Digital Integrated Circuits
ENCS 333

Instructor:
Dr. Wasel Ghanem




What will you learn here?

0 Introduction to digital integrated circuit design
engineering
» Key concepts needed to be a good digital IC designer
* Design creativity

0 Models that allow reasoning about circuit behavior

= Allow analysis and optimization of the circuit's performance,
power, cost, etc.

» Understanding circuit behavior is key to making sure it will
actually work

1 Teach you how to make sure your circuit works

= Do you want your transistor to be the one that screws up a 1
billion transistor chip?




What will you learn?
0 Understanding, designing, and optimizing
digital circuits for various quality metrics:
= Performance (speed)
= Power dissipation

= Cost

» Reliability

.



Introduction

a Digital Integrated Circuit Design: The
Past, The Present and The Future

* \What made Digital IC design what it is
today

= \WWhy is designing digital ICs different today
than it was before?

= Will it change in the future?




ENIAC - The First Electronic Computer (1946)
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The Transistor Revolution

First transistor
Bell Labs, 1948
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John Bardeen, William Shockley and Walter
Brattain at Bell Labs, 1948.



The First Integrated Circuits
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*Noyce and Kilby inventors of IC in 1958
1967 MOS transistor invented




T ntel, 1971,
e i 2,300 transistors (12mm?)

740 KHz operation
(10um PMOS technology)




Intel Pentium 4 Microprocessor

Intel, 2005.

125,000,000 transistors
(112mm?)

3.8 GHz operation

(90nm CMOS technology)




Intel Core 2 Microprocessor
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Transistors [in millions]

Transistor Counts

Transistor Counts in Intel's Microprocessors
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Moore’s Law

® In 1965, Gordon Moore noted that the
number of transistors on a chip doubled

every 18 to 24 months.

® He made a prediction that semiconductor
technology will double its effectiveness

every 18 months




Moore’s Law
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Evolution in Complexity

Number of bits per chip

1970 1980 1990 2 b 2010

Year




Frequency

Frequency Trends in Intel's Microprocessors
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Power Dissipation Prediction (2000)
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2 Did this really happen?



Power Dissipation Data

Power Trends in Intel's Microprocessors
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Cause: Power Density
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Power density too high for cost-effective cooling




Not enough cooling...

*Pictures from http://www.tomshardware.com/2001/09/17/hot_spot/




Why Scaling?

1 Technology shrinks by 0.7/generation

a With every generation can integrate 2x more
functions per chip; chip cost does not increase
significantly

1 Cost of a function decreases by 2x

a But ...

* How to design chips with more and more functions?

» Design engineering population does not double every
two years...

1 Hence, a need for more efficient design methods
» Exploit different levels of abstraction

p—.



Intel Technology Roadmap
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Process Name P1266 P1268 | P1270 P1272 P1274
Lithography 45nm  32nm | 22nm | 14nm 10 nm

1st Production 2007 2009 2011 2013 2015

-----------




The MOS Transistor

Field .~
Oxide _
Source / Drain

Regions




Tri-Gate Transistor Benefits

» Dramatic performance gain at low operating
voltage, better than Bulk, PDSOI or FDSOI

37% performance increase at low voltage
>50% power reduction at constant performance

* Improved switching characteristics
(On current vs. Off current)

* Higher drive current for a given transistor
footprint

* Only 2-3% cost adder (vs. ~10% for FDSOI)




22 nm Tri-Gate Circuits

364 Mbit array size

>2.9 billion transistors
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3 generation high-k + metal gate
transistors

||H
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Same transistor and interconnect
features as on 22 nm CPUs

22 nm SRAM, Sept. ‘09

22 nm SRAMs using Tri-Gate transistors were first demonstrated in Sept. ‘09

Intel is now demonstrating the world’s first 22 nm microprocessor (lvy Bridge)
and it uses revolutionary Tri-Gate transistors
il

.




Intel SRAM Prototype Chip (2009)

22 nm
364 Mbyte SRAM
> 2.9 Billion Transistors

00 8 0

3rdgeneration high-k + metal gate

0.092 um< SRAM cell
for high density applications

0.108 um? SRAM cell
for low voltage applications



22 nm Tri-Gate Transistor 22 nm Tri-Gate Transistor

Tri-Gate transistors can have multiple fins connected tog
to increase total drive strength for higher performanc

Gates Fins

Silicon
Fin




Challenges in Digital Design

Tlme-td:-Market

“Microscopic Problems” . = —
Parasitics

* Ultra-high speed design _
* Interconnect Millions of Gates
+* Noise, Crosstalk

+ Reliability, Manufacturability :
* Power Dissipation Reliability
* Clock distribution.

Everything Looks a Little Different

?

“Macroscopic Issues”
« Complexity
« Time-to-Market
* Millions of Gates
* High-Level Abstractions
* Reuse & IP: Portability
* Predictability
» etc.

...and There’s a Lot of Them!



Complexity
Logic Transistor per Chip (M)
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Complexity outpaces design productivity

Courtesy, ITRS Roadmap
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