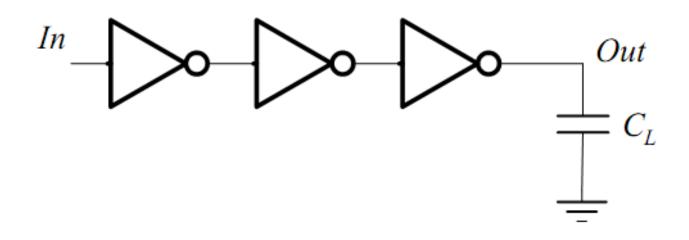
Inverter Delay Optimization

The Next Question: Inverter Chain



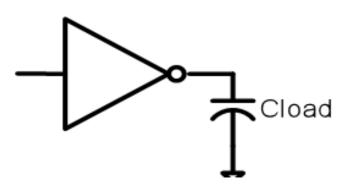
\Box For some given C_L :

- How many stages are needed to minimize delay?
- How to size the inverters?

□ Anyone want to guess the solution?

Careful about Optimization Problems

- Get fastest delay if build one very big inverter
 - So big that delay is set only by self-loading



Likely not the problem you're interested in

Someone has to drive this inverter...

Engineering Optimization Problems in General

Need to have a set of constraints

Constraints key to:

- Making the result useful
- Making the problem have a 'clean' solution

□ For sizing problem:

Need to constrain size of first inverter

Delay Optimization Problem #1

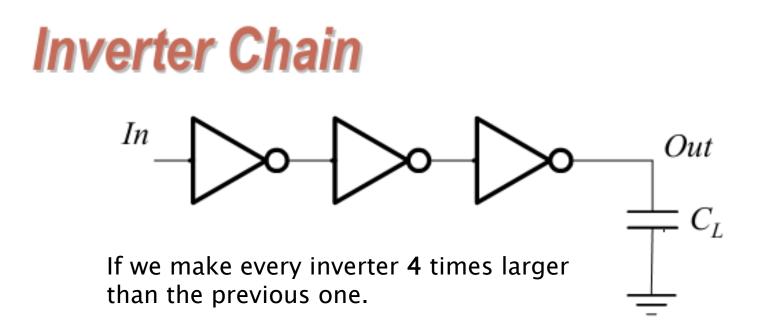
□ You are given:

- A <u>fixed</u> number of inverters
- The size of the first inverter
- The size of the load that needs to be driven

□ Your goal:

Minimize the delay of the inverter chain

Need model for inverter delay vs. size



\Box For some given C_L :

- How many stages are needed to minimize delay?
- How to size the inverters?

Anyone want to guess the solution?

Inverter Delay

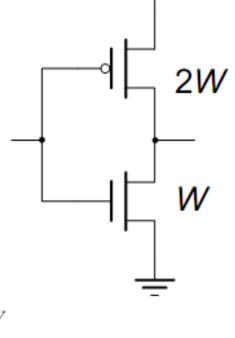
- □ Minimum length devices, $L = 0.09 \mu m$
- □ Assume that for $W_P = 2W_N = 2W$
 - approximately equal resistances, $R_N = R_P$
 - approx. equal rise and fall delays, $t_{pHL} = t_{pLH}$

□ Analyze as an *RC* network:

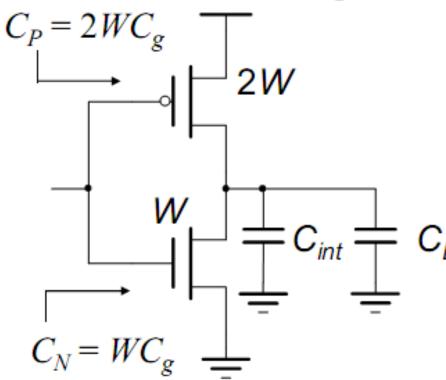
$$R_{P} = R_{sq,p} \left(\frac{L}{W_{P}}\right) \approx R_{N} = R_{sq,n} \left(\frac{L}{W_{N}}\right) = R_{W}$$

Delay: $t_{pHL} = (\ln 2) R_N C_{tot} = t_{pLH} = (\ln 2) R_p C_{tot}$

Loading on the previous stage: $C_{in} = 3WC_g$



Inverter Delay



$$R_W = R_{sq,n} \left(\frac{L}{W}\right)$$

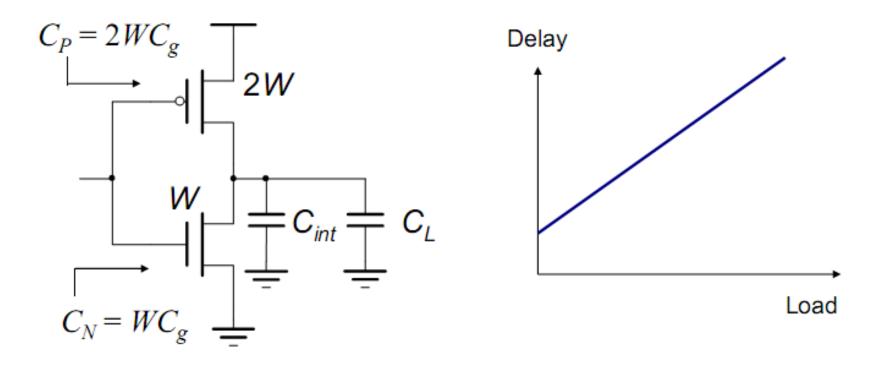
$$C_{\text{int}} = 3WC_d$$

$$C_{in} = 3WC_g$$

Replace ln(2) with k (a constant): Delay = $kR_WC_{int} + kR_WC_L$

 $Delay = kR_{sq,n}(L/W)(3WC_d) + kR_{sq,n}(L/W)C_L$

Inverter with Load



Delay = $kR_W C_{in}(C_{int}/C_{in} + C_L/C_{in})$ = $3kLR_{sq,n}C_g[C_d/C_g + C_L/(3WC_g)]$ = Delay (Internal) + Delay (Load)

Delay Formula

$$Delay \sim R_W \left(C_{int} + C_L \right)$$

$$t_{p} = kR_{W}C_{in}\left(C_{int}/C_{in} + C_{L}/C_{in}\right) = t_{inv}\left(\gamma + f\right)$$

$$C_{int} = \gamma C_{in} (\gamma \approx 1 \text{ for inverter})$$

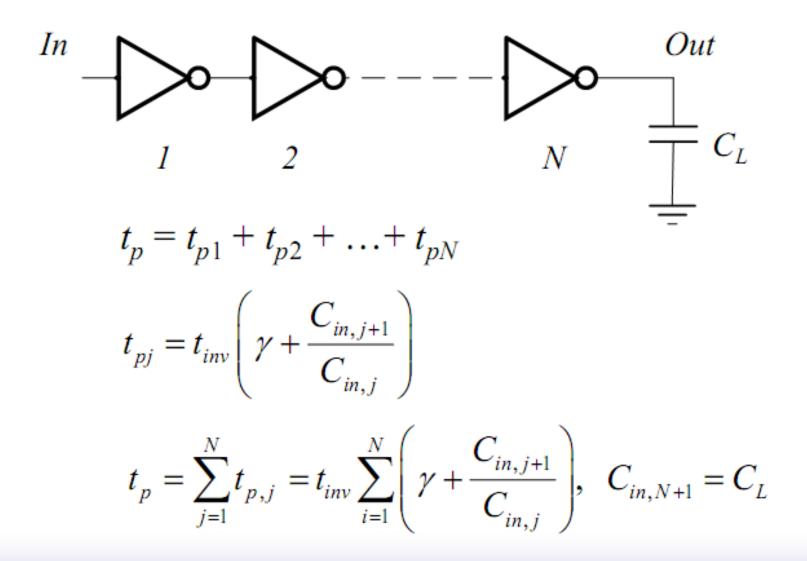
$$f = C_L / C_{in} - \text{electrical fanout}$$

$$R_W = R_{sq} (L / W) ; C_{in} = 3WC_g$$

$$t_{inv} = 3 \cdot \ln(2) \cdot L \cdot R_{sq} C_g$$

*t*_{inv} is independent of sizing of the gate!!!

Apply to Inverter Chain



Optimal Tapering for Given N

□ Delay equation has N-1 unknowns, $C_{in,2} \dots C_{in,N}$

□ **To minimize the delay,** find *N*-1 partial derivatives:

$$\begin{split} t_p &= \dots + t_{inv} \frac{C_{in,j}}{C_{in,j-1}} + t_{inv} \frac{C_{in,j+1}}{C_{in,j}} + \dots \\ \frac{dt_p}{dC_{in,j}} &= t_{inv} \frac{1}{C_{in,j-1}} - t_{inv} \frac{C_{in,j+1}}{C_{in,j}^2} = 0 \end{split}$$

Optimal Tapering for Given N (cont'd) Result: every stage has equal fanout:

$$\frac{C_{in,j}}{C_{in,j-1}} = \frac{C_{in,j+1}}{C_{in,j}}$$

In other words, size of each stage is geometric mean of two neighbors:

$$C_{in,j} = \sqrt{C_{in,j-1}C_{in,j+1}}$$

 \Box Equal fanout \rightarrow every stage will have same delay

Optimum Delay and Number of Stages

 \Box When each stage has same fanout f:

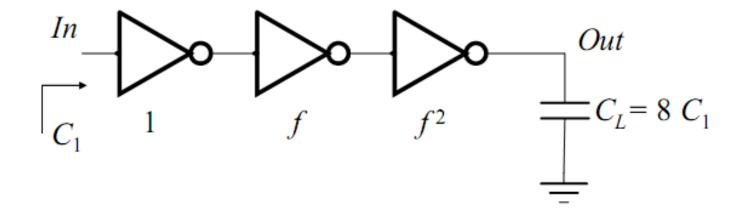
$$f^N = F = C_L / C_{in,1}$$

Effective fanout of each stage:

$$f = \sqrt[N]{F}$$

Minimum path delay:

$$t_p = N t_{inv} \left(\gamma + \sqrt[N]{F} \right)$$



 C_L/C_1 has to be evenly distributed across N = 3 stages:

$$f = \sqrt[3]{8} = 2$$

Delay Optimization Problem #2

You are given:

- The size of the first inverter
- The size of the load that needs to be driven

Your goal:

 Minimize delay by finding optimal number and sizes of gates

□ So, need to find N that minimizes:

$$t_p = N t_{inv} \left(\gamma + \sqrt[N]{C_L / C_{in}} \right)$$

Solving the Optimization

□ Rewrite N in terms of fanout/stage *f*:

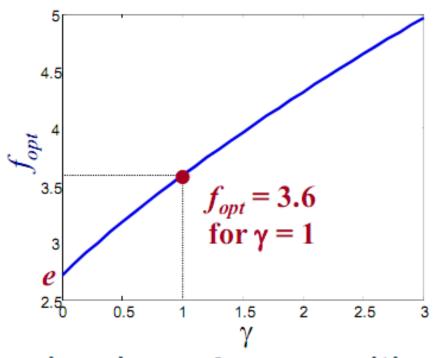
$$f^N = C_L/C_{in} \rightarrow N = \frac{\ln(C_L/C_{in})}{\ln f}$$

$$t_p = Nt_{inv} \left(\left(C_L / C_{in} \right)^{1/N} + \gamma \right) = t_{inv} \ln \left(C_L / C_{in} \right) \left(\frac{f + \gamma}{\ln f} \right)$$

$$\frac{\partial t_p}{\partial f} = t_{inv} \ln \left(C_L / C_{in} \right) \cdot \frac{\ln f - 1 - \gamma / f}{\ln^2 f} = 0$$

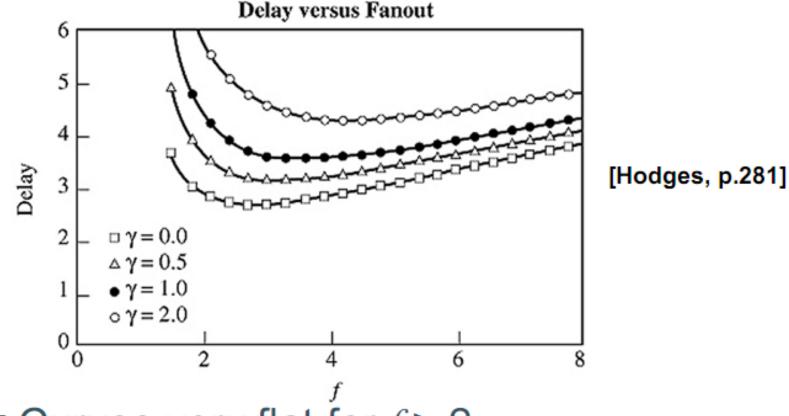
$$f = \exp(1 + \gamma/f)$$
 For $\gamma = 0, f = e, N = \ln(C_L/C_{in})$

Optimum Effective Fanout fOptimum f for given process defined by γ $f = \exp(1 + \gamma/f)$



 \Box Intuition: why does *f* go up with γ ?

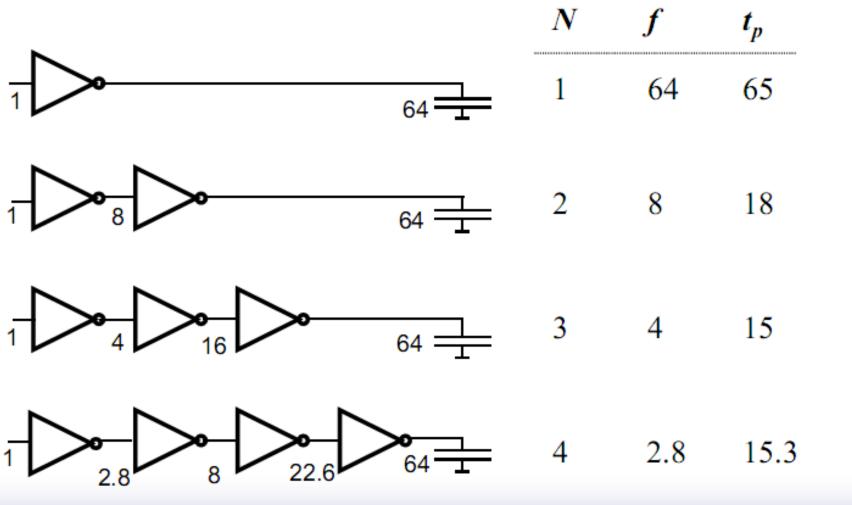
In Practice: Plot of Total Delay



 \Box Curves very flat for f > 2

Simplest/most common choice: f = 4

Buffer Design



Normalized Delay As a Function of F

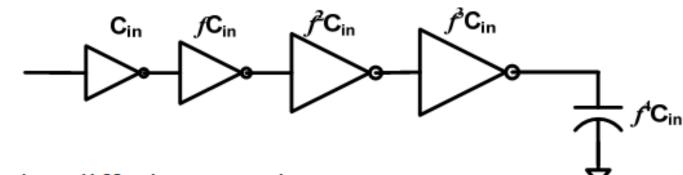
$$t_p = Nt_{inv} \left(\gamma + \sqrt[N]{F} \right), F = C_L / C_{inv}$$

F	Unbuffered	Two Stage	Inverter Chain
10	11	8.3	8.3
100	101	22	16.5
1000	1001	65	24.8
10,000	10,001	202	33.1

$$4^{N} = F = \frac{C_{L}}{C_{in}}$$
 For F=10000 N=6.64 take N=7

$$N = \frac{\ln(F)}{\ln(4)}$$
 $t_{p} = 7.t_{inv}(1 + \sqrt[7]{10000}) = 33.1.t_{inv}$

What About Energy (and Area)?



Ignoring diffusion capacitance:

$$C_{tot} = C_{in} + f \cdot C_{in} + \dots + f^{N} \cdot C_{in}$$

= $C_{in} \cdot (1 + f + \dots + f^{N})$
= $C_{in} + C_{in} \cdot f^{N} + C_{in} \cdot f \cdot (1 + f + \dots + f^{N})$
2)
Overhead !!! $f(f^{N-1}-1) / (f-1)$

Example (γ =0): C_L = 20pF; C_i = 50fF $\rightarrow N$ = 6 Fixed: 20pF Overhead: 11.66pF !!!

Example Overhead Numbers

Example: C_L = 20pF; C_{in} = 50fF

