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What is a Transistor?
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Design Metrics

a How to evaluate performance of a
digital circuit (gate, block, ...)?
= Cost
= Reliability
» Speed/Performance (delay, frequency)
= Power

.



Introduction to IC CMOS
Manufacturing

The MOS Transistor

Polysilicon
i Aluminumo
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CMOS Manufacturing Process
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Photo-Lithographic Process
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photoresist coating

photoresist
‘ l‘ﬂ removal (ashing)

stepper exposure

Typical operations in a single
photolithographic cycle (from [Fullman]).
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Patterning of SiO,
Si-substrate l l l 1 l, l Et':';“““ﬂ' or plasma

Hardened resist
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(a) Silicon base material Si-substrate

Photoresist
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(d) After development and etching of resist,

Si.substrate chemical or plasma etch of Ell‘ZI-2
{l:}} After oxidation and deposition E_a':;dened resist
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(c) Stepper exposure {f) Final result after removal of resist




Advanced Metallization

Dual damascene IC process

* Oxide deposition

* Stud lithography and | ph
reactive ion etch —— - -

* Wire lithography and
reactive ion etch

* Stud and wire
metal deposition

* Metal chemical-
mechanical polish
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A “Modern” CMOS Process

gate-oxide

Dual-Well Shallow-Trench-Isolated CMOS Process




Transistor Layout
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CMOS Process Layers

Layer

Well (p,n)
Active Area (n+,p+)
Well contact (p+,n+)

Polysilicon

Metal1

Metal2

Contact To Poly
Contact To Diffusion
Via

Color

Yellow

Green
Green

Red
Blue
Magenta
Black

Black
Black

Representation
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Layers in 0.25 um CMOS process

Represcntation
ml m2 m3 md m$




Design Rules

a Intra-layer
» Widths, spacing, area
a Inter-layer

= Enclosures, distances, extensions,
overlaps

a Special rules (sub-0.25um)

= Antenna rules, density rules, (area)

.
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Design Rules

» Interface between the circuit designer and
process engineer

» Guidelines for constructing process masks

» Unit dimension: minimum line width
- scalable design rules: [lambda parameter
- absolute dimensions: micron rules

» Rules constructed to ensure that design works
even when small fab errors (within some
tolerance) occur

» A complete set includes

- set of layers
- intra-layer: relations between objects in the same layer
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Cost of Integrated Circuits

a2 NRE (non-recurrent engineering) costs - fixed

* [Independent of volume (i.e., number of units
made/sold)

» Examples: design time and effort, mask
generation, equipment, etc.

1d Recurrent costs - variable

= proportional to volume
» Examples: silicon processing, packaging, test
* Most of these proportional to chip area

b
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NRE Cost is Increasing

7 18980 18983 2000 2001 2002 2003

“The club of people who can
afford an extreme sub-micron
ASIC or COTS design 1s getiing
pretty exclusive.”

Rt Wilsadi, EE Tunes (May 2000)

1= 02 LKL i il
Process Geomelry (Wi ron)

T0nm ASICs will have $4M
NRE
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Total Cost

aCost per IC
. fixed cost
cost per IC = variable cost per IC +
N ~ ~ Vvolume

a Varnable cost

variable cost = cost of die + cost of die test + cost of packaging

final test yield

p—
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Die Cost

From: hitp//www.amd.com

/ Wafer

Single die

cost of wafer

cost of die = — e
dies per wafer * die yield
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Warer size
AMD Athlon

8” (200mm) 12” (300mm) 127 (300mm)
90nm CMOS 90nm CMOS 65nm CMOS

Next: 18” Wafers?
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Projected 2000 Wafer, circa 1975

G. Moore, Keynote Address ISSCC 2003
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Yield

No. of good chips per wafer

= _ x100%
Total number of chips per wafer
. Wafer cost
Die cost = — —
Dies per wafer x Die yield

nux (wafer -:Ii;-:atmrs.eten?)2 _ mux wafer diameter

Dies per wafer =

die area J2 xdie area
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Defects

Yield = 1/4 ] Yield = 19/24
AN
/ e @ -] \
. defects per unit areax die area\
die yield = (1 + . , where o is approximately 3
l =
die cost o ! « die area’

[(diefwafer o die area’ )(yield « die area” )]
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Sticky Note
die cost proptional to (die area)^4


A “Modern” CMOS Process

gate-oxide

Pt

Dual-Well Shallow-Trench-Isolated CMOS Process
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Patterning - Photollthographygm

1. Oxidation masﬁ(l L] ] L ket

2. Photoresist (PR) coating 2 -
3. Stepper exposure -
4. Photoresist

~N O

development and ba
Acid etching

Unexposed (negative PR)
E}( pGS Ed 1: pGS |t |‘U’E P R]

lon implantation
Plasma

. Spin, rinse, and dm
Processing step

etching
Metal deposition

Photoresist removal
(ashing)
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Diffusion and lon Implantation

1. Area to be doped
is exposed
(photolithography
)

2. Diffusion
or
lon implantation




Deposition and Etching

1. Pattern maskim;i1
(photolithography)

2. Deposit material
over entire wafer

CVD (5i5N,)
chemical
deposition

(polysilicon)
sputtering (Al)

3. Etch away
unwanted material
wel
etching dry

(plasma) etching

;\
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Deposition and Etching

Needed for insulating Si02, silicon nitride (sacrificial buffer), polysilicon, metal
interconnect

CVD - chemical vapor deposition uses a gas—-phase reaction with energy supplied
by heat at around 850C. Use for, eg, silicon nitride

Chemical deposition - used for polysilicon. flow silane gas over the heated wafer
(coated with Si02) at approx. 650C. Resulting reaction produces a non-crystaline
material - polysilicon. Followed by an implant step to increase its conductivity.

Spu_tteringi)— used for aluminum. Al evaporated in a vacuum, heat for evaporation
delivered by e-beam bombarding.

Etching is then used to selectively form patterns (wires, contact holes). Wet
etching using acid or basic solutions - hydrofluoric acid buffered with fluoride is
used to etch Si02. Plasma etching becoming more common. Use plasma
molecules in heated chamber to “sandblast” the surface. Gives well-defined
directionality to the etching action, creating patterns with sharp vertical contours.
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Se If-Ali ig ned Gat

. Create thin oxide in
the “active” regions,
thick elsewhere

2. Deposit polysilicon

3. Etch thin oxide from
active region (poly

acts as a mask for
the diffusion)

mplant dopant




cut line




Active Mask




Poly Mask




P+ Select Mask




N+ Select Mask




Contact Mask:

1+
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Deposit silicon-oxide and
photoresist

* Photoresist is a light-sensitive organic polymer
*  Softens where exposed to light

FPhotoresist
Eil:l:.

p substrate

NOTE: The silicon oxide is just to protect the wafer

i —_




Photo-Lithography

Expose photoresist through n-well mask
Strip off exposed photoresist

Photoresist
=T
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Etching

» Etch oxide with hydrofluoric acid (HF)

— Seeps through skirand eats bone: nasty stuff!!!
*  Only attacks oxide where resist has been exposed

Phatarmsist

p substrate



Riyad G. Yahia
Sticky Note
يتسرب من خلال الجلد و ياكل العظام


The n-well

* n-well is formed with diffusion or ion implantation
*  Diffusion

— Place wafer in furnace with arsenic gas

— Heat until As atoms diffuse into exposed Si
* lon Implantation

— Blast wafer with beam of As ions

— lons blocked by SiO,, only enter exposed Si

[ Si0,
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Strip protective oxide

Strip off the remaining oxide using HF
* Back to bare wafer with n-well
*  Subsequent steps involve similar series of steps

n wall

p subsirate




Gate oxide and Polysilicon

*  Deposit very thin layer of gate oxide
< 20 A (6-7 atomic layers)

*  Chemical Vapor Deposition (CVD) of silicon layer
—  Place wafer in furnace with Silane gas (SiH,)

— Forms many small crystals called polysilicon
— Heavily doped to be good conductor
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n well

p substrate
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Polysilicon patterning

*  Use same lithography process to pattern polysilicon
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Self-aligned polysilicon gate
process

The polysilicon gate serves as a mask to allow precise
alignment of the source and drain with the gate

Use oxide and masking to expose where n+ dopants
should be diffused or implanted

n-diffusion forms nMOS source, drain, and n-well

contact

rotechive layer
':;F oxide s
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Formation of the n-diffusions

*  Pattern oxide and form n+ regions

*  Self-aligned process (poysilicon gate) “blocks” diffusion under
the gate

*  Polysilicon is better than metal for self-aligned gates because it
doesn’t melt during later processing
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The n-diffusions

* Historically dopants were diffused

*  Usually ion implantation today (but regions are still
called diffusion)

p substrate

*  Strip off oxide to complete patternina step

n well




The p-diffusions

«  Similar set of steps form p+ diffusion regions for pMOS
source and drain and substrate contact

p+ Diffusion

N N

n well

p substrate

D T,




Contacts

. Now we need to create the devices' terminals
*  Cover chip with thick field oxide (FOX)
. Etch oxide where contact cuts are needed

Contact

250 Thidk field oide

p substrate
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Metallization

. Sputter on aluminum over whole wafer, filling the contacts as well

. Pattern to remove excess metal, leaving wires
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