components
that are connected to form one or more feedback loops. As electronic digital circuits
were developed, it was realized that the flip-flop circuit could be used as a memory ele-
ment in sequential circuits. Asynchronous sequential circuits can be implemented by
employing a basic flip-flop commonly referred to as an SR latch. The use of SR latches
in asynchronous circuits produces a more orderly pattern, which may result in a reduc-
tion of the circuit complexity. An added advantage is that the circuit resembles the syn-
chronous circuit in having distinct memory elements that store and specify the internal
states.

In this section, we will first explain the operation of the SR latch using the analysis
technique introduced in the previous section. We will then proceed to give examples of
analysis and implementation of asynchronous sequential circuits that employ SR latches.

The SR latch is a digital circuit with two inputs, § and R, and two cross-coupled NOR
gates or two cross-coupled NAND gates. This circuit was introduced in Section 6-2 as a
basic flip-flop from which other, more complicated fiip-flop circuits were obtained. The
cross-coupled NOR circuit is shown in Fig. 9-10(a). This circuit, and the truth table
listed in Fig. 9-10(b), were taken directly from Fig. 6-2. In order to analyze the circuit
by the transition-table method, we redraw the circuit, as shown in Fig. 9-10(c). Here
we distinctly see a feedback path from the output of gate 1 to the input of gate 2. The
output Q is identical to the excitation variable ¥ and the secondary variable y. The
Boolean function for the output is

Plotting Y as in Fig. 9-10(d), we obtain the transition table for the circuit.

We can now investigate the behaviar of the SR latch from the transition table. With
SR = 10, the output Q = ¥ = | and the latch is said to be set. Changing § to 0 leaves
the circuit in the set state. With SR = 01, the output Q = Y = 0 and the latch 1is said
to be reset. A change of R back to O leaves the circuit in the reset state. These condi-
tions are also listed in the truth table. The circuit exhibits some difficulty when both §
and R are equal to 1. From the truth table, we see that both Q and Q' are equal to 0, a
condition that violates the requirement that these two outputs be the complement of
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R—3 '
1 o s R Q Q
1 0 1 0
0 0 1 0 (After SR = 10)
0 1 0 1
0 Q 0 1 (After SR = 01)
2 Q' 1 1 0 0
§—
(a) Crossed-coupled circuit (b) Truth table
SR
R 00 01 11 10
! —Y=0
o| @[]
s =)
: O [ |0
¥
Y = SR + Ry
Y=85+ RywhenSR = 0
(c) Circuit showing teedback (d) Transition table
FIGURE 9-10

SR latch with NOR gates

each other. Moreover, from the transition table, we note that going from SR = 11 to
SR = 00 produces an unpredictable result. If § goes to O first, the output remains at 0,
but if R goes to O first, the output goes to 1. In normal operation, we must make sure
that 1’s are not applied to both the S and R inputs simultaneously. This condition can
be expressed by the Boolean function SR = 0, which states that the ANDing of § and R
must always result in a 0.

Coming back to the excitation function, we note that when we OR the Boolean ex-
pression SR’ with SR, the result is the single variable S.

SR' +SR=S(R'+R =S§
From this we deduce that SR’ = § when SR = 0. Therefore, the excitation function
derived previously,
Y=8SR"+R'y
can be expressed as
Y=S8S+R"y when SR = 0
To analyze a circuit with an SR latch, we must first check that the Boolean condition
SR = 0 holds at all times. We then use the reduced excitation function to analyze the
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S . =i
1 — U S5 R ¢ )
1 0 G 1
>< 1 1 0 1 {After SR = 10)
0 1 l 0
1 1 | 0 {After SR = 01}
R 2 )0“—‘“““—9 ¢ 0 1 1
(a) Crossed-coupled circuit {h) Truth table
SR
S 00 0l 11 10
T I
0 1 1 NN B
R ' - . —
2 R IR IR
} : '\_1_/ \1/ l/ 0
¥
Y =8 + Rrwith§'R' =0
(¢) Circuit showing feedback (d) Transition table
FIGURE 9-11

SR latch wiath NAND gates

circuit. However, if it is found that both § and R can be equal to 1 at the same time,
then it is necessary to use the original excitation function.

The analysis of the SR latch with NAND gates is carried out in Fig. 9-11. The
NAND latch operates with both inputs normally at 1 unless the state of the latch has to
be changed. The application of 0 to R causes the output Q to go to 3, thus putting the
latch in the reset state. After the R input returns to 1, a change of § to 0 causes a
change to the set state. The condition to be avoided here is that both § and R not be 0
simultaneously. This condition is satisfied when §'R’ = 0. The excitation function for
the circuit is

Y =[S(Ry)] =8 + Ry

Comparing it with the excitation function of the NOR latch, we note that S has been
replaced with §’ and R’ with R. Hence, the input variables for the NAND latch require
the complemented values of those used in the NOR latch. For this reason, the NAND
latch is sometimes referred to as an S'R’ latch (or SR latch).

Analysis Example

Asynchronous sequential circuits can be constructed with the use of SR latches with or
without external feedback paths. Of course, there is always a feedback loop within the
latch itself. The analysis of a circuit with latches will be demonstrated by means of a
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specific example. From this example, it will be possible to generalize the procedural
steps necessary to analyze other, similar circuits.

The circuit shown in Fig. 9-12 has two SR latches with outputs ¥, and ¥,. There are
two inputs, x; and x, and two external feedback loops giving rise to the secondary
variables y; and y,. Note that this circuit resembles a conventional sequential circuit
with latches behaving like flip-flops without clock pulses. The analysis of the circuit re-
quires that we first obtain the Boolean functions for the S and R inputs in each latch.

S1 =y S = x1x2
R, = xix; R, = xiy
We then check whether the condition SR = 0 is satisfied to ensure proper operation.
SIRi=xiyxixi =0
S:R: = xi0xay = 0

The result is 0 because x1x; = x2x; = 0.

The next step is to derive the transition table of the circuit. Remember that the tran-
sition table specifies the value of ¥ as a function of y and x. The excitation functions
are derived from the relation ¥ = § + R'y.

> :
-ﬂ_ S,
Y2 _j
¥ _\ R
% —j %<>)——-—--—-Y2
ﬂ s,
Xy _J DO—
FIGURE 9-12

Exampie of a circuit with SR latches
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FIGURE 9-13

Transition table tar the circuit of
kg 9-12

V=S +Riyn=xntxt+txn=xy+xayn+ oy
=S+ Riva= x4+ (o + y)y: = xix + 0y + yiy:

We now develop a composite map for ¥ = Y, Y,. The y variables are assigned to the
rows in the map, and the x variables are assigned to the columns, as shown in Fig. 9-
13. The Boolean functions of Y, and Y> as expressed above are used to plot the com-
posite map for Y. The entries of ¥ in each row that have the same value as that given to
Y are circled and represent stable states. From investigation of the transition table, we
deduce that the circuit is stable. There is a critical race condition when the circuit is ini-
tially in total state y; y.x1x; = 1101 and x, changes from 1 to 0. If ¥1 changes to 0 be-
fore Y,, the circuit goes to total state 0100 instead of 0000. However, with approxi-
mately equal delays in the gates and latches, this undesirable situation is not likely to
occur.

The procedure for analyzing an asynchronous sequential circuit with SR latches can
be summarized as follows:

1. Label each latch output with ¥; and its external feedback path (if any) with y; for
i=1,2,...,k

2. Derive the Boolean functions for the §; and R; inputs in each latch.

3. Check whether SR = 0 for each NOR latch or whether S'R’ = 0 for each NAND
latch. If this condition is not satisfied, there is a possibility that the circuit may
not operate properly.

4. Evaluate ¥ = § + R’y for each NOR latch or ¥ = §' + Ry for each NAND
latch.

5. Construct a map with the y’s representing the rows and the x inputs representing
the columns.

6. Plot the value of ¥ = ¥, ¥, - - - ¥, in the map.

7. Circle all stable states where ¥ = y. The resulting map is then the transition
table.
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The implementation of a sequential circuit with SR latches is a procedure for obtaining
the logic diagram from a given transition table. The procedure requires that we deter-
mine the Boolean functions for the S and R inputs of each latch. The logic diagram is
then obtained by drawing the SR latches and the logic gates that implement the S and R
functions. To demonstrate the procedure, we will repeat the implementation exampie of
Fig. 9-5. The output circuit remains the same and will not be repeated again.
The transition table from Fig. 9-5(a) is duplicated in Fig. 9-14(a). The latch excita-
tion table is shown in Fig. 9-14(b). Remember that the transition table resembles a
state table with y representing the present state and Y the next state. Moreover, the ex-
citation table for the SR latch is exactly the same as that of an RS flip-flop as listed pre-
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viously in Table 6-10, except that y is replaced by Q) and Y by Q(¢ + 1). Thus, the
excitation table for the SR latch is used in the design of asynchronous sequential circuits
just as the RS flip-flop excitation table is used in the design of synchronous sequential
circuits as described in Section 6-7. From the information given in the transition table
in Fig. 9-14(a) and from the latch excitation table conditions in Fig. 9-14(b), we can
obtain the maps for the S and R inputs of the latch, as shown in Fig. 9-14(c} and (d).
For example, the square in the second row and third column ( yxx; = 111) in Fig. 9-
14(a) requires a transition fromy = 1toY = 1. The excitation table specifies § = X,
R = 0 for this change. Therefore, the correspending square in the § map is marked
with an X and the one in the R map with a 0. All other squares are filled with values in
a similar manner. The maps are then used to derive the simplified Boolean functions.

S = xx} and R = x|

The logic diagram consists of an SR latch and the gates required to implement the § and
R Boolean functions. The circuit is as shown in Fig. 9-14(e) when a NOR latch is used.
With a NAND latch, we must use the complemented values for § and R.

S = (xx})' and R = x

This circuit is shown in Fig. 9-14(f).
The general procedure for implementing a circuit with SR laiches from a given tran-
sition table can now be summarized as follows:

1. Given a transition table that specifies the excitation function ¥ = >« « - K,
derive a pair of maps for S; and R; foreach i = 1,2, . . . , k. This is done by us-
ing the conditions specified in the latch excitation table of Fig. 9-14(b).

2. Derive the simplified Boolean functions for each S; and R;. Care must be taken
not to make S, and R; equal to 1 in the same minterm square.

3. Draw the logic diagram using k latches together with the gates required to gener-
ate the S and R Boolean functions. For NOR latches, use the § and R Boolean
functions obtained in step 2. For NAND latches, use the complemented values of
those obtained in step 2.

Another useful example of latch implementation can be found in Section 9-7 in con-
junction with Fig. 9-38.

Debounce Circuit

Input binary information in a digital system can be generated manually by means of
mechanical switches. One position of the switch provides a voltage equivaleat to logic
1, and the other position provides a second voltage equivalent to logic 0. Mechanical
switches are also used to start, stop, or reset the digital system. When testing digital
circuits in the laboratory, the input signals will normally come from switches. A com-
mon characteristic of a mechanical switch is that when the arm is thrown from one po-
sition to the other, the switch contact vibrates or bounces several times before coming
to a final rest. In a typical switch, the contact bounce may take several milliseconds to
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Ground A— B A —
FIGURE 9-15
Debounce circuit

die out. This may cause the signal to oscillate between 1 and 0 because the swiich con-
tact is vibrating.

A debounce circuit is one that removes the series of pulses that result from a contact
bounce and produces a single smooth transition of the binary signal from 0 to 1 or from
1 to 0. One such circuit consists of a single-pole double-throw switch connected to an
SR latch, as shown in Fig. 9-15. The center contact is connected to ground that pro-
vides a stgnal equivalent to logic-0. When one of the two contacts, A or B, is not con-
nected to ground through the switch, it behaves like a logic-1 signal. A resistor is
sometimes connected from each contact to a fixed voltage to provide a firm logic-1 sig-
nal. When the switch is thrown from position A to position B and back, the outputs of
the latch produce a single pulse as shown, negative for O and positive for ¢'. The
switch is usually a pushbutton whose contact rests in position A. When the pushbutton
is depressed, it goes to position B and when released, it returns to position A.

The operation of the debounce circuit is as follows. When the switch rests in position
A, we have the condition § =0, R =1land @ = 1, Q' = 0 (see Fig. 9-11(b)). When
the switch is moved to position B, the ground connection causes R to go to 0 while §
becomes a 1 because contact A is open. This condition causes output @ to go to 0 and
Q' to go to 1. After the switch makes an initial contact with B, it bounces several
times, but for proper operation, we must assume that it does not bounce back far
enough to reach point A. The output of the latch will be unaffected by the contact
bounce because ' remains | (and Q remains 0) whether R is equal to 0 {contact with
ground) or equal to 1 (no contact with ground). When the switch returns to position A,
S becomes 0 and Q returns to 1. The output again will exhibit a smooth transition even
if there is a contact bounce in position A.

9-4 DESIGN PROCEDURE

The design of an asynchronous sequential circuit starts from the statement of the prob-
lem and culminates in a logic diagram. There are a number of design steps that must be
carried out in order to minimize the circuit complexity and to produce a stable circuit
without critical races. Briefly, the design steps are as follows. A primitive flow table is
obtained from the design specifications. The flow table is reduced to a minimum num-
ber of states. The states are then given a binary assignment from which we obtain the
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transition table. From the transition table, we derive the logic diagram as a combina-
tional circuit with feedback or as a circuit with SR latches.

The design process will be demonstrated by going through a specific example. Once
this example is mastered, it will be easier to understand the design sieps that are enu-
merated at the end of this section. Some of the steps require the application of formal
procedurcs, and these are discussed in greater detail in the following sections.

Design Exampie

It is necessary to design a gated latch circuit with two inputs, ¢ (gate) and D (data),
and one output, Q. Binary information present at the D input is transferred to the Q
output when G is equal to 1. The @ output will follow the D input as long as G = 1.
When G goes to O, the information that was present at the D input at the time the tran-
sition occurred is retained at the Q output. The gated latch is a memory element that
accepts the value of D when G = 1 and retains this value after G goes to 0. Once
G = 0, a change in D does not change the value of the output Q.

Primitive Flow Table

As defined previously, a primitive flow table is a flow table with only one stable total
state in each row. Remember that a total state consists of the internal state combined
with the input. The derivation of the primitive flow table can be facilitated if we first
form a table with all possible total states in the system. This is shown in Table 9-2 for
the gated latch. Each row in the table specifies a total state, which consists of a letter
designation for the internal state and a possible input combination for D and G. The
output @ is also shown for cach total state. We start with the two total states that have
(G = 1. From the design specifications, we know that @ = 0if DG = 0l and @ = 1 if
DG = 11 because D must be equal to @ when G = 1. We assign these conditions (o
states @ and b. When G goes to 0, the output depends on the last value of D. Thus, if
the transition of DG is from 01 to 00 to 10, then Q must remain O because D is O at the
time of the transition from 1 to 0 in G. If the transition ot DG is from 11 to 10 to 00,
then @ must remain 1. This information results in six different total states. as shown in

TABLE 9-2
Gated-Latch Total States
Inputs Qutput
State D o __G __5" Comments
a ( ] 0 D = Q because G = |
b 1 1 I D = ) because & = 1
¢ 0 0 0 After state a or o
a i 0 0 After state ¢
¢ 1 0 | After state b or
0 0 | After state e
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the table. Note that simultaneous transitions of two input variables, such as from 01 to
10 or from 11 to 00, are not allowed in fundamental-mode operation.

The primitive flow table for the gated latch is shown in Fig. 9-16. It has one row for
each state and one column for each input combination. First, we fill in one square in
cach row belonging to the stable state in that row. These entries are determined from
Table 9-2. For example, state ¢ is stable and the output is 0 when the input is 01. This
information is entered in the flow table in the first row and second column. Similarly,
the other five stable states together with their output are entered in the corresponding
input columns.

Next we note that since both inputs are not allowed to change simultaneously, we
can enter dash marks in each row that differs in two or more variables from the input
variables associated with the stable state. For example, the first row in the flow table
shows a stable state with an input of 01. Since only one input can change at any given
time, it can change to 00 or 11, but not to 10. Therefore, we enter two dashes in the 10
column of row a. This will eventually result in a don’t-care condition for the next state
and output in this square. Following this procedure, we fill in a second square in each
row of the primitive flow table.,

Next it is necessary to find values for two more squares in each row. The comments
listed in Table 9-2 may help in deriving the necessary information. For example, state ¢
1s associated with input 00 and is reached after an input change from state a or d.
Therefore, an unstable state ¢ is shown in column 00 and rows a and 4 in the flow
table. The output is marked with a dash to indicate a don’t-care condition. The inter-
pretation of this is that if the circuit is in stable state a and the input changes from 01 to
00, the circuit first goes to an unstable next state ¢, which changes the present state
value from a to ¢, causing a transition to the third row and first column of the flow

DG
00 0l 11 10

a c, = , 0 b, R

Fle) a-1 -4 e-

FIGURE 9-1&
Primitive flow table
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table. The unstable state values for the other squares are determined in a similar man-
ner. All outputs associated with unstable states are marked with a dash to indicate
don’t-care conditions. The assignment of actual values to the outputs is discussed fur-
ther after the design example is compieted.

Reduction of the Primitive Flow Table

The primitive flow table has only one stable state in each row. The table can be reduced
to a smaller number of rows if two or more stable states are placed in the same row of
the flow table. The grouping of stable states from separate rows into one common row
is called merging. Merging a number of stable states in the same row means that the
binary state variable that is ultimately assigned to the merged row will not change when
the input variable changes. This is because in a primitive flow table, the state variable
changes every time the input changes, but in a reduced flow table, a change of input
will not cause a change in the state variable if the next stable state is in the same row.

A formal procedure for reducing a flow table is given in the next section. in order to
complete the design example without going through the formal procedure, we will ap-
ply the merging process by using a simplified version of the merging rules. Two or
more rows in the primitive flow table can be merged into one row if there are non-
conflicting states and outputs in each of the columns. Whenever one state symbol and
don’t-care entries are encountered in the same column, the state is listed in the merged
row. Moreover, if the state is circled in one of the rows, it is also circled in the merged
row. The output value is included with each stable state in the merged row.

We now apply these rules to the primitive flow table of Fig. 9-16. To see how this is
done, the primitive flow table is separated into two parts of three rows each, as shown
in Fig. 9-17(a). Each part shows three stable states that can be merged because there
are no conflicting entries in each of the four columns. The first column shows state ¢ in
all the rows and O or a dash for the output. Since a dash represents a don’t-care condi-
tion, it can be associated with any state or output. The two dashes in the first column
can be taken as O output to make all three rows identical to a stable state ¢ with a 0
output. The second column shows that the dashes can be assigned to correspond to a
stable state @ with a O output. Note that if the state is circled in one of the rows, it is
also circled in the merged row. Similarly, the third column can be merged into an
unstable state b with a don’t-care output and the fourth column can be merged into
stable state d and a O output. Thus, the three rows, a, ¢, and d, can be merged into
one row with three stable states and one unstable state, as shown in the first row of
Fig. 9-17(b). The second row of the reduced table results from the merging of rows b,
e, and f of the primitive flow table. There are two ways that the reduced table can be
drawn. The letter symbols for the states can be retained to show the relationship
between the reduced and primitive flow tables. The other alternative is to define a com-
mon letter symbol for all the stable states of the merged rows. Thus, states ¢ and d are
replaced by state a, and states ¢ and f are replaced by state 5. Both alternatives are
shown in Fig. 9-17(b).
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FIGURE 9-17
Reduction of the primitive flow table

Transition Table and Logic Diagram

In order to obtain the circuit described by the reduced flow table, it is necessary to as-
sign to each state a distinct binary value. This assignment converts the flow table into a
transition table. In the general case, a binary state assignment must be made to ensure
that the circuit will be free of critical races. The state-assignment problem in asyn-
chronous sequential circuits and ways to solve it are discussed in Section 9-6. Fortu-
nately, there can be no critical races in a two-row flow table, and, therefore, we can
finish the design of the gated latch prior to studying Section 9-6. Assigning 0 to state 4
and 1 to state b in the reduced flow table of Fig. 9-17(b), we obtain the transition table
of Fig. 9-18(a). The transition table is, in effect, a map for the excitation variable Y.
The simplified Boolean function for Y is then obtained from the map.

Y = DG+ G'y

There are two don’t-care outputs in the final reduced flow table. If we assign values to
the output, as shown in Fig. 9-18(b), it is possible to make output Q equal to the exci-
tation function Y. If we assign the other possible values to the don’t-care outputs, we
can make output Q equal to y. In either case, the logic diagram of the gated latch is as
shown in Fig. 9-19.
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G DG
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The diagram can be implemented also by means of an SR latch. Using the procedure
outlines in Section 9-3, we first obtain the Boolean functions for S and R, as shown in
Fig. 9-20(a). The logic diagram with NAND gates is shown in Fig. 9-20(b). Note that
the gated latch is a level-sensitive D-type flip-flop with the clock pulses applied to input
G (see Fig. 6-5).

Assigning Outputs to Unstable States

The stable states in a flow table have specific output values associated with them. The
unstable states have unspecified output entries designated by a dash. The output values
for the unstable states must be chosen so that no momentary false outputs occur when
the circuit switches between stable states. This means that if an output variabie is not
supposed to change as the result of a transition, then an unstable state that is a transient
state between two stable states must have the same output value as the stable states.
Consider, for example, the flow table of Fig. 9-21(a). A transition from stable state a
to stable state b goes through the unstable state b. If the output assigned to the unstable
b is a 1, then a momentary short pulse will appear on the output as the circuit shifts
from an output of O in state a to an output of 1 for the unstable b and back to 0 when
the circuit reaches stable state b. Thus the output corresponding to unstable state & must
be specified as 0 to avoid a momentary false output.

If an output variable is to change value as a result of a state change, then this vari-
able is assigned a don’t-care condition. For example, the transition from stable state b
to stable state ¢ in Fig. 9-21(a) changes the output from O to 1. If a O is entered as the
output value for unstable ¢, then the change in the output variable will not take place
until the end of the transition. If a 1 is entered, the change will take place at the start of
the transition. Since it makes no difference when the output change occurs, we place a
don’t-care entry for the output associated with unstable state c. Figure 9-21(b) shows
the output assignment for the flow table. It demonstrates the four possible combinations
in output change that can occur. The procedure for making the assignment to outputs
associated with unstable states can be summarized as follows:

a | (@) 0] b, 0 0
ble-|@)o x | o
N IO KB L 1
d|a-|E X 1

{(a) Flow table (b) Quiput assignment
FIGURE 9-21
Assigning output values to unstable states
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1.

.

Assign a O to an output variable associated with an unstable state that is a tran-
sient state between two stable states that have a 0 in the corresponding output
variable.
Assign a | to an output variable associated with an unstable state that is a tran-
sient state between two stable states that have a 1 in the corresponding output
variable.

Assign a don’t-care condition to an output variable associated with an unstable
state that is a transient state between two stable states that have different values
(0 and 1 or 1 and 0) in the corresponding output variable.

Summary of Design Procedure

The design of asynchronous sequential circuits can be carried out by using the proce-
dure illustrated in the previous example. Some of the design steps need further elabora-
tion and are explained in the following sections. The procedural steps are as follows.

1.

2,

Obtain a primitive flow table from the given design specifications. This is the
most difficult part of the design because it is necessary to use intuition and expe-
rience to arrive at the correct interpretation of the problem specifications.

Reduce the flow table by merging rows in the primitive flow table. A formal pro-
cedure for merging rows in the flow tabie is given in Section 9-5.

Assign binary state variables to each row of the reduced flow table to obtain the
transition table. The procedure of state assignment that climinates any possible
critical races is given in Section 9-6.

Assign output values to the dashes associated with the unstable states to obtain the
output maps. This procedure was explained previously.

Simplify the Boolean functions of the excitation and output variables and draw the
logic diagram, as shown in Section 9-2. The logic diagram can be drawn using SR
latches, as shown in Section 9-3 and also at the end of Section 9-7.

9-5 REDUCTION OF STATE AND FLOW TABLES

The procedure for reducing the number of internal states in an asynchronous sequential
circuit resembles the procedure that is used for synchronous circuits. An algorithm for
state reduction of a completely specified state table is given in Section 6-5. We will re-
view this algorithm and apply it to a state-reduction method that uses an implication
table. The algorithm and the implication table will then be modified to cover the state
reduction of incompletely specified state tables. This modified algorithm will be used to
explain the procedure for reducing the flow table of asynchronous sequential circuits.

Implication Table

The state-reduction procedure for completely specified state tables is based on the al-
gorithm that two states in a state table can be combined into one if they can be shown
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TABLE 9-3
State Table to Demonstrate Equivalent States
Present Next State Output
State x=0 [ x=0  x=1
a c b 0 1
b d a 0 1
c a d | 0
d b d 1 0

to be equivalent. Two states are equivalent if for each possible input, they give exactly
the same output and go to the same next states or to equivalent next states. Table 6-6
shows an example of equivalent states that have the same next states and outputs for
each combination of inputs. There are occasions when a pair of states do not have the
same next states, but, nonetheless, go to equivalent next states. Consider, for example,
the state table shown in Table 9-3. The present states a and b have the same output for
the same input. Their next states are ¢ and d forx = O and b and g for x = 1. If we can
show that the pair of states {c, d) are equivalent, then the pair of states (a, b) will also
be equivalent because they will have the same or equivalent next states, When this rela-
tionship exists, we say that (a, b) imply (c, d). Similarly, from the last two rows of
Table 9-3, we find that the pair of states (¢, ) imply the pair of states (a, b). The char-
acteristic of equivalent states is that if (@, b) imply (c, 4) and (¢, d) imply (g, b), then
both pairs of states are equivalent; that is, a and b are equivalent as well as ¢ and d. As
a consequence, the four rows of Table 9-3 can be reduced to two rows by combining a
and b into one state and ¢ and 4 into a second state.

The checking of each pair of states for possible equivalence in a table with a large
number of states can be done systematically by means of an implication table. The im-
plication table is a chart that consists of squares, one for every possible pair of states,
that provide spaces for listing any possible implied states. By judicious use of the table,
it is possible to determine all pairs of equivalent states. The state table of Table 9-4 will

TABLE 9-4
State Tabie to Be Reduced
Present Next State Output
State PV E— T T =1
x=0 x = 1 x=0 x =1

d

SO R R Y R o
—D = e OO

O Y & 0O OB
2 0 D 8o
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be used to illustrate this procedure. The implication table is shown in Fig. 9-22. On the
left side along the vertical are listed all the states defined in the state table except the
first, and across the bottom horizontally are listed ali the states except the last. The re-
sult is a display of all possible combinations of two states with a square placed in the
intersection of a row and a column where the two states can be tested for equivalence.

Two states that are not equivalent are marked with a cross (X) in the corresponding
square, whereas their equivalence is recorded with a check mark (/). Some of the
squares have entries of implied states that must be further investigated to determine
whether they are equivalent or not. The step-by-step procedure of filling in the squares
1s as follows. First, we place a cross in any square corresponding to a pair of states
whose outputs are not equal for every input. In this case, state ¢ has a difterent output
than any other state, so a cross is placed in the two squares of row ¢ and the four
squares of column ¢. There are nine other squares in this category in the implication
table.

Next, we enter in the remaining squares the pairs of states that are implied by the
pair of states rcpresenting the squares. We do that starting from the top square in the
left column and going down and then proceeding with the next column to the right.
From the state table, we see that pair (g, &) imply (d, €}, so {(d, e} is recorded in the
square defined by column a and row /. We proceed in this manner until the entire table
is completed. Note that states {d, €) are equivalent because they go to the same next
state and have the same output. Therefore, a check mark is recorded in the square
defined by column 4 and row ¢, indicating that the two states are equivalent and inde-
pendent of any implied pair.

The next step is to make successive passes through the table to determine whether
any additional squares should be marked with a cross. A square in the table is crossed
out if it contains at least one implied pair that is not equivalent. For example, the square

b ld, e

« x X

o b4 x x

¢ X X X v

rleax 9% x| x X

g P X X d, e/ |d. e / b%
I ] s % [ !

FIGURE 9.22

Implication tabie
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TABLE 9-5
Reduced State Table
Present Next State Cutput
State x=0 x =1 x=0 x=1
a d a 0 0
C d f 0 1
d a d 1 0
f I a 0 0

defined by a and f is marked with a cross next to ¢, d because the pair (¢, d) defines a
square that contains a cross. This procedure is repeated until no additional squares can
be crossed out. Finally, all the squares that have no crosses are recorded with check
marks. These squares define pairs of equivalent states. In this example, the equivalent
states are

(a,b) (d,e) (d, g (e g

We now combine pairs of states into larger groups of equivalent states. The last three
pairs can be combined into a set of three equivalent states (d, e, g) because each one of
the states in the group is equivalent to the other two. The final partition of the states
consists of the equivalent states found from the implication table together with all the
remaining states in the state table that are not equivalent to any other state.

(@, b) (0 (d.e g (f)

This means that Table 9-4 can be reduced from seven states to four states, one for each
member of the above partition. The reduced table is obtained by replacing state b by a
and states e and g by d. The reduced state table is shown in Table 9-5.

Merging of the Flow Table

There are occasions when the state table for a sequential circuit is incompletely
specified. This happens when certain combinations of inputs or input sequences may
never occur because of external or internal constraints. In such a case, the next states
and outputs that should have occurred if all inputs were possible are never attained and
are regarded as don’t-care conditions. Although synchronous sequential circuits may
sometimes be represented by incompletely specified state tables, our interest here is
with asynchronous sequential circuits where the primitive flow table is always incom-
pletely specified.

Incompletely specified states can be combined to reduce the number of states in the
flow table. Such states cannot be called equivalent, because the formal definition of
equivalence requires that all outputs and next states be specified for all inputs. Instead,
two incompletely specified states that can be combined are said to be compatible. Two
states are compatible if for each possible input they have the same output whenever
specified and their next states are compatible whenever they are specified. All don’t-
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care conditions marked with dashes have no effect when searching for compatible states
as they represent unspecified conditions.

The process that must be applied in order to find a suitable group of compatibles for
the purpose of merging a flow table can be divided into three procedural steps.

1. Determine all compatible pairs by using the implication table.
2. Find the maximal compatibles using a merger diagram.
3. Find a minimal collection of compatibles that covers all the states and is closed.

The minimal collection of compatibles is then used to merge the rows of the flow table.
We will now proceed to show and explain the three procedural steps using the primitive
flow table from the design example in the previous section.

Compatible Pairs

The procedure for finding compatible pairs is illustrated in Fig. 9-23. The primitive
flow table in (a) is the same as Fig. 9-16. The entries in each square represent the next
state and output. The dashes represent the unspecified states or outputs. The implication
table is used to find compatible states just as it is used to find equivalent states in the
completely specified case. The only difference is that when comparing rows, we are at
liberty to adjust the dashes to fit any desired condition.

Two states are compatible if in every column of the corresponding rows in the flow
table, there are identical or compatibie states and if there is no conflict in the output
values. For example, rows a and b in the flow table are found to be compatible, but
rows a and f will be compatible only if ¢ and f are compatible. However, rows ¢ and f
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{a) Primitive flow table
(b} Implication table
FIGURE 9-23
Flow and implication tables
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are not compatible because they have different outputs in the first column. This infor-
mation is recorded in the implication table. A check mark designates a square whose
pair of states are compatible. Those states that are not compatible are marked with a
cross. The remaining squares are recorded with the implied pairs that need further in-
vestigation.

Once the initial implication table has been filled, it is scanned again to cross out the
squares whose implied states arc not compatible. The remaining squares that contain
check marks define the compatible pairs. In the example of Fig. 9-23, the compatible
pairs are

@b {a,c) (ad e b,f) (c,d (ef)

Maximal Compatibles

Having found all the compatible pairs, the next step is to find larger sets of states that
are compatible. The maximal compatible is a group of compatibles that contains all the
possible combinations of compatible states. The maximal compatible can be obtained
from a merger diagram, as shown in Fig. 9-24. The merger diagram is a graph in which
cach state is represented by a dot placed along the circumference of a circle. Lines are
drawn between any two corresponding dots that form a compatible pair. All possible
compatibles can be obtained from the merger diagram by observing the geometrical
patterns in which states are connected to each other. An isolated dot represents a state
that is not compatible to any other state. A line represents a compatible pair. A triangle
constitutes a compatible with three states. An n-state compatible is represented in the
merger diagram by an n-sided polygon with all its diagonals connected.

The merger diagram of Fig. 9-24(a) is obtained from the list of compatible pairs
derived from the implication table of Fig. 9-23. There are seven straight lines connect-

& ¢
2] I f
d
d ¢
(a) Maximal compatible: (b} Maximal compatible:
{a. b)(a, c.d)(b e [) (g, b, e, f)(b, c, ) (e, d) (g)

FIGURE 9-24
Merger diagrams
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ing the dots, one for each compatible pair. The lines form a geometrical pattern consist-
ing of two triangles connecting (a, ¢, ) and (b, ¢, f) and a line (a, b). The maximal
compatibles are

(a, b) (a,c,d) (b, e, f)

Figure 9-24(b) shows the merger diagram of an 8-state flow table. The geometrical pat-
terns arc a rectangle with its two diagonals connected to form the 4-state compatible
(a, b, e, f), atriangle (b, ¢, h), a line (¢, d), and a single state g that is not compatible
to any other state. The maximal compatibles are

(as bs e, f) (bs c, h) (C, d) (g)

The maximal compatible set can be used to merge the flow table by assigning one row
in the reduced table to each member of the set. However, quite often the maximal
compatibles do not necessarily constitute the set of compatibles that is minimal. In
many cases, it is possible to find a smaller collection of compatibles that will satisfy the
condition for row merging.

Closed Covering Condition

The condition that must be satisfied for row merging is that the set of chosen compat-
ibles must cover all the states and must be closed. The set wll cover all the states if it
includes all the states of the original state table. The closure condition is satisfied if
there are no implied states or if the implied states are included within the set. A closed
set of compatibles that covers all the states is called a closed covering. The closed-
covering condition will be explained by means of two examples.

Consider the maximal compatibles from Fig. 9-24(a). If we remove (a, b}, we are
left with a set of two compatibles:

@, e,d) (b,e,f)

All six states from the flow table in Fig. 9-23 are included in this set. This satisfies the
covering condition. There are no implied states for (¢, ¢), (a, d), (c. d). (b, e). (b, f),
and (e, f}, as seen from the implication table of Fig. 9-23(b), so the closure condition
is also satisfied. Therefore, the primitive flow table can be merged into two rows, one
for each of the compatibles. The detailed construction of the reduced table for this par-
ticular example was done in the previous section and is shown in Fig. 9-17(b).

The second example is from a primitive flow table (not shown) whose implication
table is given in Fig. 9-25(a). The compatible pairs derived from the implication table
are

(a.b) fa.d} (b,c) (c.d) (c,e¢) (d.e)
From the merger diagram of Fig. 9-25(b), we determine the maximal compatibles:
(@, by {a,d) (b.c) e, d,e)
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FIGURE 9-25
Choosing a set of compatibles

If we choose the two compatibles
(@, B) {c,d, e

the set will cover all five states of the original table. The closure condition can be
checked by means of a closure table, as shown in Fig. 9-25(c). The implied pairs listed
for each compatible are taken directly from the implication table. The implied states for
{a. b) are (b, ¢). But (b, ¢) is not included in the chosen set of (a, b) (c, d, €), so this
set of compatibles is not closed. A set of compatibles that will satisfy the closed cover-
ing condition is

(a,d) (b,c) (c,d,e)

The set is covered because it contains all five states. Note that the same state can be re-
peated more than once. The closure condition is satisfied because the implied states are
(b, ¢) (d, €) and (a, d), which are included in the set. The original flow table (not
shown here) can be reduced from five rows to three rows by merging rows g and d, b
and ¢, and ¢, d, and e. Note that an alternative satisfactory choice of closed-covered
compatibles would be (a, b) (b, ¢) (d, ). In general, there may be more than one possi-
ble way of merging rows when reducing a primitive flow table.
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Onge a reduced flow table has been derived for an asynchronous sequential circuit, the
next step in the design is to assign binary variables to each stable state. This assignment
results in the transformation of the flow table into its equivalent transition table. The
primary objective in choosing a proper binary state assignment is the prevention of crit-
ical races. The problem of critical races was demonstrated in Section 9-2 in conjunction
with Fig. 9-7.

Critical races can be avoided by making a binary state assignment in such a way that
only one variable changes at any given time when a state transition occurs in the flow
table. To accomplish this, it is necessary that states between which transitions occur be
given adjacent assignments. Two binary values are said to be adjacent if they differ in
only one variable. For example, 010 and 011 are adjacent because they only differ in
the third bit.

In order to ensure that a transition table has no critical races, it is necessary to test
each possible transition between two stable states and verify that the binary state vari-
ables change one at a time. This is a tedious process, especially when there are many
rows and columns in the table. To simplify matters, we will explain the procedure of
binary state assignment by going through examples with only three and four rows in the
flow table. These examples will demonstrate the general procedure that must be fol-
lowed to ensure a race-free state assignment. The procedure can then be applied to flow
tables with any number of rows and columns.

Three-Row Flow-Table Exampie

The assignment of a single binary variable to a flow table with two rows does not im-
pose critical race problems. A flow table with three rows requires an assignment of two
binary variables. The assignment of binary values to the stable states may cause critical
races if not done properly. Consider, for example, the reduced fiow table of Fig. 9-
26(a). The outputs have been omitted from the table for simplicity. Inspection of row a

X1X;
00 0l 11 10 a =00 h=01
a |4 b ¢ (/a\} T
rd \____/
B . .
ol oe (Lo ]
3 K (5] (€9 (€3, *

(a) Flow table
{(b) Transition diagram
FIGURE 9-26
Thiee-row flow-table exampie
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X1 X2
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(a) Flow table (b) Transition diagram
FIGURE 9-27

Flow table with an extra row

reveals that there is a transition from state g to state b in column 01 and from state a to
state ¢ in column 11. This information is transferred into a transition diagram, as
shown in Fig. 9-26(b). The directed lines from a to b and from a to ¢ represent the two
transitions just mentioned. Similarly, the transitions from the other two rows are repre-
sented by directed lines in the transition diagram. The transition diagram is a pictorial
representation of all required transitions between rows.

To avoid critical races, we must find a binary state assignment such that only one bi-
nary variable changes during each state transition. An attempt to find such assignment
is shown in the transition diagram. State ¢ is assigned binary 00, and state ¢ is assigned
binary 11. This assignment will cause a critical race during the transition from a to ¢
because there are two changes in the binary state variables. Note that the transition
from c¢ to a also causes a race condition, but it is noncritical.

A race-free assignment can be obtained if we add an extra row to the flow table. The
use of a fourth row does not increase the number of binary state variables, but it allows
the formation of cycles between two stable states. Consider the modified flow table in
Fig. 9-27. The first three rows represent the same conditions as the original three-row
table. The fourth row, labeled d, is assigned the binary value 10, which is adjacent to
both a and ¢. The transition from a to ¢ must now go through d, with the result that the
binary variables change from a = 00 to d = 10 to ¢ = 11, thus avoiding a critical
race. This is accomplished by changing row a, column 11 to d and row d, column 11 to
¢. Similarly, the transition from ¢ to a is shown to go through unstable state d even
though column 00 constitutes a noncritical race.

The transition table corresponding to the flow table with the indicated binary state
assignment is shown in Fig. 9-28. The two dashes in row d represent unspecified states
that can be considered dont’t-care conditions. However, care must be taken not to as-
sign 10 to these squares in order to avoid the possibility of an unwanted stable state be-
ing established in the fourth row.

This example demonstrates the use of an extra row in the flow table for the purpose
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Transition taple

of achieving a race-free assignment. The extra row is not assigned to any specific stable
state, but instead is used to convert a critical race into a cycle that goes through adja-
cent transitions between two stable states. Sometimes, just one extra row may not be
sufficient to prevent critical races, and it may be necessary to add two or more extra
rows in the flow table. This is demonstrated in the next example.

Four-Row Flow-Table Example

A flow table with four rows requires a minimum of two state variables. Although race-
free assignment is sometimes possible with only two binary state variables, in many
cases, the requirement of extra rows to avoid critical races will dictate the use of three
binary state variables. Consider, for example, the flow table and its corresponding tran-
sition diagram, shown in Fig. 9-29. If there were no transitions in the diagonal direc-
tion (from b to d or from c to a), it would be possible to find an adjacent assignment for
the remaining four transitions. With one or two diagonal transitions, there is no way of

00 01 11 10

a h (/ ;1\/ d ( ¢ \

2 I RO

o ¢ \fd) Qd o

{a} Flow table (b} Transition diagram
FIGURE 9-29
Four-row flow-table exampie
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(a) Binary assignment

FIGURE 9-30
Chouosing extra rows for the flow table
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(b) Transition diagram
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assigning two binary variables that satisfy the adjacency requirement. Therefore, at

least three binary state variables are needed.

Figure 9-30 shows a state assignment map that is suitable for any four-row flow
table. States a, b, ¢, and d are the original states, and e, f, and g are extra states. States
placed in adjacent squares in the map will have adjacent assignments. State b is as-
signed binary 00t and is adjacent to the other three original states. The transition from
a to d must be directed through the extra state e to produce a cycle so that only one bi-
nary variable changes at a time. Similarly, the transition from c to a is directed through

00 01

11

10

000 =g

b
001 =4 @ d

011 =¢

0l0=g — a

1o- | - | -

111 =1 C -

101 =d 7 @

100 =¢ - -

FIGURE 9-31

State assignment to modified flow table
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Mulitiple-Row

g and the transition from d to ¢ goes through f. By using the assignment given by the
map, the four-row table can be expanded to a seven-row table that is free of critical
races, as shown in Fig. 9-31. Note that although the flow table has seven rows, there
are only four stable states. The uncircled states in the three extra rows are there merely
to provide a race-free transition between the stable states.

This example demonstrates a possible way of selecting extra rows in a flow table in
order to achieve a race-free assignment. A state-assignment map similar to the one
used in Fig. 9-30(a) can be helpful in most cases. Sometimes it is possible to take ad-
vantage of unspecified entries in the flow table. Instead of adding rows to the table, it
may be possible to eliminate critical races by directing some of the state transitions
through the don’t-care entries. The actual assignment is done by trial and error until a
satisfactory assignment is found that resolves all critical races.

Method

The method for making race-free state assignment by adding extra rows in the flow
table, as demonstrated in the previous two examples, is sometimes referred to as the
shared-row method. There is a second method that is not as efficient, but is easier to
apply, called the multiple-row method. In the multiple-row assignment, each state in
the original flow table is replaced by two or more combinations of state variables. The
state-assignment map of Fig.9-32(a) shows a multiple-row assignment that can be used
with any four-row flow table. There are two binary state variables for each stable state,
each being the logical complement of each other. For example, the original state a 1s
replaced with two equivalent states @, = 000 and a; = 111. The output values, not
shown here, must be the same In a, and a.. Note that a, is adjacent to by, ¢, and d; and
a- is adjacent to c;, b2, and >, and, similarly, each state is adjacent to three states of
different letter designation. The behavior of the circuit is the same whether the internal
state is @, or a2, and so on for the other states.

Figure 9-32(b) shows the multiple-row assignment for the original flow table of Fig.
9-29(a). The expanded table is formed by replacing each row of the original table with
two rows. For example, row b is replaced by rows b, and b, and stable state b is en-
tered in columns 00 and 11 in both rows b, and b,. After all the stable states have been
entered, the unstable states are filled in by reference to the assignment specified in the
map of part (a). When choosing the next state for a given present state, a state that is
adjacent to the present state is sclected from the map. In the original table, the next
states of b are a and d for inputs 10 and O1, respectively. In the expanded table, the
next states for b, are a, and d> because these are the states adjacent to b,. Similarly, the
next states for b, are a: and d, because they are adjacent to &..

In the multiple-row assignment, the change from one stable state to another will al-
ways cause a change of only one binary state variable. Each stable state has two binary
assignments with exactly the same output. At any given time, only one of the assign-
ments is in use. For example, if we start with state @, and input 01 and then change the
input to 11, 01, 00, and back to 01, the sequence of internal states will be a;, di, ¢,
and az. Although the circuit starts in state @, and terminates in state a;, as far as the
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(a) Binary assignment
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(b) Flow table
FIGURE 9-32
Multiple-row assignment

input-output relationship is concerned, the two states, a; and a,, are equivalent to state
a of the original flow table.

9-7 HAZARDS

When designing asynchronous sequential circuits, care must be taken to conform with
certain restrictions and precautions to ensure proper operation. The circuit must be op-
erated in fundamental mode with only one input changing at any time and must be free
of critical races. In addition, there is one more phenomenon, called kazard, that may
cause the circuit to malfunction. Hazards are unwanted switching transients that may
appear at the output of a circuit because different paths exhibit different propagation de-
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lays. Hazards occur in combinational circuits, where they may cause a temporary false-
output value. When this condition occurs in asynchronous sequential circuits, it may re-
sult in a transition to a wrong stable state. It is therefore necessary to check for possible
hazards and determine whether they cause improper operations. Steps must then be
taken to eliminate their effect.

Hazards in Combinational Circuits

A hazard is a condition where a single variable change produces a momentary output
change when no ouput change should occur. The circuit of Fig. $-33(a) demonstrates
the occurrence of a hazard. Assume that all three inputs are initially equal to 1. This
causes the output of gate 1 to be 1, that of gate 2 to be 0, and the cutput of the circuit to
be equal to 1. Now consider a change of x2 from | to 0. The output of gate 1 changes to
0 and that of gate 2 changes to 1, leaving the output at 1. However, the output may mo-
mentarily go to 0 if the propagation delay through the inverter is taken into consider-
ation. The delay in the inverter may cause the output of gate | to change to O before the
output of gate 2 changes to 1. In that case, both inputs of gate 3 are momentarily equal
to 0, causing the output to go to 0 for the short interval of time that the input signal
from x> is delayed while it is propagating through the inverter circuit.

The circuit of Fig. 9-33(b) is a NAND implementation of the same Boolean func-
tion. It has a hazard for the same reason. Because gates 1 and 2 are NAND gates, their
outputs are the complement of the outputs of the corresponding AND gates. When x>
changes from 1 to 0, both inputs of gate 3 may be equal to 1, causing the output to pro-
duce a momentary change to 0 when it should have stayed at 1.

The two circuits shown in Fig. 9-33 implement the Boolean function in sum of
products.

Y = x1x0 + xix

This type of implementation may cause the output to go to O when it should remain a 1.
If the circuit is implemented in product of sums (see Section 3-5),

Y = (x + x2)(x2 + x3)
x; =1

. ! 0-1
X9 [ =0

x3=1

(a) AND-OR circuit {b) NAND circuit
FIGURE 9-33
Circuits with hazards
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(a) Static 1-hazard (b) Static 0-hazard (¢) Dynamic hazard

FIGURE 9-34
Types of hazards

then the output may momentarily go to 1 when it should remain 0. The first case is re-
ferred to as static 1-hazard and the second case as static 0-hazard. A third type of haz-
ard, known as dynamic hazard, causes the output to change three or more times when it
should change from 1 to 0 or from O to 1. Figure 9-34 demonstrates the three types of
hazards. When a circuit is implemented in sum of products with AND—OR gates or
with NAND gates, the removal of static 1-hazard guarantees that no static 0-hazards or
dynamic hazards will occur.

The occurrence of the hazard can be detected by inspecting the map of the particu-
lar circuit. To illustrate, consider the map in Fig. 9-35(a), which is a plot of the func-
tion implemented in Fig. 9-33. The change in x> from 1 to 0 moves the circuit from
minterm 111 to minterm 101. The hazard exists because the change of input results in
a different product term covering the two minterms. Minterm 111 is covered by the
product term implemented in gate 1, and minterm 101 is covered by the product term
implemented in gate 2 of Fig. 9-33. Whenever the circuit must move from one product
term to another, there is a possibility of a momentary interval when neither term is
equal to 1, giving rise to an undesirable 0 output.

The remedy for eliminating a hazard is to enclose the two minterms in question with
another product term that overlaps both groupings. This is shown in the map of Fig. 9-
35(b), where the two minterms that cause the hazard are combined into one product
term. The hazard-free circuit obtained by this configuration is shown in Fig. 9-36. The
extra gate in the circuit generates the product term x,x;. In general, hazards in combi-
national circuits can be removed by covering any two minterms that may produce a
hazard with a product term common to both. The removal of hazards requires the addi-
tion of redundant gates to the circuit.

XpX3 X3¥3
00 01 11 10 00 01 11 10

M
IS D Sl

a} Y=x,x, + x;x, (b Y=x,x; + x3x3 + x;X,
FIGURE 9-35
Maps demonstrating a hazard and its removal

1
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FIGURE 9-36

Hazard-free circuit

Hazards in Sequential Circuits

In normal combinational-circuit design associated with synchronous sequential circuits,
hazards are not of concern, since momentary erroneous signals are not generally trou-
blesome. However, if a momentary incorrect signal is fed back in an asynchronous se-
guential circuit, it may cause the circuit to go to the wrong stable state. This is illus-
trated in the example of Fig. 9-37. If the circuit is in total stable state yx;x> = 111 and
input x; changes from 1 to 0, the next total stable state should be 110. However, be-
cause of the hazard, output ¥ may go to 0 momentarily. If this false signal feeds back

X ) )

X5 DC
e " )
¥
(a) Logic diagram
XXy XX,
00 01 11 10 00 01 11 14

OO [© 0 0
HOIERIOIO DG

() Transition table ey Map tor ¥
FIGURE 9-37
Hazard in an asynchronous sequential circuit
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into gate 2 before the output of the inverter goes to 1, the output of gate 2 will remain
at 0 and the circuit will switch to the incorrect total stable state 010, This malfunction
can be climinated by adding an extra gate, as done in Fig. 9-36.

Implementation with SR Latches

Another way 10 avoid static hazards in asynchronous sequential circuits is to implement
the circuit with SR latches. A momentary 0 signal applied to the S or R inputs of a NOR
latch will have no effect on the state of the circuit. Similarly, a momentary 1 signal ap-
plied to the § and R inputs of a NAND latch will have no effect on the state of the latch.
In Fig. 9-33(b), we observed that a two-level sum of product expression implemented
with NAND gates may have a static 1-hazard if both inputs of gate 3 go to 1, changing
the output from 1 to O momentarily. But if gate 3 is part of a latch, the momentary 1
signal will have no effect on the output because a third input to the gate will come from
the complemented side of the latch that will be equal to 0 and thus maintain the output
at 1. To clarify what was just said, consider a NAND SR latch with the following
Boolean functions for § and R.

S=AB + CD
R=A'C
Since this is 2 NAND latch, we must apply the complemented values to the inputs.
S = (AB + CD)' = (AB)'(CD)’
R=(A'CY

This implementation is shown in Fig. 9-38(a). S is generated with two NAND gates
and one AND gate. The Boolean function for output Q is
Q = (Q'S) = [Q'(AB)(CD)'T

This function is generated in Fig. 9-38(b) with two levels of NAND gates. If output Q
is equal to 1, then Q' is equal to 0. If two of the three inputs go momentarily to 1, the
NAND gate associated with output Q will remain at 1 because Q' is maintained at 0.

Figure 9-38(b) shows a typical circuit that can be used to construct asynchronous se-
quential circuits. The two NAND gates forming the latch normally have two inputs.
However, if the S or R functions contain two or more product terms when expressed in
sum of products, then the corresponding NAND gate of the SR latch will have three or
more inputs. Thus, the two terms in the original sum of products expression for S are
AB and CD and each is implemented with a NAND gate whose output is applied to the
input of the NAND latch. In this way, each state variable requires a two-level circuit of
NAND gates. The first level consists of NAND gates that implement each product term
in the original Boolean expression of S and R. The second level forms the cross-

coupled connection of the SR latch with inputs that come from the outputs of c¢ach
NAND gate in the first level.
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(a)

Jbo by

B

(b)
FIGURE 9-38
Latch implementation

Essential Hazards

Thus far we have considered what are known as static and dynamic hazards. There is
another type of hazard that may occur in asynchronous sequential circuits, called essen-
tial hazard. An essential hazard is caused by unequal delays along two or more paths
that originate from the same input. An excessive delay through an inverter circuit in
comparison to the delay associated with the feedback path may cause such a hazard. Es-
sential hazards cannot be corrected by adding redundant gates as in static hazards. The
problem that they impose can be corrected by adjusting the amount of delay in the af-
fected path. To avoid essential hazards, each feedback loop must be handled with indi-
vidual care to ensure that the delay in the feedback path is long enough compared to de-
lays of other signals that originate from the input terminals. This problem tends to be
specialized, as it depends on the particular circuit used and the amount of delays that
are encountered in its various paths.
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9-8 DESIGN EXAMPLE

We are now in a position to examine a complete design example of an asynchronous se-
quential circuit. This example may serve as a reference for the design of other similar
circuits. We will demonstrate the method of design by following the recommended pro-
cedural steps that were listed at the end of Section 9-4 and are repeated here:

1. State the design specifications.

2, Derive a primitive flow table.

3. Reduce the flow table by merging the rows.
4. Make a race-free binary state assignment.
5. Obtain the transition table and output map.
6. Obtain the logic diagram using SR latches.

Design Specikfications

It is necessary to design a negative-edge-triggered T flip-flop. The circuit has two in-
puts, T (toggle) and C (clock), and one output, Q. The output state is complemented if
T = 1 and the clock C changes from 1 to 0 (negative-edge triggering). Otherwise, un-
der any other input condition, the output Q remains unchanged. Although this circuit
can be used as a flip-flop in clocked sequential circuits, the internal design of the flip-
flop (as is the case with all other flip-flops) is an asynchronous problem.

Primitive Flow Table

The derivation of the primitive flow table can be facilitated if we first derive a table that
lists all the possible total states in the circuit. This is shown in Table 9-6. We start with
the input condition 7C = 11 and assign to it state a. The circuit goes to state b and the
output @ complements from 0 to 1 when C changes from 1 to O while T remains a 1.
Another change in the output occurs when the circuit goes from state ¢ to state 4. In

TABLE 9-6
Specification of Total States
Inputs Output
State T c a Comments

a 1 1 0 Initial output is 0
b 1 0 1 After state a
C 1 1 1 Initial output is 1
d 1 0 0 After state ¢
e 0 0 0 After state d or f
f 0 1 0 After state e or a
g t] 0 1 After states b or h
h 0 1 1 After states g or ¢
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FIGURE 9-39
Primitive flow table

this case, T = 1, C changes from 1 to 0, and the output Q complements from 1 to 0.
The other four states in the table do not change the output, because 7 is equal to 0. If @
1s initially O, it stays at O, and if initially at 1, it stays at 1 even though the clock input
changes. This information results in six total states. Note that simultaneous transitions
of two input variables, such as from 01 to 10, are not included, as they violate the con-
dition for fundamental-mode operation.

The primitive flow table is shown in Fig. 9-39. The information for the flow table
can be obtained directly from the conditions listed in Table 9-6. We first fill in one
square in each row belonging to the stable state in that row as listed in the table. Then
we enter dashes in those squares whose input differs by two variables from the input
corresponding to the stable state. The unstable conditions are then determined by uti-
lizing the information listed under the comments in Table 9-6.

Merging of the Flow Table

The rows in the primitive flow table are merged by first obtaining all compatible pairs
of states. This is done by means of the implication table shown in Fig. 9-40. The
squares that contain check marks define the compatible pairs:

(a, f) (b,ygy (b,h) (c,h) (d el df) f(e.f) (g h)
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FIGURE 9-40

Implication table

The maximal compatibles are obtained from the merger diagram shown in Fig. 9-
41. The geometrical patterns that are recognized in the diagram consist of two triangles
and two straight lines. The maximal compatible set is

(a,fy (b,g, B (c,h) (d.e,f)

In this particular example, the minimal collection of compatibles is also the maximal

FIGURE 9-41
Merger diagram
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FIGURE 9-42
Reduced flow table

compatible set. Note that the closed condition is satisfied because the set includes all
the original eight states listed in the primitive flow table, although states A and f are re-
peated. The covering condition is also satisfied because all the compatibie pairs have no
implied states, as can be seen from the implication table.

The reduced flow table is shown in Fig. 9-42. The one shown in part (a) of the
figure retains the original state symbols but merges the corresponding rows. For exam-
ple, states @ and f are compatible and are merged into one row that retains the original
letter symbols of the states. Similarly, the other three compatible sets of states are used
to merge the flow table into four rows, retaining the eight original letter symbols. The
other alternative for drawing the merged flow table is shown in part (b) of the figure.
Here we assign a common letter symbol to all the stable states in each merged row.
Thus, the symbol f is replaced by a, and g and & are replaced by &, and similarly for the
other two rows. The second alternative shows clearly a four-state flow table with only
four letter symbols for the states.

State Assignment and Transition Table

The next step in the design is to find a race-free binary assignment for the four stable
states in the reduced flow table. In order to find a suitable adjacent assignment, we
draw the transition diagram, as shown in Fig. 9-43. For this example, it is possible to
obtain a suitable adjacent assignment without the need of extra states. This is because
there are no diagonal lines in the transition diagram.

Substituting the binary assignment indicated in the transition diagram into the re-
duced flow table, we obtain the transition table shown in Fig. 9-44. The output map is
obtained from the reduced flow table. The dashes in the output section are assigned val-
ues according to the rules established in Section 9-4.
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FIGURE 9-43

Transition diagram

TC TC
00 01 11 10 00 01 11 10
Yi¥a Y1¥a

a=00] 10 @ 01 o] o 0 0 X
b=01 1 o | 1 1 i
e=11] o1 @ (Zl) 10 1| 1 1 1 X
d=10 00 10f o{ o | ol o

(a) Transition table (b) Output map Q = Vs
FIGURE 9-44
Transition table and output map

Logic Diagram

The circuit to be designed has two state variables, Y, and Y», and one output, Q. The
output map in Fig. 9-44 shows that () is equal to the state variable y,. The implementa-
tion of the circuit requires two SR latches, one for each state variable. The maps for in-
puts S and R of the two latches are shown in Fig. 9-45. The maps are obtained from
the information given in the transition table by using the conditions specified in the
latch excitation table shown in Fig. 9-14(b). The simplified Boolean functions are listed
under each map.

The logic diagram of the circuit is shown in Fig. 9-46. Here we use two NAND
latches with two or three inputs in each gate. This implementation is according to the
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FIGURE 9-45
Maps for latch inpurts

pattern established in Section 9-7 in conjunction with Fig. 9-38(b). The S and R input
functions require six NAND gates for their implementation.

This example demonstrates the complexity involved in designing asynchronous se-
quential circuits. [t was necessary to go through ten diagrams in order to obtain the
final circuit diagram. Although most digital circuits are synchronous, there are occa-
sions when one has to deal with asynchronous behavior. The basic properties presented
in this chapter are essential to understand fully the internal behavior of digital circuits.
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PROBLEMS
9-1 (a) Explain the difference between asynchronous and synchronous sequential circuits.
(b) Define fundamental-mode operation.
{c) Explain the difference between stable and unstable states.
{d) What is the difference between an internal state and a total state?
9-2 Derive the transition table for the asynchronous sequential circuit shown in Fig. P9-2. De-
termine the sequence of internal states Y, ¥> for the following sequence of inputs x;.x-: 00,
10, 11, 01, 11, 10, 00.
X De
>
FIGURE P9-2
9-3

An asynchronous sequential circuit is described by the following excitation and output
functions:

Y = xxh 4 (o + 6y

s = }:

(a) Draw the logic diagram of the circuit.
(b) Derive the transition table and output map.
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(c) Obtain a 2-state flow table.
(d) Describe in words the behavior of the circuit.

9-4 An asynchronous sequential circuit has two internal states and one output. The excitation
and output functions describing the circuit are as follows:

Y] = xi1x; + XIyi + xiyl
Y:2=x+ xiyiy2 + xiy
Z = Xz + »

(a) Draw the logic diagram of the circuit.
(b) Derive the transition table and output map.
(c) Obtain a flow table for the circuit,

9.5 Convert the flow table of Fig. P9-5 into a transition table by assigning the following bi-
nary values to the states; a = 00, b = 11, and ¢ = 01.
(a) Assign values to the extra fourth state to avoid critical races.
(b} Assign outputs to the don’t-care states to avoid momentary false outputs.
(c) Derive the logic diagram of the circuit.

X1X2
00 01 11 10

a @,0 b,— | e,— @,]
b| a,~ (&), 0] 0] c,~
clha—| b,— @,1 @,0

FIGURE P9-5

9-6 Investigate the transition table of Fig. P9-6 and determine all race conditions and whether
they are critical or noncritical. Also determine whether there are any cycles.

x1¥*2
00 0l 11 10
Y1¥a

00| 10 11 10
0t 00

11] 01 00

10
o] 0| w

FIGURE P9-6

OlISIE
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9-7

9-8

Analyze the T flip-flop shown in Fig. 6-7(a). Obtain the transition table and show that the
circuit is unstable when both T and CP are equal to 1.

Convert the circuit of Fig. 6-30 inte an asynchronous sequential circuit by removing the
clock-pulse (CP) signal and changing the flip-flops inte SR latches. Derive the transition
table and output map of the modified circuit.

For the asynchronous sequential circuit shown in Fig. P9-9:

(a) Derive the Boolean functions for the outputs of the two SR laiches ¥, and Y>. Note that
the S input of the second latch is x| yi.

{b) Derive the transition table and output map of the circuit.

oo

Y,

——

FIGURE P9-9

9-10 Implement the circuit defined in Problem 9-3 with a NOR SR latch. Repeat with a NAND

2-11
9-12

9-13

SR latch.
Implement the circuit defined in Problem 9-4 with NAND SR latches.

Obtain a primitive flow table for a circuit with two inputs, x, and x;, and two outputs, 7,
and z,, that satisfy the following four conditions:

(a) When x;x; = 00, the output is z,z, = 00.

(b) When x, = 1 and x: changes from 0 to 1, the output is z;z; = 01.

(c) When x = 1 and x, changes from ( to 1, the output is z;z; = 10.

(d) Otherwise, the output does not change.

A traffic light is installed at a junction of a railroad and a road. The traffic light is con-
trolled by two switches in the rails placed one mile apart on either side of the junction. A
switch is turned on when the train is over it and is turned off otherwise. The traffic light
changes from green (logic-0) to red (logic-1) when the beginning of the train is one mile
from the junction. The light changes back to green when the end of the train is one mile
away from the junction. Assume that the length of the train is less than two miles.

(a) Obtain a primitive flow table for the circuit.

(b) Show that the flow table can be reduced to four rows.

It is necessary to design an asynchronous sequential circuit with two inputs, x; and x,. and
one output, z. Initially, both inputs and output are equal to 0. When x, or x: becomes 1, z
becomes 1. When the second input also becomes 1, the output changes to 0. The output
stays at 0 until the circuit goes back to the initial state.
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X Xg
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FIGURE P9-14

(a) Obtain a primitive flow table for the circuit and show that it can be reduced to the
flow table shown in Fig. P9-14.
(b) Complete the design of the circuit.

9-15 Assign output values to the don’t-care states in the flow tables of Fig. P9-13 in such a way
as to avoid transient output pulses.

a0 01 11 10

al@ol b,-|--|a-
, 1 @,l c,—

c b;_ T b.-— oO

00 01 11 10

di{ce-l@1] - | @1 | @0l 5,-|5-1G0

(@) bla- | ol@ 1] e -
cho-la-1@ 1|

FIGURE P9-15 )

9-16 Using the implication-table method, show that the state table listed in Table 6-7 cannot be
reduced any further.

9-17 Reduce the number of states in the state table listed in Problem 6-14. Use an implication
table.

9-18 Merge each of the primitive flow tables shown in Fig. P9-18.
Proceed as follows:
(a) Find all compatible pairs by means of an implication table.
(b) Find the maximal compatibles by means of a merger diagram.
(c) Find a minimal set of compatibles that covers all the states and is closed.
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FIGURE P9-18

9.19 (a) Obtain a binary state assignment for the reduced flow table shown in Fig. P9-19.
Avoid critical race conditions.
(b) Obtain the logic diagram of the circuit using NAND latches and gates.

Ax
00 o1 1110
al(a, o) (Caa] o.— | d-

ol o @ o|lB.o] -

d | a - o, {fl),l @,I

FIGURE P9-19
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9.20 Find a critical race-free state assignment for the reduced flow table shown in Fig. P9-20.

00 01 11 10
ol | @) ¢
o |lol e «
1ol e
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@l e e @
FIGURE P9-20

9-21 Consider the reduced flow table shown in Fig. P9-21.
(a) Obtain the transition diagram and show that three state variables are needed for a

race-free binary state assignment.
(b) Obtain the expanded flow table using the muitiple-row-method assignment as

specified in Fig. 9-32(a).

0 o1 11 10
Jdaol @)
bl e O < | ®
JEGH RCR RON I
d@le| @
FIGURE P9-21

9-22 Find a circuit that has no static hazards and implements the Boolean function:

F(A,B,C,D) =2, (0,2,6,7, 8,10, 12)

9-23 Draw the logic diagram of the product of sums expression:

Y = (x + x3)(x + x3)
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Show that there is a static 0-hazard when x, and x; are equal to 0 and x: goes from O to 1.
Find a way to remove the hazard by adding one more OR gate.

9-24 The Boolean functions for the inputs of an SR latch are as follows. Obtain the circuit dia-
gram using a minimum number of NAND gates.

S = xixix; + x1xx0
R = xixi + xax}

9-25 Complete the design of the circuit specified in Problem 9-13.



