
 1

ENCS 533 – Advanced Digital Design

Lecture 9

More about RTL coding (Sequential VHDL) and Memories

1 Introduction
In this lecture we will look at two separate topics that will be necessary for you to

begin the assignment. The first is how to code systems that use flip-flops, registers,

and latches. It is often not necessary to explicitly instantiate flip-flops in our design.

Instead, it is usually possible to write behavioural code that specifies the required

timing behaviour, and the synthesis tool will then infer where the flip-flops should go

when the behaviour is converted into a hardware realisation. The second issue is the

description of memory devices.

2 Defining clocks

A clock is essentially a signal that alternates between 1 and 0. Here is one way to

define such a signal:

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

ENTITY mytest IS

END ENTITY mytest;

ARCHITECTURE simple OF mytest IS

 SIGNAL clk: STD_LOGIC:=’0’;

BEGIN

 clk <= NOT clk AFTER 10 NS;

END ARCHITECTURE simple;

The basic idea is this. The statement shown in bold recomputes its right hand side

every time its left hand side changes. Each time the statement runs, it queues a

transition to take place 10 ns later. When this transition takes effect, the resulting

change in the RHS value forces the statement to run again. And so on, ad infinitum.

In order to make this work, we had to initialise the value of clk to ‘0’ or ‘1’. If we had

left clk uninitialized, then at the start of the simulation clk would have the value ‘U’.

This is a form of garbage value, and in VHDL any logical operation on a garbage

input produces a garbage output. Specifically, clk <= NOT ‘U’ would result in clk

receiving the value ‘U’. So clk would be permanently stuck at ‘U’.

2.1 Another clock definition

 2

Here is another way that we could define a clock signal.

ARCHITECTURE number2 OF mytest IS

 SIGNAL clk: STD_LOGIC;

BEGIN

 PROCESS

 BEGIN

 FOR i IN 0 TO 10 LOOP

 clk <= TRANSPORT '0' AFTER i * 20 NS;

 clk <= TRANSPORT '1' AFTER i * 20 NS + 10 NS;

 END LOOP;

 WAIT;

 END PROCESS;

END ARCHITECTURE number2;

The PROCESS has no sensitivity list, so it runs as soon as simulation starts. The loop

queues 20 transitions on clk to take place at times 0, 10, 20, … ns. If we had omitted

TRANSPORT keyword, the VHDL would by default have used INERTIAL delay, which

means that all the transitions being placed on the queue would have overwritten each

other, and clk would never have changed. Here is a simulation of the resulting output:

2.2 Detecting the clock edge
In order to write descriptions of edge triggered devices, we need some way in VHDL

to represent the edge of a clock signal. There are two ways we can do this:

2.2.1 Signal attributes

Signals within VHDL have various attributes that can be used. The syntax for

referring to the value of an attribute is SignalName’Attribute. The apostrophe,

used to separate the name from the attribute is pronounced “tick”. Here are some

examples of useful attributes:

• clk’EVENT is TRUE if clk has changed its value in the last delta, and FALSE

otherwise

• clk’STABLE is TRUE if clk has not changed its value in the last delta, and FALSE

otherwise.

• clk’STABLE (5ns) is TRUE if clk has not changed its value for the last 5 ns, and

FALSE otherwise.

2.2.2. The rising_edge function

The rising_edge function is contained in the STD_LOGIC_1164 package, and returns

TRUE when clk has changed from 0 to 1 during the last delta.

3 The D-type flip-flop
The basic device that is used to accomplish synchronous operation is the D-type flip

flop.

 3

D

Clk

Q

Here is the ENTITY definition for this device

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

ENTITY dff IS

 PORT (d, clk : IN STD_LOGIC; Q : OUT STD_LOGIC);

END ENTITY dff;

The behaviour of this device is as follows. When the clock is stable, Q simply holds

its value constant. When a rising clock edge occurs, the output Q takes on the value

that D has at the moment when the clock edge occurred. It then holds that value

constant until the next rising clock edge occurs, at which time it updates itself again.

Note that the output q does not update its value whenever d changes. So to write this

ARCHITECTURE wrong OF dff IS

BEGIN

 q <= d;

END ARCHITECTURE wrong;

would give completely the wrong behaviour. Here is an architecture that correctly

describes the behaviour of the device:

ARCHITECTURE correct OF dff IS

BEGIN

 PROCESS (clk)

 BEGIN

 IF (rising_edge(clk)) THEN

 q <= d;

 END IF;

 END PROCESS;

END ARCHITECTURE correct;

Whenever clk changes its value, the process will run. However, clk might have

changed due to a falling edge of the clock (which should not trigger an update to q) so

we need to insert an IF statement which causes q to be updated only on the rising

edge of clk.

Here is another way to express the D-type behaviour

ARCHITECTURE number2 OF dff IS

BEGIN

 PROCESS (clk)

 BEGIN

 IF (clk’EVENT and clk=’1’) THEN

 q <= d;

 END IF;

 END PROCESS;

 4

END ARCHITECTURE number2;

The rising edge is recognised by the fact that clk’EVENT is TRUE (so clk must have just

changed) and clk=’1’ (so it must have been a rising edge). Here is yet another

approach:

ARCHITECTURE number3 OF dff IS

BEGIN

 PROCESS (clk)

 BEGIN

 IF (NOT clk’STABLE and clk=’1’) THEN

 q <= d;

 END IF;

 END PROCESS;

END ARCHITECTURE number3;

3.1 Registers

A register is a group of D-type flip-flops, all governed by the same clock. So here is

an 8-bit register:

D

Clk

Q

8 8

When there is a rising edge of the clock

The value of D(7 downto 0) at that precise instant is read into the device

That value appears at Q(7 downto 0) a moment (i.e. one delta) later.

At other times

Q(7 downto 0) holds it old value

4 More about types and declarations

4.1 Types
All signals have a type. The type tells VHDL what sort of values a signal can assume.

So far we have met type STD_LOGIC (which takes values ‘0’, ‘1’, ‘X’ and ‘U’) and

type STD_LOGIC_VECTOR, which is an array of STD_LOGIC.

There are also several other types available, such as INTEGER (which describes signals

whose value is a whole number, e.g. 1 or 9 or -50) and CHARACTER (which describes

signals whose value is a character, e.g. ‘a’ or ‘B’ or ‘z’). Here is an example that

shows the declaration of a character signal, an integer signal and a STD_LOGIC signal.

ARCHITECTURE simple OF example IS

 SIGNAL a: CHARACTER;

 SIGNAL b: INTEGER;

 SIGNAL c: STD_LOGIC;

BEGIN

END ARCHITECTURE simple;

4.2 Initialization during declaration
When we declare a signal we can also give it an initial value, using the := operator. So

here are examples of declaration of signals with initialisation:

 5

ARCHITECTURE initialised OF example IS

 SIGNAL a: CHARACTER :='H';

 SIGNAL b: INTEGER :=5;

 SIGNAL c: STD_LOGIC :='X';

BEGIN

END ARCHITECTURE initialised;

4.3 Arrays
You will have met arrays in other languages, such as C. VHDL also has arrays. An

array is a list of items, all of which have the same type, which are indexed by a

number.

Suppose, for example, that I frequently use lists of 11 characters. I could set up a type

which describes this sort of data. This would be done as follows:

TYPE list11 IS ARRAY (0 TO 10) OF CHARACTER;

I have used list11 as the name of this type. Now, when I declare a signal, I can use my

new type. Suppose I want to create two 11-item lists, one called a the other called b. I

could declare them like this:

SIGNAL a, b: LIST11;

Now suppose I want to initialise these signals as I declare them. The first will contain

the characters Hello there and the second will contain How are you

As before, we introduce an initialisation using the symbol :=. This time the

initialisation isn’t a single item, but a list. We write each member of the list separated

by commas. The entire list is contained in brackets:

SIGNAL a: LIST11 :=(‘H’,’e’,’l’,’l‘,’o’,’ ’,’t’,’h‘,’e’,’r’,’e’);

SIGNAL b: LIST11 :=(‘H’,’o’,’w’,’ ‘,’a’,’r’,’e’,’ ‘,’y’,’o’,’u’);

So here is a complete example showing the declaration and initialisation of a and b:

ARCHITECTURE simple OF example2 IS

 TYPE list11 IS ARRAY (0 TO 10) OF CHARACTER;

 SIGNAL a: LIST11 :=('H','e','l','l','o',' ','t','h','e','r','e');

 SIGNAL b: LIST11 :=('H','o','w',' ','a','r','e',' ','y','o','u');

BEGIN

END ARCHITECTURE simple;

So in this example a(0) has the value ’H’, a(1) is ‘e’, a(11) is ‘e’ and so on.

4.4 Type conversion
VHDL is a strongly typed language. This means that if a and b are of different types,

you can’t just write

a <= b;

Instead you need to use a conversion function, which tells VHDL how to convert

between two incompatible types. For example, suppose we have

 6

ARCHITECTURE wrong OF example3 IS

 SIGNAL a: INTEGER;

 SIGNAL b: STD_LOGIC_VECTOR(7 DOWNTO 0) := X“FF”;

BEGIN

 a <= b; --WRONG !!

END ARCHITECTURE wrong;

This would not compile correctly. The basic reason for this is that a and b are of

different types. One of the reasons why VHDL won’t let you directly assign unalike

types is in order to protect you from error. As we saw in lecture 1, it is not clear

whether FF represents 255 or –1. To convert between integer and std_logic, there is a

function called CONV_INTEGER. There are two different versions of this, one held in

the sub-library
1
 IEEE.STD_LOGIC_UNSIGNED, and the other in STD.LOGIC_SIGNED.

You have to open one of these up with a USE statement before you can use the

CONV_INTEGER function. So here is a correct listing:

USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ARCHITECTURE correct OF example3 IS

 SIGNAL a: INTEGER;

 SIGNAL b: STD_LOGIC_VECTOR(7 DOWNTO 0) := X“FF”;

BEGIN

 a <= CONV_INTEGER(b);

END ARCHITECTURE correct;

5 Memories
A very simple example of a read-only memory (ROM) looks like this

Item 0

Item 1

Item 2

Item 3

Item 4

Item 5

Item 6

Data

Address

Item 2 - 1 n n

w bits

w

The memory contains a series of 2
n
 items, each of which is w bits wide. An n-bit

address input selects out one of the items, which is steered to the data output.

5.1 An example
As a specific example, imagine that we wanted to store the marks for 15 students in a

ROM. Here are the marks:

1 In the jargon of VHDL, a sub-library is called a package.

 7

Student Mark

0 72

1 49

2 67

3 53

4 43

5 57

6 61

7 37

8 48

9 55

10 79

11 51

12 40

13 61

14 58

15 62

Things become much easier if we express this data in hexadecimal rather than denary,

so here is the table translated to hex:

Student Mark

0 48

1 31

2 43

3 35

4 2B

5 39

6 3D

7 25

8 30

9 37

A 4F

B 33

C 28

D 3D

E 3A

F 3E

We now store each of these items in the storage locations inside the ROM:

 8

Item 0 = 48

Item 1 = 31

Item 2 = 43

Item 3 = 35

Item 4 = 2B

Item 5 = 39

Item 6 = 3D

Data

Address

Item 15 = 3E
4

8

8 bits

The index of the list runs from 0 to 15 denary (0 to F hex), which needs four binary

bits (i.e.one hex digit) to represent. To represent the number from 0 to 100 denary (0

to 64 hex) could be done in 7 bits, but it’s often easier to keep the width of our signal

as a power of 2, so we choose 8 bits to represent the marks.

5.2 The ENTITY of the ROM example
Firstly we need to write the ENTITY declaration. Here are the inputs and outputs of

the ROM.

address

4
 rom

data

8

So here is an ENTITY declaration:

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

USE IEEE.std_logic_unsigned.ALL;

ENTITY rom IS

 PORT (address: IN STD_LOGIC_VECTOR(3 DOWNTO 0);

 data : OUT STD_LOGIC_VECTOR(7 DOWNTO 0));

END ENTITY rom;

5.3 The ARCHITECTURE of the ROM example
The contents of the ROM is essentially a list of 8-bit data items, which are indexed by

the address. This corresponds to an array. We will create an array called rom_data.

The various items in this list will be the marks of the students, stored as 8-bit binary

numbers (i.e. 2-digit hex numbers). So for example:

rom_data(2) = 43

rom_data(6) = 3D

and so on.

 9

So here is the architecture description for the ROM:

ARCHITECTURE simple OF rom IS

 TYPE rom_array IS ARRAY (0 TO 15) OF STD_LOGIC_VECTOR (7 DOWNTO 0);

 SIGNAL rom_data: rom_array := (X"48", X"31", X"43", X"35",

 X"2B", X"39", X"3D", X"25",

 X"30", X"37", X"4F", X"33",

 X"28", X"3D", X"3A", X"3E");

BEGIN

 data <= rom_data (CONV_INTEGER (address));

END ARCHITECTURE simple;

The statement

 data <= rom_data (CONV_INTEGER (address));

takes the member of the list that is indexed by address and copies into the data output

(after converting it from STD_LOGIC_VECTOR to integer, so as to be a valid index for the

array).

5.4 A testbench for the ROM example
The test bench looks like this:

input_address

Testrom

address

4
 rom

data

8

data_output

We will generate addresses and apply them to the ROM, and look at the data that

emerges to see if it corresponds to the table of students’ marks. Here is a possible

testbench:

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

ENTITY rom_test IS

END ENTITY rom_test;

ARCHITECTURE simple OF rom_test IS

 SIGNAL input_address: STD_LOGIC_VECTOR (3 DOWNTO 0);

 SIGNAL output_data: STD_LOGIC_VECTOR (7 DOWNTO 0);

BEGIN

 g1: ENTITY work.rom(simple)

 PORT MAP (address=>input_address, data=>output_data);

 input_address <= X"0",

 X"1" AFTER 20 NS,

 X"2" AFTER 40 NS,

 10

 X"3" AFTER 60 NS;

END ARCHITECTURE simple;

And here is the result of running the testbench through the simulator:

The results give us confidence that the design is working correctly; as we apply the ID

of the student to the input, we have that student’s mark returned at the output.

6 Shift registers

Another important class of devices is the shift register. Here are a few typical

“standard patterns” of VHDL description for these devices.

6.1 Basic shift register

The basic shift register contains n memory bits.

At each clock cycle, the content of the memory shifts one stage to the right. This can

be coded as follows

LIBRARY IEEE;

USE IEEE.Std_Logic_1164.ALL;

ENTITY shift IS

PORT (clk: IN STD_LOGIC;

l_in : IN STD_LOGIC;

r_out : OUT STD_LOGIC);

CONSTANT n: INTEGER:=8;

END ENTITY shift;

 11

ARCHITECTURE simple Of shift IS

SIGNAL mem : STD_LOGIC_VECTOR (n-1 DOWNTO 0);

BEGIN

PROCESS (clk)

BEGIN

IF rising_edge (clk) THEN

r_out <= mem(0);

mem (n-2 DownTo 0) <= mem (n-1 DownTo 1);

mem (n-1) <= l_in;

END IF;

END PROCESS;

END ARCHITECTURE simple;

6.2 A more elaborate shift register
Now we extend the example to a more elaborate and fully featured shift register.

The contents in the shift register are held in the memory array called mem. If the reset

input goes high, then the device is asynchronously reset. In order to extend the

flexibility of the device, we make n a generic parameter. The function of the shift

register is established by the mode input. The device has four modes:

00: hold. The memory array is preserved unchanged.

01: shift left: The memory array shifts one position to the left . Mem0 receives

its value from r_in, the right input.

10: shift right: The memory array shifts one position to the right . Memn-1

receives its value from l_in, the left input.

11: load: The memory array undergoes a parallel load from the d input.

Here is the corresponding VHDL code:

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY shifter IS

GENERIC (n: POSITIVE:=8);

PORT (clk, reset: IN STD_LOGIC;

l_in, r_in: IN STD_LOGIC;

mode: IN STD_LOGIC_VECTOR(1 DOWNTO 0);

d: IN STD_LOGIC_VECTOR(n-1 DOWNTO 0);

q: OUT STD_LOGIC_VECTOR(n-1 DOWNTO 0));

END ENTITY shifter;

 12

ARCHITECTURE simple OF shifter IS

SIGNAL mem: STD_LOGIC_VECTOR(n-1 downto 0);

BEGIN

PROCESS (clk,reset)

BEGIN

IF (reset='1') THEN

mem <= (others => '0');

ELSIF rising_edge(clk) THEN

CASE mode IS

WHEN "00" => NULL;

WHEN "01" => mem(n-1 DOWNTO 0) <=

mem(n-2 DOWNTO 0) & r_in;

WHEN "10" => mem(n-1 DOWNTO 0) <=

l_in & mem(n-1 DOWNTO 1);

WHEN "11" => mem(n-1 DOWNTO 0) <=

d(n-1 DOWNTO 0);

WHEN OTHERS => NULL;

END CASE;

END IF;

END PROCESS;

q <= mem;

END ARCHITECTURE simple;

Null is a keyword of VHDL, which means “do nothing”.

6.3 Clarifying the code by using constants to provide names

It may make the code easier to understand if we give each of the modes a name, like

this:

ARCHITECTURE nicer OF shifter IS

SIGNAL mem: STD_LOGIC_VECTOR(n-1 downto 0);

CONSTANT hold: STD_LOGIC_VECTOR(1 downto 0):= "00";

CONSTANT sh_left: STD_LOGIC_VECTOR(1 downto 0):= "01";

CONSTANT sh_right: STD_LOGIC_VECTOR(1 downto 0):= "10";

CONSTANT load: STD_LOGIC_VECTOR(1 downto 0):= "11";

BEGIN

PROCESS (clk,reset)

BEGIN

IF (reset='1') THEN

mem <= (others => '0');

ELSIF rising_edge(clk) THEN

CASE mode IS

WHEN hold => NULL;

WHEN sh_left => mem(n-1 DOWNTO 0) <=

mem(n-2 DOWNTO 0) & r_in;

 13

WHEN sh_right => mem(n-1 DOWNTO 0) <=

l_in & mem(n-1 DOWNTO 1);

WHEN load => mem(n-1 DOWNTO 0) <=

d(n-1 DOWNTO 0);

WHEN OTHERS => NULL;

END CASE;

END IF;

END PROCESS;

q <= mem;

END ARCHITECTURE nicer;

Summary
In this lecture we have looked in more depth at different types in VHDL. We have

looked at how ARRAYs can be used to respresent memory structures. We also looked at

clock generation and RTL coding

You should now know...

How to form simple memory structures using ARRAYs.

Memories in VHDL

Clock generation for VHDL simulation

Shift registers

