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ENCS 533 

Advanced Digital Design 

Lecture 5 

Iterative Designs 
 

1 Introduction 

In lecture 3, we looked at how to do structural designs, in other words how to connect 

together basic gates to build up a design. In practice, these structural designs are not 

normally created by humans. Instead, humans write behavioural descriptions (which 

say what the design must do, not how it is built). In this lecture, we will introduce 

some examples of behavioural designs, but first we will need to look at how to deal 

with signals that are many bits wide, and hardware that consists of multiple copies of 

basic units. 

 

2 Handling signals that are more than 1 bit wide 

Most interesting design have inputs that are more than just a single bit. For example, 

lets consider a device that has twp 4-bit inputs a and b, and a 4-bit output c. 
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If we expand this out, it looks like this 
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2.1 STD_LOGIC_VECTORs 
In VHDL, quantities such as a, b and c are called STD_LOGIC_VECTORs. If you are 

familiar with arrays in computer programming, you can think of a 

STD_LOGIC_VECTOR as being an array of STD_LOGIC signals. So the input a 

would be declared as being 

 
STD_LOGIC_VECTOR(0 TO 3) 
 

Now a contains four members a(0), a(1), a(2) and a(3). Each of these four members is 

of type STD_LOGIC. 

 

2.2 An example 

Imagine that we wanted to represent a device like this: 
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The entity declaration would look like this. 

 
LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

 

ENTITY orgate IS 

 PORT ( a, b: IN STD_LOGIC_VECTOR(0 TO 3);  

             c: OUT STD_LOGIC_VECTOR(0 TO 3)); 

END ENTITY orgate; 

 

There are several ways that we could write the architecture.  One way to describe it 

would be like this, explicitly listing what happens for each bits: 

 
ARCHITECTURE number1 OF orgate IS 

BEGIN 

 C(0) <= a(0) OR b(0); 

 C(1) <= a(1) OR b(1); 

 C(2) <= a(2) OR b(2); 

 C(3) <= a(3) OR b(3); 

END ARCHITECTURE number1; 

 

Alternatively, we could just write this, which would be simpler and would mean 

exactly the same thing 

 
ARCHITECTURE number2 OF orgate IS 

BEGIN 

 c <= a OR b; 

END ARCHITECTURE number2; 

 

VHDL knows that a, b and c are four bits wide, and will do the appropriate operation 

for each of the bit positions. 

 

Or, if we preferred, we could write this 
 

ARCHITECTURE number3 OF orgate IS 

BEGIN 

 C(0 TO 3) <= a(0 TO 3) OR b(0 TO 3); 

END ARCHITECTURE number3; 

This is effectively a loop, which tells VHDL to make four assignments, one for each 

of the four bit positions 0, 1, 2 and 3. 
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2.3 GENERATE loops 
We can also explicitly write a loop, using a GENERATE block.  

 
ARCHITECTURE number4 OF orgate IS 

BEGIN 

 gen1: FOR i IN 0 TO 3 GENERATE 

       BEGIN 

           c(i) <= a(i) OR b(i); 

            END GENERATE; 

END ARCHITECTURE number4; 

 

The value i loops from 0 to 3, giving us the required behaviour.  

 

There are three slightly odd points compared to other languages that you may have 

come across: 

• We don’t need to declare i. VHDL can tell from the 0 TO 3 range that I has got to 

be an integer 

• I is local to the loop. Outside the loop its value is undefined, and it can’t be used. 

• We have to give the loop a name
1
. For this example I’ve chosen the name gen1.  

 

3 STD_LOGIC_VECTOR values 
The value of an STD_LOGIC is indicated by a string of values enclosed in double 

quotes. So if a is a single bit, assignment looks like this: 

 
a <= ‘1’; 

 

If a is 4-bits wide assignment looks like this: 

 
a <= “1110”; 

 

By default, VHDL expects the values to be binary, but sometimes it can be useful to 

use Hex numbers. This can be done by placing the letter X before the 

STD_LOGIC_VECTOR value: 

 
a <= X“E”; 

 

3.1 Direction of numbering 
In the examples given above, the elements were numbered from 0 to 3 

 

a: STD_LOGIC_VECTOR(0 TO 3);

 

a <= “1110”;  

Element 0 

Element 3 

Element 2 

Element 1 

 
 

                                                           
1 Strictly speaking, this is a statement label. 
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This feels normal and intuitive (indeed in the programming languages that you may 

know, e.g. C or Java, this is the only way that you are allowed to do it). However, in 

VHDL you also have the option to have arrays where the index counts downwards: 

a: STD_LOGIC_VECTOR(3 DOWNTO 0);

 

a <= “1110”;  

Element 3 

Element 0 

Element 1 

Element 2 

 
In digital logic design, the normal numbering convention is that bit 0 is the least 

significant bit (lsb). This is accomplished by having the index run downwards. The 

upward numbering scheme gets this wrong. 

 

So unlike most programming languages, in VHDL it is normal for arrays to be 

numbered downwards. You can use upward-numbering if you want, but this often 

leads to confusion that creates awkward bugs in your code. 

 

3.2 Aggregates 

Aggregates are a group values, separated by commas, that will be used for an array. 

Here is an example: 
 
ARCHITECTURE example OF aggregate IS 

    SIGNAL nibble1, nibble2: STD_LOGIC_VECTOR ( 0 TO 3 ); 

BEGIN 

    nibble1 <= ( '0','1','0','0'); 

    nibble2 <= ( '0','0','1','0'); 

END ARCHITECTURE example; 

 

The assignment for nibble1 sets its 0
th

 value to ‘0’, its 1
st
 value to ‘1’, the 2

nd
 to ‘0’ 

and so on. This way of doing things is called positional assignment: the 0
th

 value 

listed goes in the 0
th

 position, the first goes in the first position and so on. We could 

instead use named association. So these statements have the same effect: 
 
    nibble1 <= ( '0','1','0','0'); 

    nibble1 <= ( 1 => '1', 0 => '0', 3 => '0', 2 => '0'); 

 

With named association, we can just specify the values of some of the bit positions, 

and use an OTHERS value to provide a value for everything not explicitly mentioned. 

So these are all the same: 

 
    nibble1 <= ( '0','1','0','0'); 

    nibble1 <= ( 1 => '1', 0 => '0', 3 => '0', 2 => '0'); 

    nibble1 <= ( 1 => '1', OTHERS => '0'); 

 

The OTHERS notation can be used as a convenient trick when we want to set all the 

values of an array to a particular value: 
 
    nibble1 <= ( OTHERS => '1'); 

 

This would set all of the elements of nibble1 to '1'. 

 



 5 

3.3 Concatenation 
Concatenation merges two vectors to produce a longer vector. For example  
 
ARCHITECTURE example OF aggregate IS 

    SIGNAL byte: STD_LOGIC_VECTOR ( 0 TO 7 ); 

    SIGNAL nibble1, nibble2: STD_LOGIC_VECTOR ( 0 TO 3 ); 

BEGIN 

    nibble1 <= ( '0','1','0','0'); 

    nibble2 <= ( '0','0','1','0'); 

    byte <= nibble1 & nibble2; 

END ARCHITECTURE example; 

 

would cause byte to assume the value ( '0','1','0','0','0','0','1','0') 
 

3.4 Literals 

STD_LOGIC is a data type that has values '0', '1', ‘X’, ‘U’ etc. It is sub-type of 

CHARACTER. An array of characters is a string, and is denoted by double quotes. 

This is the same convention as used in the C programming language: '1' is a character; 

"1010" is an array of 4 characters
 2

. We can use this notation for 

STD_LOGIC_VECTORS. So for example,  
 
    nibble1 <= ( '0','1','0','0'); 

 

could be written as 
 
    nibble1 <= "0100"; 

 

A value that is directly specified (as opposed to being calculated from other signals), 

like “0100” in the code above is called a literal. Standard logic vector literals may be 

specified in binary, octal or hexadecimal. By default, a string is interpreted as binary. 

To make it explicit that we wish the string to be interpreted as a binary number, we 

can place the letter B in front. For an octal string, we place the letter O in front, and 

for hexadecimal, we place X in front. So if a is 12-bit std_logic_vector, then these are 

all equivalent: 
 
    a <= "010011001010"; 

    a <= B"010011001010"; 

    a <= O"2312"; 

    a <= X"4CA” 

 

Long strings of ‘1’s and ‘0’s can be confusing, so in order to improve legibility, we 

can introduce underscores: 

 
    a <= B"0100_1100_1010"; 

 

The underscores are ignored by VHDL; their only function is to space the digits out to 

make it easier for a human to read. Note that if you do use underscores in your values, 

you must put the B in front to make it clear that this should be interpreted as a binary 

value. This (without the B) would be an error: 
 
    a <= "0100_1100_1010";    -- Wrong! 

 

                                                           
2
Actually, it isn't quite identical to C. "1010" in C is an array that is terminated by a \0 character. The 

VHDL string doesn't have a terminator. 
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4 What a synthesis tool does 
Imagine that we want to create a 4-bit adder, with carry in and carry out:  

x 

y 
sum 

4 

4 

cin 

cout 

4 

 
A human would normally describe this behaviourally: 

 
LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

USE ieee.std_logic_signed.ALL; 

 

ENTITY adder IS 

    PORT ( x, y: IN STD_LOGIC_VECTOR(3 DOWNTO 0); 

        cin:  IN STD_LOGIC; 

        sum: OUT STD_LOGIC_VECTOR(3 DOWNTO 0); 

   cout: OUT STD_LOGIC); 

END ENTITY adder; 

 

ARCHITECTURE behavioural OF adder IS 

    SIGNAL carry: STD_LOGIC_VECTOR(4 DOWNTO 0); 

BEGIN 

    sum <= x + y; 

END ARCHITECTURE behavioural; 

 

This would then be given to a synthesis tool, a computer program whose purpose is to 

design a circuit that fulfils the required behaviour. One possible circuit would be this: 
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This is a carry-ripple adder, built from four identical full adders. We have already 

designed a full adder in lecture 3, so we can use this to build up a structural 

description of a circuit that achieves the required behaviour: 

 
LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

 

ENTITY adder IS 
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    PORT ( x, y: IN STD_LOGIC_VECTOR(3 DOWNTO 0); 

        cin:  IN STD_LOGIC; 

        sum: OUT STD_LOGIC_VECTOR(3 DOWNTO 0); 

     cout: OUT STD_LOGIC); 

END ENTITY adder; 

 

ARCHITECTURE structural OF adder IS 

    SIGNAL carry: STD_LOGIC_VECTOR(4 DOWNTO 0); 

BEGIN 

    g0:  entity work.fulladd(structural)  

                PORT MAP (x(0),y(0),cin,sum(0),carry(1)); 

    g1:  entity work.fulladd(structural)  

                PORT MAP (x(1),y(1),carry(1),sum(1),carry(2)); 

    g2:  entity work.fulladd(structural)  

                PORT MAP (x(2),y(2),carry(2),sum(2),carry(3)); 

    g3:  entity work.fulladd(structural)  

                PORT MAP (x(3),y(3),carry(3),sum(3),cout); 

END ARCHITECTURE structural; 

 

So how did the synthesis tool know that an adder could be built like this? There are 

some things that a synthesis tool is smart enough to figure out for itself, and we’ll see 

some examples later in the course. However, for devices like adders, comparators, 

multipliers, etc. it would be usual for the synthesis tool to be equipped with a library 

that had been written by an expert human being. The synthesis tool simply looks up in 

its library how it should build a circuit that implements the add behaviour. In lecture 5 

we will return to some of the issues that are involved in writing good libraries. 
 

4.1 Iterative Description of the 4-bit adder 
Looking at our structural description of the 4-bit adder, it is clear that it has a very 

regular structure. Hardware that consists of the same unit repeated over and over 

again is called iterative. It is tempting to try to express this as some kind of loop, 

capturing the iterative nature of the design. Before we do this, we make one slight 

adjustment to make the design as regular as we possibly can. 
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Here we have extended the labelling of the carry chain to include carry0 (which is 

connected to cin) and carry4 (which is connected to cout). The adder description now 

looks like this: 
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ARCHITECTURE regularised OF adder IS 

    SIGNAL carry: STD_LOGIC_VECTOR(4 DOWNTO 0); 

BEGIN 

    carry(0) <= cin; 

    cout <= carry(4); 

    g0:  entity work.fulladd(structural)  

                PORT MAP (x(0),y(0),carry(0),sum(0),carry(1)); 

    g1:  entity work.fulladd(structural)  

                PORT MAP (x(1),y(1),carry(1),sum(1),carry(2)); 

    g2:  entity work.fulladd(structural)  

                PORT MAP (x(2),y(2),carry(2),sum(2),carry(3)); 

    g3:  entity work.fulladd(structural)  

                PORT MAP (x(3),y(3),carry(3),sum(3),carry(4)); 

END ARCHITECTURE regularised; 

 

Now each of the instantiations is identical, except that the numbers increase by 1 at 

each instance. This can be expressed as a GENERATE loop as follows: 

 
ARCHITECTURE iterative OF adder IS 

    SIGNAL carry: STD_LOGIC_VECTOR(4 DOWNTO 0); 

BEGIN 

    carry(0) <= cin; 

    cout <= carry(4); 

    gen1: FOR i IN 0 TO 3 GENERATE   

       g:  ENTITY work.fulladd(structural)  

                PORT MAP (x(i),y(i),carry(i),sum(i),carry(i+1)); 

          END GENERATE gen1; 

END ARCHITECTURE iterative; 

 

Remember that we have to give each GENERATE loop a name (in this case I’ve chosen 

gen1)  and also each instantiation must have a name (in this case g). 

 

5 Representation of logic levels 
 

5.1 Type BIT: just 1’s and 0’s 
The built-in logic used by the original VHDL has only two values: ‘1’ and ‘0’. This 

isn’t very useful, and normally this logic needs to be extended. The type “BIT” has 

been superseded by the IEEE 1164 standard logic. 

 

5.2 IEEE 1164 standard logic 

Because it is so common for users to require a more powerful and expressive type 

than BIT, there is a standard enhanced logic defined by the IEEE and implemented in 

all modern VHDL tools. The name of the standard is IEEE 1164, and it defines two 

principle types: std_logic and std_ulogic. 

 
TYPE std_logic IS             (            'U', --Unitialized 

    'X', --Driven unknown 

    '0', --Driven 0 

    '1', --Driven 1 

    'Z', --High impedance 

    'W', --Weak unknown 

    'L', --Weak 0 

    'H', --Weak 1 

    '-' --Don't care 

    ); 
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This isn’t actually built in to the VHDL language, but appears in a standard add-on 

library that is shipped with most versions of VHDL. Type std_logic is much better 

than type BIT and in your designs you should always use std_logic in preference to 

BIT. 

 

In order to use this logic, and all associated declarations and basic gate types, it is 

necessary to include the following at the head of your code: 

 

LIBRARY IEEE; 

USE IEEE.std_logic_1164.all; 

 

5.2.1 Logic strength 
Note that IEEE 1164 logic uses two different logic strengths, driven and weak. These 

exist in order to enable VHDL to model this sort of situation: 
 

Vdd 

Vss 

Driver 1 Driver 2 Driver 3 Driver 4 

Bus wire 

Pull-up resistor 

 
Here we have a wire on a bus, with four different circuits that might drive the wire 

down to a logic zero by asserting a 1 on one of the driver lines. When none of the 

driver lines is asserted, then the pull-up resistor will drive the bus wire to a logic one. 

The description might look like something like this: 

 
buswire <= ‘1’; 

buswire <= ‘0’ when driver1=’1’ or driver2=’1’  

                 or driver3=’1’ or driver4=’1’; 

 

The difficulty with modelling this situation is that when one of the drive circuits tries 

to pull down the bus, the pull-up resistor is trying to write a 1 to a bus wire at the 

same time as the pull-down transistor is trying to write a 0. How does VHDL know 

which will win?  

 

This is resolved by giving signals a strength. The transistors have a low resistance 

when switched on, and are therefore writing a strong 0. Strong signals are often 

referred to as “driven”. The resistor has a high resistance and is therefore writing a 

weak 1. Weak signals are often referred to as “resistive”. So the description now 

becomes: 

 
buswire <= ‘H’; 

buswire <= ‘0’ when driver1=’1’ or driver2=’1’ or driver3=’1’ or 

driver4=’1’; 
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Now VHDL can tell that when there are two sources trying to write simultaneously to 

the wire, that the 0 will win
3
. 

 

5.2.2 Resolved logic 
There is actually an even more fundamental problem with this: 

 
buswire <= ‘1’; 

buswire <= ‘0’ when driver1=’1’ or driver2=’1’  

                 or driver3=’1’ or driver4=’1’; 

 

In VHDL, it is normally illegal for two different statements to be concurrently writing 

to the same signal. If you declared buswire as being of type BIT, and tried to compile 

the above piece of code, the compiler would report an error (something like ERROR: 

multiple drivers for unresolved signal). 

 

It is possible in VHDL to have resolved logic. This is a type of logic that knows how 

to handle a situation where two statements are concurrently writing to one signal. 

Std_logic is a resolved logic, so it can handle signals with multiple drivers. BIT is not. 

 

There is also a version of IEEE 1164 that is unresolved, called std_ulogic (standard 

unresolved logic). 

 

5.2.3 Don’t care, don’t know and uninitialised 

In most text books on digital logic, don’t care and don’t know are both represented by 

X. It is useful to be able to distinguish between the two. 

 

Don’t know normally occurs in simulation, and is often a sign that something has 

gone wrong. Don’t care usually occurs in synthesis, and is usually quite useful. It 

means that we are liberty to teat the value as a 0 or a 1, whichever is most convenient. 

So for example, this 
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Could be factored as this (treating the don’t care as a 1) 
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3
 This example is given by way of illustration. If you actually want to get this working correctly, there 

are a few other subtleties that you will need to address, but these are beyond the scope of this lecture. 
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or this (treating the don’t care as a 0) 
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whichever is most convenient. 

 

Std_logic allows us to distinguish between don’t know (X or W) and don’t care (-). 

There is also a designation for the uninitialised state (U). This is particularly 

important for state machines, where the state machines will contain garbage at power-

on. Any logic gate with a U on one of its inputs will output a U; any Boolean 

expression which has a U on its RHS will have its LHS assigned to U. IN this way we 

can identify signals that contain garbage as a result of being fed by input registers that 

were not reset at power up. 
 

5.2.4 High impedance 
In some instances, notable tri-state buffers, we can have outputs that can be 

completely disconnected from any driving source. This happens in the following 

circuit when all the transistors are switched off. 

Vdd 

Vss 

Driver 1 Driver 2 Driver 3 Driver 4 

Bus wire 

PU 

 
 

The value on the bus wire is modelled as the high impedance state Z. This could be 

described as 

 
buswire <= ‘1’ WHEN PU=’0’  

         ELSE ‘0’ WHEN drv1=’1’ OR drv2=’1’ OR drv3=’1’ OR drv4=’1’  

         ELSE ‘Z’; 
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6 Summary 
We’ve looked at how develop descriptions of designs that are many bits wide. We 

have also seen how to exploit the underlying regularity of our designs to produce 

simple descriptions by using GENERATE loops. 

 

We have also seen how to write behavioural code, saying what we want the design to 

do, which is then turned by a synthesis tool into a circuit that implements the 

behaviour. 

 

You should now know... 

 

The meaning of the following: 

• Standard Logic Vector (STD_LOGIC_VECTOR) 

• Aggregates 

• Iterative designs 

• The GENERATE statement 

• Use of multi-value logic 

• The IEEE 1164 standard for multi-value logic 

 

Exercise: Design a 4-bit shifter using multiplexers, you can build the multiplexer by 

either behavioural or structural description, but the shifter should be built using 

structural description. 
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