

Faculty of Information Technology

Computer Systems Engineering Department

Fall Semester 2016/2017

Computer Networks ENC539

First Hour Exam

Instructor: Imad Tartir		Time: 60 minutes
	KEY	
Student's name:		
Student's ID #:		

Question	Grade
Question 1 [20 points]	
Question 2 [10 points]	
Question 3 [10 points]	
Question 4 [10 points]	
Total [50 Points]	

Good Luck

A) True / False: (True= +2, False= -1, un-answered = 0, with minimum of 0)

1	Markov Queue use historical probabilities.	Т
2.	2. When no route found matches the packet's destination address, the router will	
	broadcast it to all its active interfaces.	
3.	RIP routes have precedence over static routes	F
4.	210.23.33.0 255.255.254.0 is a valid IP address for a host	Т
5	If we have a point-to-point connection between routers, when sending a packet, the destination MAC address will be all 1s.	Т
6.	Best fit route search requires more RAM and CPU power than first fit technique.	F

B) Choose the best answer:

- 1. In Markov analysis, we are concerned with the probability that the
 - a. State is part of a system.
 - b. System is in a particular state.
 - c. Time has reached a steady state.
 - d. Transition will occur.
- 2. Best fit Routes depends on:
 - a. Longest match between destination IP address in the Packet and Network ID in routing table
 - b. Shortest path in terms of number of routers on the way.
 - c. Least cost in terms of metric
 - d. A series of least congested links
- 3. When will RIP flush a dead route entry in the default values:
 - a. Immediately.
 - b. 30 seconds after the last update
 - c. 180 seconds after the last update
 - d. 240 second after the last update.
- 4. When a packet in the source machine is decided to be sent to a remote network, it is:
 - a. Sent directly to the destination with the real destination IP.
 - b. Sent with destination IP of the router
 - c. Sent with source IP of the router
 - d. Sent with destination MAC address of the router
- 5. To enhance RIP convergence time, the operator can
 - a. Change the default timers to better values
 - b. Use RIP V3
 - c. Use triggered update
 - d. A&C
 - e. Merge network areas

Question #2:

A bank has two gates that lead to a service area, this area offers two types of services. The first gate enters 12 clients per hour who need the first type of service and 3 clients per hour for the second type of service.

The second gate enters 15 clients per hour for the first type of service and 2 clients per hour for the second type of service.

The service desk of the first type of service serves a client every 2 minutes, whereas, the service desk of the second type of service helps 10 clients per hour.

- 1. Draw the state transition diagram of the system.
- 2. Calculate the average number of clients in the bank for the first type of service.
- 3. Calculate the average waiting time for a client to leave the bank for the first type of service.
- 4. Calculate the average number of clients in the bank for the second type of service.
- 5. Calculate the average waiting time for a client to leave the bank for the second type of service.
- 6. What is the probability of having exactly clients waiting for the first type of service and 3 clients waiting for the second type of service?

$$P_n = f^n(1-f)$$
 $f = \frac{1}{27} = \frac{27}{30} = 0.9$

$$P_n = (0.9)^n (0.1)$$
, $\Rightarrow P_q = (0.9)^4 (0.1) = 0.06561$

for the Second
$$\beta = \frac{5}{10} = 0.5$$

 $P_n = (0.5)^n (0.5)$

$$P_3 = (0.5)^3(0.5) = 0.0625$$

According to Jackson's Thererem.

$$P(C_{n_i}) - P_m(n_m) = \prod_{i=1}^m P_i(n_i)$$

$$\Rightarrow P_{1}(4) P_{2}(3) = P_{1}(4) * P_{2}(3)$$

Question #3:

In a company, you have a high speed local area network that serves 5 different departments as follows:

- Sales: 20 employees, each has a PC and 50% of them have hand held smart
- Engineering: 26 employees, each has a PC and smart device.
- Accounting: 10 employees, each has a PC, smart devices are not allowed
- Logistics: 6 employees, each has a hand held device.
- Management: 3 employees and the CEO, each has a PC, the CEO has a smart device, and PC

You are assigned the following range if IP addresses:

- 1. Design an IP addresses scheme for the network departments, so that each department has its independent network.
- 2. Sketch a block diagram for the network.
- 3. When connecting the main router to an ISP, what is/are the static route statement/s you need to enable all network clients access the internet.

of hosts in each department;

Sales: 20 + 10 = 30 + 1 for router

Engineering: 26 + 26 = 52 + 1 for router

Accounting: 10 + 1 for router

Logistics: 6 + 1 for router

Management: 5 + 1 for router

given 178,2.2. \$ 125 > 128 Epatodrenes.

178.2.2. \$ /25 [78.2.2.0/26] Engineering 178,2,2,64/26

178.2.2.96 /27 \ 178.2.2.64 / 27, Sales.

178.2.2.112/28 178.2.2.96/28/ Accounting
Managemal 78, 2.2.120/29 178.2.2.112/29/ Logistics

A) Static Routing:

In the above diagram, write a minimal static routing policy (table) for each of the routers to make all networks accessible form everywhere.

Syntax: Network ID Netmask NextHop $2. 2. 2. \phi$ 255. 255. 255. ϕ 9.9.9. 2 $3. 3. 3. \phi$ 255. 255. 255. ϕ 9.9.9. 2 $4. 4. 4. \phi$ 255. 255. 255. ϕ 9.99. 2

1. 1. 1. \$\phi \ 255. 255. 255. \$\phi \ 9.9.9.1

3. 3. 3. \$\phi \ 255. 255. 255. \$\phi \ 9.9.9.13

4.4. 4. \$\phi \ 255. 255. 255. \$\phi \ 9.9.9.6

(1) \$. \$. \$. \$ \$ \$. \$. \$. \$ 9.9.9.5

B) In RIP protocol:

- 1. what is the "count to infinity" problem?
- 2. explain a solution for this problem?

Net 1 (x) Net 2 Net 3 Net 4

Count to infinity happens after RIP Converges in the above network

network and route 1 looses connectivity with Net 1
In this case router 2 tells router 3 it can reach Net 1 through me, when the router 3 sends update, it returnes the entry to router 2.

when the entry expires of fulshed in route (2) it still receives updates from router (2) telling "you can reach Net 1 through me".

route (2) and (3) strart 3 and ing uppdates to each orther with Increasing the hop count.

2. Bplit horizoni. don't send back route entries,
Poison Reverse! send back with hop count = 15
So it is not reachable through me.