The Wire

Schematic

Physical

Wire Models

O ٥ O

С

All-inclusive model

Capacitance-only

Impact of Interconnect Parasitics

- □ Interconnect and its parasitics can affect all of the metrics we care about
	- Cost, reliability, performance, power consumption

□ Parasitics associated with interconnect:

- Capacitance
- \blacksquare Resistance
- \blacksquare Inductance

Interconnect Length Distribution

From Magen et al., "Interconnect Power Dissipation in a Microprocessor"

Buses, clock wire, global communication --- do not scale with technology

Capacitance: The Parallel Plate Model

Permittivity

Fringing Capacitance

 $C = C_{PP} \cdot W \cdot L + 2C_{f11-ge}L$

Fringing versus Parallel Plate

(from [Bakoglu89])

Interwire Capacitance

Coupling Capacitance and Delay

 $2Cc$ $Cc, eff = 2Cc$

Impact of Interwire Capacitance

(from [Bakoglu89])

Wire Resistance

Interconnect Resistance

Dealing with Resistance

□ Use Better Interconnect Materials

• e.g. copper, silicides

□ More Interconnect Layers

• reduce average wire-length

□ Selective Technology Scaling

Polycide Gate MOSFET

Silicides: WSi 2, TiSi 2, PtSi 2 and TaSi

Conductivity: 8-10 times better than Poly

Sheet Resistance

The Lumped Model

The Distributed RC-line

- Analysis method:
	- Break the wire up into segments of length dx
	- Each segment has resistance (r dx) and capacitance (c dx)

The Distributed RC-line

$$
\tau = \frac{L^2}{2} rc
$$

The Distributed RC Line

Step-response of RC wire as a function of time and space

Simplified Model: Elmore Delay

- "Elmore delay": approximation for delay of arbitrary (complex) RC circuits
- To find "Elmore time constant":
	- For each capacitor, draw path of current from cap to input
	- Multiply C by sum of R's on current path that are common with path from V_{in} to V_{out}
	- Add up RC products from all capacitors

Simplified Model: Elmore Delay

$$
\tau_{Elmore} = R_1 C_1 + (R_1 + R_2) C_2 + (R_1 + R_2 + R_3) C_3
$$

Elmore Delay - Extended

$$
R_{ik} = \sum R_j \Rightarrow (R_j \in [path(s \to i) \cap path(s \to k)])
$$

$$
\tau_{Di} = \sum_{k=1}^{N} C_k R_{ik}
$$

Another Elmore Delay Example

Wire Model

Model the wire with N equal-length segments:

$$
\tau_{DN} = \left(\frac{L}{N}\right)^2 (rc + 2rc + \dots + Nrc) = (rcL^2) \frac{N(N+1)}{2N^2} = RC \frac{N+1}{2N}
$$

For large values of N:

$$
\tau_{DN} = \frac{RC}{2} = \frac{r c L^2}{2}
$$

RC-Models

Step Response of Lumped and Distributed RC Networks: Points of Interest.

$$
\tau_D = R_s C_w + \frac{R_w C_w}{2} = R_s C_w + 0.5 r_w c_w L^2
$$

$$
t_p = 0.69 R_s C_w + 0.35 R_w C_w
$$

The Global Wire Problem

$$
T_d = 0.35 R_w C_w + 0.693(R_d C_{out} + R_d C_w + R_w C_{out})
$$

Challenges

 \Box No further improvements to be expected after the introduction of Copper (superconducting, optical?)

□ Design solutions

- Use of fat wires
- **Efficient chip floorplanning** п
- Insert repeaters п

Interconnect: # of Wiring Layers

of metal layers is steadily increasing due to:

- Increasing die size and device count: we need more wires and longer wires to connect everything
- Rising need for a hierarchical wiring network; local wires with high density and global wires with low RC

Using Bypasses

Diagonal Wiring

- 20+% Interconnect length reduction
- · Clock speed Signal integrity Power integrity
- 15+% Smaller chips plus 30+% via reduction

Reducing RC-delay Using Repeaters

Repeater

Repeaters

$$
t_p = m \left(0.69 \frac{R_d}{s} \left(s \gamma C_d + \frac{cL}{m} + s C_d \right) + 0.69 \left(\frac{rL}{m} \right) \left(s C_d \right) + 0.38 r c \left(\frac{L}{m} \right)^2 \right)
$$

$$
m_{opt} = L \sqrt{\frac{0.38rc}{0.69R_dC_d(\gamma + 1)}} = \sqrt{\frac{t_{pwire(unbuffered)}}{t_{p1}}}
$$

$$
s_{opt} = \sqrt{\frac{R_d c}{rC_d}}
$$

Repeater Insertion (Revisited)

Taking the repeater loading into account

$$
m_{opt} = L_{\sqrt{0.69R_d C_d (\gamma + 1)}} = \sqrt{\frac{t_{pwire(unbuffered)}}{t_{p1}}}
$$

$$
s_{opt} = \sqrt{\frac{R_d c}{r C_d}}
$$

For a given technology and a given interconnect layer, there exists an optimal length of the wire segments between repeaters. The delay of these wire segments is independent of the routing layer!

$$
L_{crit} = \frac{L}{m_{opt}} = \sqrt{\frac{t_{p1}}{0.38rc}} \qquad t_{p,\,crit} = \frac{t_{\,\,p,\,min}}{m_{opt}} = 2\left(1 + \sqrt{\frac{0.69}{0.38(1+\gamma)}}\right)t_{p1}
$$

□ Use RC model to estimate delay:

□ What is the delay in this case?

PROBLEM......

PROBLEM 2: Complex Gate Delay

Figure 3.

For this problem you should assume that $L_{min} = 100$ nm, C_g=2 fF/µm, C_d=1.6 fF/µm, $R_p=20 \text{ k}\Omega/\Box$, and $R_n=10 \text{ k}\Omega/\Box$, $C_{out}=12 \text{ fF}$.

a) If $A = 1$ and $B = 0$, draw the switch model you would use to calculate the delay of the gate when C transitions from 1 to zero (i.e., the output going high).

Using the switch model, the equivalent RC circuit we would use to calculate the delay when $A = 1$, $B = 0$, and C transitions from 1 to zero is shown below.

b) What is the delay of the gate in this case?

Solution:

Using Elmore delay, the time constant for this circuit is:

$$
\tau_{LH} = 2R_P \left(5C_d + 6C_d + 2C_g + 4C_d + C_{out} \right)
$$

Where the resistance of each PMOS transistor is:

$$
R_P = R_p \frac{L}{W} = 20k\Omega \frac{0.1\mu m}{4\mu m} = 500\Omega
$$

Therefore, t_{pLH} for the gate will be:

 $t_{\nu LH} = ln2 \times \tau_{LH} = ln2 \times 2 \times 500 \Omega \times (5 \times 1.6$ f F + 6 \times 1.6f F + 2 \times 2f F + 4 \times $1.6fF + 12fF$) \approx 27.73ps

Calculate Elmore delay from In to out1 and from In to out2?

Solution: Elmore to out1 is 15RC Elmore to out2 is 16RC