

Faculty of Engineering and Technology Electrical and Computer Engineering Departmen Advanced Digital Design ENCS533 Homework#4

Q1) Use the following figure to answer the following questions:

- a. Use Boolean Difference to find when the output g is sensitive to node a.
- b. Use Boolean Difference to find when the output g is sensitive to node f.
- c. Find the test vectors for a s-a-0 and s-a-1.
- d. Find the test vectors for b s-a-0 and s-a-1.
- e. Find the test vectors for c s-a-0 and s-a-1.
- f. Find the test vectors for d s-a-0 and s-a-1.
- g. Find the test vectors for e s-a-0 and s-a-1.
- h. Find the test vectors for f s-a-0 and s-a-1.
- i. Find the test vectors for g s-a-0 and s-a-1.
- j. Find a minimum set of test vectors that can test all faults.
- k. What is the Fault Coverage for these 4 test vectors together: "1100", "0011", "1011", "1101".

Answer:

(1 d. 0) 3- E (d, d QI a+c) g= F(a,b,c,d) - (a.b) . (c.d) ds = F (a = a) ⊕ F (a = 1) da = (c.d)' ⊕ b. (cd)' = (c.dlib.ted + 1c.dl'(b+(c.d)) e +(c.d)'b +(c.d)'tc.d) = (c.d) .b g sensitive to a when da = 1 da st d b c (c.d)'. b = 1 0 0 1 0 a. da 1 a 5-0-03 a. [(b. c) + (d. b)] cd 6 a 1 10 0 0 0 10 ha à a. de 1 a 5.0 d b C á. [[b.2] 4 (d.b]] 1 0 0 0 0 0 1 1 1 1 0 0 4-

hill = Elah fl	123
= f. (a.b)'	
	(Contraction of the state
$\frac{dg}{df} = f(f_{so}) \oplus f(f_{si})$ $= (a,b)'$	hard annual ab
, 'a+b	Il a givin i la al-
9 sensitive to f when d	
43 . 1 ·	ab
A+b+l	
es f sa o	
f. do 1	a b c d o p o o
(c.d), (a+b)=1	0000
(é+d) . (a+b)=1	
[]]]]]]	
Falle 1 at 114	
	2-

- f s.a. 1 stind	the top on the state of the			
P. dg. dF. 1 (c.d) + (á+íb) =		d 1 1 1 1 1 1		
- Using fault equivil	ance 1			
fault	Test vectors	Note		
A S.a.o B S.a.o E S.a.1	1100, 1101, 1110	from Nand Equal		
C S.a.o d s.a.o f s.a.i	0011,0111,1011	from Nand		
e s.a.o f s.a.o g s.a.o	0 000, 0001, 0100, 1000 0101, 1001, 0010, 0110, 1010	from AND		
A s-a-1	alle, olol, oloo	from As.a.D		
b 5-0-1	1000, 1010, 1001	from b s.a. o		
c. S-a-1	1001,0101,0001	from C suano		
d s-a-1	1010,010,0010	from b s-a-o		
g s-a_1	0011, 0111, 1011, 1100, 1101, 1110, 1111	from all-gs.a.o		

	1100,	1001 , 01	10,0011	-	+ - <u>Fh</u>	1
	the la	1		1 -	12.2)	1 5)
)	the fault	coverage =	4+3 7	- 100%	50%	
_		- Martin	14 14			
-		- Baseline	1			
	la sile	1.1.1.1.1.1.5	Carl Star 1	1223		3.9
	1	Lange 1		- and	tout crai	C PIL 4

Q2) For the following figure

- a) Use the D-algorithm method to find the test vectors for d s-a-0 and s-a-1 faults.
- b) Use the D-algorithm method to find the test vectors for e s-a-0 and s-a-1 faults.

Answer:

b) 1) e-s-a-o e sao this mean we need put (E), because of that (a must be) and ton to make (E.) C inh b 1 0 1 0 1 1 6 a C 1 1 0 f= D and 1 0 1 L 11 -1 1 . if no fault 1 if faulty 2) e- s-a-1 e s-and this mean we need Put (end) because of that (O must be i) and to make (E20) bc 0 6 C b a and R= D --0 1 0 L 5 o if faulty If no foult 0 3 4. ÷

Q3) The following figure shows a Built-In Self-Test Circuit for a 2-bit comparator (unsigned magnitude comparator). The comparator will compare between 2 numbers $a = a_1a_0$ and $b = b_1b_0$. It will produce 3 outputs X(a=b), Y(a>b), and Z(a<b). The test vectors are generated using a 4-bit LFSR and the results are analysed using a 3-bit MISR as shown in the figure.

. **a)** Show the first 6 test vectors generated by the LFSR (Initial value of the LFSR are shown in the figure "0101", show the next 5 test vectors).

b) What is the fault free signature of this system after we generate these 6 test vectors using the LFSR? (Initial value of the MISR are shown in the figure "010").

c) Assume that the output X(a=b) is Sa0. What is the signature after we generate the same 6 test vectors using the LFSR? Comment on your result? (Initial value of MISR are shown in the figure "010")

Answer:

A1	A0	B1	BO
0	1	0	1
1	0	1	0
1	1	0	1
0	1	1	0
0	0	1	1
1	0	0	1

a) the first 6 test vectors generated by the LFSR

b) the fault free signature of this system after we generate these 6 test vectors using the LFSR

A1	A0	B1	B0	X(a=b)	Y(a>b)	Z(a <b)< th=""><th>C2</th><th>C1</th><th>C0</th></b)<>	C2	C1	C0
							0	1	0
0	1	0	1	1	0	0	1	0	1
1	0	1	0	1	0	0	1	1	0
1	1	0	1	0	1	0	1	0	1
0	1	1	0	0	0	1	0	1	1
0	0	1	1	0	0	1	1	0	0
1	0	0	1	0	1	0	1	0	0

<u>NOTE</u> : signature = 100 , this is a good signature and the circuit fault free signature

c) Assume that the output X(a=b) is Sa0. the signature after we generate the same 6 test vectors using the LFSR

A1	A0	B1	B0	X(a=b)	Y(a>b)	Z(a <b)< th=""><th>C2</th><th>C1</th><th>C0</th></b)<>	C2	C1	C0
							0	1	0
0	1	0	1	0	0	0	0	0	1
1	0	1	0	0	0	0	1	0	0
1	1	0	1	0	1	0	1	0	0
0	1	1	0	0	0	1	1	1	1
0	0	1	1	0	0	1	0	1	0
1	0	0	1	0	1	0	0	1	1

NOTE: signature != good signature

100 != 011 So the circuit faulty