ICC Hierarchical Design for VLSI, Dr. Khader Mohammad, Nour Daghlas 4/29/2019

Faculty of Engineering and Technology
Department of Electrical and Computer Engineering

Dr. Khader Mohammad
Nour Daghlas
4/29/2019

ICC Hierarchical Design for VLSI

Lab4

Goal: Synthesize and Design a Complex System Using ICC Tool
Procedure:
During this lab, the students are expected to be able to perform the following:
	1-Create a MilkyWay Design Library
2-Synthesize and Design a MUX2X1 using gates.
3-Synthesize and Design a MUX4X1 using MUX2X1.
4-Write Netlist for full adder using your MUX4X1.
~5-Use premade simple Verilog Code which includes D-FlipFlops and Synthesize Clock Distribution and verify timing.~
6-Implement a hierarchal 4-bit RippleAdderSubtractor using previous components
7-Verify LVS and DRC errors and fix where applicable
8- ¡Bonus! Use your RippleAdderSubtractor and store the output SUM in 4 D-FlipFlops to perform clock tree synthesis and verify the timing of the design.

*To start the lab, have the ICC Tool open and ready through the icc_shell –gui command after you’re in an appropriate directory
Part 1: Create a MilkyWay Design Library
For this lab, we’ll create our own Design Library. A design library holds information of the technology we’ll be using in our design and the reference libraries which will link the standard cells that our designs are allowed to use that we can later re-open and view our past designs without having to redo the entire design process.
To create a library, copy the following command and paste it in the ICC Tool Command Line(Main Window) as shown in Figure 1.
create_mw_lib -technology /home/iccuser/32-28nm_EDK_01312018/SAED32_EDK/tech/milkyway/saed32nm_1p9m_mw.tf -mw_reference_library {/home/iccuser/32-28nm_EDK_01312018/SAED32_EDK/lib/stdcell_lvt/milkyway/saed32nm_lvt_1p9m} /home/iccuser/icc_test/YOUR_ID/YOUR_ID.mw
[image:]
Figure 1
To open the library, go to FILE -> Open Library -> Choose Your Library and press Choose. The library should be opened. This step is crucial: Type in the ICC Command line the following:
source ~/setup.tcl To re-open your library, simply go to File -> Open Library and choose your pre-existing library

For the rest of this lab, we’ll need to switch between the ICC Shell and the Linux Kernel. To not have to close the library and re-open it, you can right click on PuTTY and start a Duplicate Session to access your files and the ICC tool at the same time.
Part 2: Synthesize and Design a MUX2X1 using gates.
a) Using the example AND2X1.v configuration shown in Figure 1, write your own MUX2X1.v file using the Linux “vi” editor and save it to your directory.
[image:]
Figure 2
The MUX2X1 Circuit using basic gates is as shown in Figure 2.
[image: Image result for Mux2x1 using basic gates]
Figure 3
The AND2X1.v and MUX2X1.v are called “Netlists”, which are a gate-level representation of the design we want to implement.
b) Now Synthesize(Import) the netlist into the IC Compiler and proceed to create the Floorplan, pre-routing, placement and routing and check the design to see how the connected nets and ports would give us a MUX2X1 functionality.

Part 3: Design and Synthesize a MUX4X1 using MUX2X1.
This part is an introduction into hierarchal design, there are two approaches when we’re performing hierarchal design(as opposed to flat design) as follows:
1. top-down decomposition of a behavior specification into less complex behavior specification modules.
2. bottom-up combination of physical building blocks into larger building blocks.
During this lab, we’ll rely mainly on Top-Down approach where we construct the smaller parts needed to implement our main design.
In order to synthesize designs with hierarchal properties in the ICC Tool, we’ll have to import files using File->Import Design -> Choose Verilog -> Add and Select all the needed netlists for Synthesizing the design.
The MUX4X1 using MUX2X1’s netlist is one of your tasks, so you can hand-draw it and then translate it to the Netlist. In order to use the premade MUX2X1, we’ll have to pay special attention to our MODULE names(Be careful! Not the file names). Using a MUX2X1 in a netlist is shown in Figure 4.
[image:]
Figure 4

Part 4: Write Netlist for full adder using your MUX4X1.
In this part, we only want to create a netlist for a full adder and save it to use it in a later design. It is not required to synthesize the design, but it’s optional in order to add it to your library for future use. You could use MUX2X1 as shown in figure 6 but that’s up to the designer. Is there a reason why we might use MUX2X1 if we could use MUX4X1 for our design?
The Full Adder circuit is shown in the following Figure 5.
[image: Image result for Full Adder using Mux]
Figure 5
[image:]
Figure 6
Part 5: Use premade simple Verilog Code which includes D-FlipFlops and Synthesize Clock Distribution and verify timing.
File: ~/flipFlops.v
Use commands: create_clock -name myClock [list clk] -period 100
clock_opt
route
Main Window -> Schematic -> New Design Schematic View (From, To, Through)
Report Clock Tree

Part 6: Implement a hierarchal 4-bit RippleAdderSubtractor using previous components
[bookmark: _GoBack][image: Image result for ripple adder subtractor]

Lastly, if you have any questions, please ask your lab assistant.

image4.png
module module (A3, A4, S ,Y);
input A3,A4,S;

output Y;
mux2xl U2(.A1(A3),.A2(RA4),.35(S), .Y(Y));

//assign Y = (S ? A2:Al) ;
endmodule

image5.jpeg
C

Dy

2:1
MUX-1

sum

’_,Dx

2:1
MUX-2

The full adder using 4:1 multiplexer

CARRY

image6.png
C_out = AB + C(A exor B)

image7.png

image1.png
% 1C Compler - MinWindow.1

- o

File Edit View Select Highlight List Hierarchy Design Attributes Clock Schematic »

X

Warning
Warning
Warning
Warning
Warning
Warning
Warning
Warning
Warning

Layer
Layer
Layer
Layer
Layer
Layer
Layer
Layer
Layer

‘1B has
‘W’ has
‘¥5* has
‘W' has
‘W7' has
‘W" has
‘M9' has

a
a
a
a
a
a
a

‘WRDL' has
‘WRDL" has

pitch
pitch
pitch
pitch
pitch
pitch
pitch

pi
2 pitch 4,864 that does not natch the recommended wire-to-via _|
a pitch 4.864 that does not match the doubled pitch 2.432 or t

| ——

0.304 that
0.304 that
0.608 that
0.608 that
1.216 that
1.216 that
2.432 that

does
does
does
does
does
does
does

not.
not.
not.
not.
not.
not.
not.

natch
natch
natch
natch
natch
natch
natch

the
the
the
the
the
the
the

reconnended
reconnended
reconnended
reconnended
reconnended
reconnended
reconnended

wire-to-via
wire-to-via
wire-to-via
wire-to-via
wire-to-via
wire-to-via
wire-to-via

pi
pi
pi
pi
pi

3

Log [History

2

icc_shell> [fdcell_Tvt/nilkyway/saed32nn_Lvt_1p9n} /home/iccuser/icc_test/1152239/1152239.m

Ready

E

image2.png
module and2xl Noor (A, B, Y);
input A,B;

output Y;

wire nl;

NAND2X0 LVT Ul (.Al(A),.A2(B), .Y(nl));
NAND2X0 LVT U2(.Al(nl), .A2(nl), .Y(Y));
endmodule

image3.png
IN1

IN2

SEL

